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Abstract: The curiosity and attention that researchers have devoted to alkaloids are due to their
bioactivities, structural diversity, and intriguing chemistry. Marine-derived macrocyclic alkaloids
(MDMAs) are considered to be a potential source of drugs. Trabectedin, a tetrahydroisoquinoline
derivative, has been approved for the treatment of metastatic soft tissue sarcoma and ovarian
cancers. MDMAs displayed potent activities that enabled them to be used as anticancer,
anti-invasion, antimalarial, antiplasmodial, and antimicrobial. This review presents the reported
chemical structures, biological activities, and structure–activity relationships of macrocyclic
alkaloids from marine organisms that have been published since their discovery until May 2020.
This includes 204 compounds that are categorized under eight subclasses: pyrroles, quinolines,
bis-quinolizidines, bis-1-oxaquinolizidines, 3-alkylpiperidines, manzamines, 3-alkyl pyridinium salts,
and motuporamines.
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1. Introduction

The marine environment is one of the harshest atmospheres on the earth due to its diverse ranges of
light, temperature, pressure, and nutrient circumstances [1]. These conditions enable marine organisms
to produce extremely different and unprecedented metabolites with a wide range of bioactivities [2,3].
The organisms that live in this environment have immense genetic and biochemical diversity that,
being the source of unexplored bioactive products, could be beneficial for the development of potential
drugs [4].

The discovery of such drugs is expensive, time-consuming, and risky because it is achieved
through complicated processes. Moreover, drug discovery is supported by the combination of
databases with dereplication methodologies, such as computer-assisted structure elucidation (CASE)
and mass spectrometry or nuclear magnetic resonance (NMR) spectroscopy (metabolite- guided and
genome-guided approaches) [3].

Twenty marine-derived compounds have been considered in different clinical trial phases, ranging
from Phase I to III. Moreover, four macrocyclic compounds out of eight approved marine-derived drugs
have been approved by the Food and Drug Administration (FDA), Australia’s Therapeutic Goods
Administration, the European Medicines Agency (EMA), and the Japanese Ministry of Health [5].
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Marine macrocyclic natural products (MMNPs) include four main subclasses according to their
structural differences, namely, cyclic depsipeptides, diterpenes, macrolides, and macrocyclic alkaloids.
MMNPs have been reported from different sources, including sponges, algae, fungi, mollusks,
cyanobacteria, and gorgonians [6].

The unprecedented skeletons of MMNPs and structural complexity have an important role
in the potency of their bioactivities. This has enhanced the discovery of anticancer drugs such as
trabectedin [7], which is a tetrahydroisoquinoline alkaloidal derivative that has been approved by the
FDA and the European Agency for the Evaluation of Medicinal Products (EMEA) as an anticancer
drug. Ingenamine G has been shown to exhibit potent cytotoxic effects against HCT-8 (colon), B16
(leukemia), and MCF-7 (breast) cancer cell lines, as well as antibacterial effects against Staphylococcus
aureus, Escherichia coli, four oxacillin-resistant S. aureus strains, and Mycobacterium tuberculosis H37Rv [8].
The potent blocking activity of xestospongin A, araguspongine B, demethylxestospongin B, and
araguspongines C and D on IP3-mediated Ca2+ release from the endoplasmic reticulum vesicles of the
rabbit cerebellum has been published [9]. Finally, the antimalarial activity of manzamines has been
reported [10].

This review discusses the reported chemical structures, biological effects, and structure–activity
relationships (SARs) of eight subclasses of marine-derived macrocyclic alkaloids-pyrroles, quinolines,
bis-quinolizidines, bis-1-oxaquinolizidines, 3-alkylpiperidines, manzamines, 3-alkyl pyridinium salts,
and motuporamines. Also included within this review are 204 compounds that have been reported
since their discovery until May 2020 (Figure 1 and Table 1).
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Table 1. List of marine-derived macrocyclic alkaloids.

Compound No. Subclasses Name of Compounds Marine Organism Biological Activities

1–2 Pyrroles Densanins A and B Haliclona densaspicula Anti-inflammatory

3–8

Quinolines

Njaoamines A–F Reniera sp.

Cytotoxic and
Anti-HIV

9–10 Njaoamines G–H Neopetrosia sp.

11 Njaoamine I Reniera sp.

12

Bis-Quinolizidines

Petrosin
Petrosia seriata

13–14 Petrosins A and B

15 Aragupetrosine A Xestospongia sp.

16 Xestosin A

Xestospongia exigua
17 Xestospongin A (Araguspongine D)

18 Xestospongin B

19 Xestospongin C (Araguspongine E)

20 Xestospongin D (Araguspongine A) Xestospongia sp.

21–26 Xestospongins E–J Oceanapia sp.

27 (+)-7S-Hydroxyxestospongin A Xestospongia sp.

28 Demethylxestospongin B
Xestospongia sp.

and
Neopetrosia exigua

29 3β,3′β-Dimethylxestospongin C

30 9′-epi-3β,3′β–Dimethylxestospongin C

31 Araguspongine B

Antimicrobial and
Cytotoxic

32 Araguspongine C Xestospongia muta

33–36 Araguspongines F–H and J Xestospongia sp.

37 3a-Araguspongin C Haliclona exigua

38–39 Araguspongines K and L Neopetrosia exigua
40 Araguspongine M

41–43 Araguspongines N–P Xestospongia muta
44 meso-araguspongine C
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Table 1. Cont.

Compound No. Subclasses Name of Compounds Marine Organism Biological Activities

45–47

3-Alkyl
piperidines

Saraines 1–3

Reniera sarai

Cytotoxic

48–50 Isosaraines 1–3
Antimicrobial

51–53 Saraines A-C

54–58 Madangamines A–E Xestospongia ingens
Cytotoxic

59 Madangamine F Pachychalina alcaloidifera

60 (10E,12Z)-haliclonadiamine Halichondria panicea

Antimicrobial
61 (10Z,12E)-Haliclonadiamine Halichondria panacea

62 Papuamine Haliclona sp.

63–64 Haliclonadiamine Haliclona sp.

65–66 Ingamines A and B

Xestospongia ingens

Antimalarial

67 Ingenamine

68–72 Ingenamines B–F

73 Ingenamine G Pachychalina sp.

74 Dihydroingenamine D Petrosid Ng5 Sp5
75 22(S)-Hydroxyingamine A

76 Xestocyclamine Xestospongia sp. protein kinase C inhibitor

77–78 Halicyclamines A-B Xestospongia sp.

Cytotoxic

79-80 Haliclonacyclamines A–B Haliclona sp.

81 22-Hydroxyhaliclonacyclamine B Halichondria sp.

82 2-epi-Tetradehydrohaliclonacyclamine Halichondria sp.

83 Tetradehydrohaliclonacyclamine A mono-N-oxide Halichondria sp.

84 Tetradehydrohaliclonacyclamine A Halichondria sp.

85 Haliclonacyclamine C Haliclona sp.

86 Haliclonacyclamine D Haliclona sp.

87 Haliclonacyclamine E Arenosclera brasiliensis
Antimalarial,

Cytotoxic,
Proteasome and

Immunoproteasome
inhibition

88 Haliclonacyclamine F P. alcaloidifera

89 Halichondramine Halichondria sp.

90 Neopetrosiamine A Neopetrosia proxima

91 Tetradehydrohalicyclamine B Acanthostrongylophora ingens
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Table 1. Cont.

Compound No. Subclasses Name of Compounds Marine Organism Biological Activities

92–94 Arenosclerins A–C A. brasiliensis

Cytotoxic,
Anti-leishmanial,

and Anti-HIV

95–96 Arenosclerins D and E P. alcaloidifera

97

Manzamines

Manzamine A (Keramamine A) Haliclona sp.

98 8-Hydroxymanzamine A (Manzamine G) Amphimedon sp. and
Pachypellina sp.

99 3,4-Dihydromanzamine A Amphimedon sp.

100 6-Hydroxymanzamine A (Manzamine Y) Amphimedon sp. and Haliclona
sp.

101 1,2,3,4-Tetrahydro-8-hydroxymanza-mine A
(8-Hydroxymanzamine D) Cribochalina sp. and Petrosia sp.

102 1,2,3,4-Tetrahydro-2-N-methyl-8-hyd-roxymanzamine
A (8-Hydroxy-2-N-methylmanzamine D)

103 Manzamine D (1,2,3,4-Tetrahydromanzamine A) Ircinia sp.

104 3,4-Dihydro-6-hydroxymanzamine A Amphimedon sp.
105 Manzamine M

106 N-Methyl-epi-manzamine D Unidentified Paluan sponge
107 epi-Manzamine D

108 12,34-Oxamanzamine A Sponge 011ND 35

109 ent-8-Hydroxymanzamine A Unidentified Indo-Pacific
sponge

110 12,28-Oxamanzamine A Acanthostrongylophora sp.
111 12,28-Oxa-8-hydroxymanzamine A

112 Manzamine A N-oxide Xestospongia ashmorica
113 3,4-Dihydromanzamine A N-oxide

114–115 Acanthomanzamines A and B Acanthostrongylophora sp.

116 Pre-neo-kauluamine Acanthostrongylophora ingens

117 Zamamidine C

Amphimedon sp.118 Zamamidine D

119 Nakadomarin A
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Table 1. Cont.

Compound No. Subclasses Name of Compounds Marine Organism Biological Activities

120 Ircinol A

121 Ircinal A Ircinia sp.

122 Ircinal E

123 12,28-Oxaircinal A

124 Manzamine E Xestospongia sp.
125 Manzamine F (Keramamine B)

126 ent-Manzamine F

127–128 ent-12,34-Oxamanzamines E and F Sponge 011ND 35

129 12,34-Oxamanzamine E

Acanthostrongylophora sp.130 6-Hydroxymanzamine E

131 12,28-Oxamanzamine E

132 12,34-Oxa-6-hydroxymanzamine E

133 31-Keto-12,34-oxa-32,33-dihydroircinal A

134 Manzamine B Haliclona sp.

135–136 Manzamines H, J Ircinia sp.

137 Manzamine J N-oxide Xestospongiaashmorica

138 8-Hydroxymanzamine B Acanthostrongylophora sp.

139 Manzamine L Amphimedon sp.

140 Manzamine B N-oxide
Acanthostrongylophora sp.141 3,4-Dihydromanzamine B N-oxide

142 11-Hydroxymanzamine J

143 Ma’eganedin A Amphimedon sp.

144 8-Hydroxymanzamine J Acanthostrongylophora

145 3,4-Dihydromanzamine J Amphimedon sp.

146–147 Acanthomanzamines D and E Acanthostrongylophora sp.

148–149 Zamamidines A and B Amphimedon sp.

150 Ircinal B Ircinia sp.

151 Ircinol B Amphimedon sp.



Mar. Drugs 2020, 18, 368 7 of 34

Table 1. Cont.

Compound No. Subclasses Name of Compounds Marine Organism Biological Activities

152 Manzamine C Haliclona sp.

Cytotoxic

153 Keramamine C Amphimedon sp.

154 Acanthomanzamine C

Acanthostrongylophora sp.155 Kepulauamine A

156 Acantholactam

157 Acantholactone Acanthostrongylophora sp.

158 32,33-Dihydro-31-hydroxymanzamine A
Indonesian sponge

159 32,33-Dihydro-6-hydroxymanzamine A-35-one

160 32,33-Dihydro-6,31-dihydroxymanzamine A

161 Manzamine X Xestospongia sp.

162 6-Deoxymanzamine X X. ashmorica

163–164 Manadomanzamines A and B Acanthostrongylophora sp.

165 Keramaphidin B Amphimedon sp.

166 Kauluamine Prianos sp.

167–172

3-Alkyl
pyridinium salts

Cyclostellettamines A–F Stelletta maxima

Antimicrobial and
Cytotoxic

173–177 Cyclostellettamines G–I, K, and L Pachychalina sp.

178–179 Dehydrocyclostellettamines D, E Xestospongia sp.

180 8,8‘-Dienecyclostellettamine Amphimedon compressa

181–184 Cyclostellettamines N, R, O, Q Haliclona sp.

185–192 Cyclostellettamines Haliclona sp.

193 Cyclostellettamine P Xestospongia exigua

194–196 Njaoaminiums A–C Reniera sp. Cytotoxic

197–205 Motuporamines Motuporamines A–I Xestospongia exigua Anti-invasion
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2. Macrocyclic Alkaloids

2.1. Macrocycles Containing a Pyrrole Moiety

Densanins

Densanins A (1) and B (2) were isolated from the sponge Haliclona densaspicula [11]. Densanins
are fused hexacyclic diamine alkaloids with a pyrrole ring that fused to the tricyclic core (Figure 2).
Compounds 1 and 2 displayed potent inhibitory effects against lipopolysaccharide-induced nitric
oxide production in BV2 microglial cells, with IC50 values of 1.05 and 2.14 µM, respectively [11]. These
cells are macrophages of the central nervous system (CNS) and are considered to be a primary form of
the active immune defense in the CNS, particularly in Alzheimer’s and Parkinson’s diseases. Microglia
are chronically activated and promote the release of cytokines, which further disrupt normal CNS
activities. Thus, the inhibitory effect of inflammatory mediator production in these cells can mitigate
the effects of inflammation. Therefore, both metabolites could have potential for development of drugs
for treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases [12].
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2.2. Macrocycles Containing a Quinoline Moiety

Njaoamines

Njaoamines are a group of biologically active alkaloids containing a tricyclic nitrogenated nucleus
with two hydrocarbon bridges, one of which embeds an 8-hydroxyquinoline moiety. Njaoamines A–F
(3–8) (Figure 3) were isolated from the Haplosclerida sponge Reniera sp. [13], whereas njaoamines G (9)
and H (10) were isolated from the marine sponge Neopetrosia sp. [14] and njaoamine I (11) from the
Haliclona (Reniera) sp. (Figure 3) [15]. Njaoamines showed cytotoxic effects against NSLC A-549 (lung),
HT-29 (colon), and MDA-MB-231 (breast) human tumor cell lines. Compounds 3–8 and 11 showed
cytotoxic effects, with GI50 values ranging from 1.5 to 7.2 µM against NSLC A-549, from 1.4 to 6.7 µM
against HT-29, and from 1.5 to 7.2 µM against MDA-MB-23 [13,15]. Compounds 9 and 10 exhibited
potent toxicity toward brine shrimp, with LD50 values of 0.17 and 0.08 µg/mL, respectively [14].
Compound 11 displayed neither an inhibitory effect on human recombinant topoisomerase 1 nor
inhibition of the interaction between programmed cell death protein 1(PD-1) and its natural ligand,
programmed death-ligand 1(PD-L1), even at the highest concentration tested, 100 µM [15].

2.3. Macrocycles Containing a Bis-Quinolizidine Moiety

Petrosins

Petrosin (12), the first reported bis-quinolizidine scaffold linked through a C-16 ring from Petrosia
seriata [16]. Later on, two ichthyotoxic bis-quinolizidine alkaloids, petrosins A (13) and B (14),
were isolated from the same sponge [17]. In 1988, the structure of petrosin A (13) was revised
through 2D-NMR studies by Braekman et al. [18]. Aragupetrosine A (15), along with 12 and 13,
was reported from an Okinawan marine sponge, Xestospongia sp. [19] (Figure 4). Compound 15
consists of the 3β-methyl-trans-2-oxaquinolizidine and 3‘α-methyl-trans-1-oxoquinolizidine moieties
joined by two alkyl chains, which can be viewed as one half moiety of petrosin (12) and the 3‘
α-methyl-trans-1-oxoquinolizidine group [19].
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Compounds 12 and 13, isolated from Xestospongia muta, did not show growth inhibition against
LU-1 (lung), HepG-2 (liver), HL-60 (leukemia), MCF-7 (breast), and SK-Mel-2 (melanoma) human
cancer cells [20]. However, compounds 12, 13, and 15 exhibited vasodilative activity, and 12 and 13 were
two-fold more active than papaverine [19]. In addition to ichthyotoxic and vasodilative activities, 12
and 13, isolated from the sponge P. similis, showed significant in vitro antiviral activity against human
immunodeficiency virus (HIV-1), with IC50 values of 41.3 and 52.9 µM, respectively [21]. Moreover, 12
and 13 inhibited the early replication of HIV-1 as indicated by multinuclear activation of a galactosidase
indicator (MAGI) assay, with giant cell formation and inhibition of human immunodeficiency virus-1
reverse transcriptase (RT) at 10.6 and 14.8 µM [21], respectively. Interestingly, 12 did not only
show higher activity against HIV than 13 but is also more stable than 13 [21]. Xestosin A (16),
another bis-quinolizidine-containing macrocycle, was isolated from the Papua New Guinean sponge
Xestospongia exigua [22].

2.4. Macrocycles Containing a Bis-1-Oxaquinolizidine Moiety

Xestospongins/Araguspongines

Araguspongines (xestospongins) are a class of macrocyclic alkaloids consisting of a 20-membered
ring and two 1-oxaquinolizidine moieties. Xestospongins A (araguspongine D) (17), B (18), C
(araguspongine E) (19), and D (araguspongine A) (20) were isolated from the Australian sponge
Xestospongia exigua and from Xestospongia sp. [17,23], whereas xestospongins E–J (21–26) (Figure 5)
were isolated from the sponge Oceanapia sp. [24]. Compounds 17–20 were found to have an in vivo
vasodilator activity [17]. In addition to this activity, 19 and 20 exhibited moderate antimicrobial activity
against Aspergillus fumigatus, Aspergillus niger, Rhodotorula, Candida albicans, and Cryptococcus neoformans
and moderate to strong antibacterial activity toward Staphyloccus aureus and Escherichia coli [24].
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Figure 5. Structures of 17–44. Figure 5. Structures of 17–44.

(+)-7S-Hydroxyxestospongin A (27) [25], demethylxestospongin B (28) [26], and C (29) were
isolated from Xestospongia sp. [27]. Compound 28 was also isolated from Neopetrosia exigua, along with
a quinolizidine derivative, 9′-epi-3β,3′β–dimethylxestospongin C (30) [28]. Compounds 28–30 showed
cytotoxic activity with ED50 values of 0.8, 2.0, and 0.2 µg/mL against L1210 (mouse lymphocytic
leukemia) and ED50 values of 2.5, 2.5, and 2.0 µg/mL against KB (human epidermoid carcinoma) cells,
respectively [26].
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Araguspongines B (31), C (32), F–H (33–35), and J (36) (Figure 5) were isolated from the Okinawan
sponge Xestospongia sp. [29]. A bis-1-quinolizidine derivative, 3α-methylaraguspongine (37), along
with 17, 19, 20, and 32, were isolated from Xestospongia exigua [30].

On the basis of molecular modeling and NMR spectroscopy, Hoye et al. re-examined the
chemical structures of several members of araguspongine/xestospongin families of alkaloids [31].
They studied the cis- vs. trans-decalin-like conformers and the relative configuration of various
substituted 1-oxaquinolizidine-containing macrocycles. They found that (i) for the unsubstituted
parent compound 1-oxaquinolizidine, the trans-decalin-like isomer is the dominant contributor based
on 1HNMR studies (up-field chemical shift value for the N-CH-O proton (δ 3.41), consistent with two
sets of anti-periplanar non-bonding electrons to C9-Ha9, along with coupling constant values (J), fit the
dihedral angle of trans-like isomer), and (ii) trans-dialkylated ring substitutions are largely common
in the trans-decalin-like conformation, while trans-dialkylated ring substitutions are largely common
in the trans-decalin-like conformation, and dialkylated ring substitutions are largely common in the
cis-decalin-like conformation [31]. The thermodynamic stability of these conformations was due to
the trans-dialkylated orientation and the presence of a cis-decalin-like structure, which provide more
stability by their anomeric effect [32].

In 2002, two new N-oxide araguspongines, araguspongines K (38) and L (39), along with 17, were
isolated from the Red Sea sponge Xestospongia exigua [33]. Both 38 and 39 exhibited cytotoxicity against
HL-60 cells with an IC50 value of 5.5 µM, whereas 17 showed an IC50 value of 5.9 µM [33]. Later on,
Liu et al. isolated araguspongine M (40), along with 17 and 31, from the same sponge [34].

Three compounds, identified as LT-9 (41), LT-10 (42), and LT-6 (43) (Figure 5), were isolated
from the Thai water sponge Xestospongia sp.; however, their structures were clarified and renamed
as araguspongines N−P (41–43) [20,35]. Araguspongines A, B, C, F, G, H, and J (20, 31, 32, 33,
34, 35, and 36) and M–P (40–43) possess bis-1-oxaquinolizidine moiety, whereas 38 and 39 have a
bis-1-oxaquinolizidine N-oxide moiety [17,33]. The biological activities of araguspongines include
antifouling, cytotoxic, antitubercular, antimalarial, somatostatin, and vasoactive intestinal peptide
inhibitory effects [33,36].

Dung et al. reported the isolation of meso-araguspongine C (44) from the sponge Xestospongia muta.
Compounds 32 and 44 showed significant cytotoxic activity against LU-1, HepG-2, HL-60, MCF-7, and
SK-Mel-2 human cancer cells, with IC50 values ranging from 0.43 to 1.02 µM; however, 44 is more
potent than 32 [20]. Compounds 20, 32, 38, and 39 exhibited cytotoxicity against breast cancer BT-474
cells, with IC50 values of 9.3, 15.2, 29.5, and 35.6 µM, respectively [37].

Araguspongines show significant antifouling activity with low toxicity against both micro- and
macrofouling organisms [33,36]. Their potent antibacterial activity has been shown against seven
strains of fouling bacteria i.e., Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas chlororaphis,
Pseudoalteromonas haloplanktis, Bacillus cereus, Bacillus pumilus, and Bacillus megaterium by a fraction of
bis-1-oxaquinolizidine alkaloids [36].

Araguspongines that possess a macrocyclic ring with two cis- or trans-dialkylated orientations at
C-2 and C-9 on both l-oxaquinolizidine rings, as well as two trans- or cis-decalin-like rings, showed
potent biological activities. For example 31, 32, 33, 40, and 44 exhibited growth-inhibitory activity
against HL-60, with IC50 values ranging from 0.62 to 5.90 µg/mL. On the contrary, compounds that
have both cis- and trans-dialkylated orientation and one cis-decalin-like ring, or those that possess
bis-1-oxaquinolizidine N-oxide, showed weak or no activity. This was demonstrated by the fact
that 19, 20, and 39 exhibited weak or no biological activity against HL-60 cells, with IC50 values
ranging from 16.79 to 22.95 µg/mL [20]. Compound 27 was inactive against foulant organisms [25].
Therefore, the stability of the aforementioned araguspongines’ conformation seems to influence their
biological activity.

Compounds 19 and 20, containing one trans- and one cis-decalin-like ring, exhibited weaker
activity against HL-60 when compared to other araguspongines [26]. Compound 20 showed moderate
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activity relative to 18 and 28 against KB and L1210 cells. This effect might be due to the presence of the
OH group at C-2 in 20 [26].

Compound 18 displaced [3H]IP3 from the membranes of cerebellar and skeletal myotube
homogenates, with EC50 values of 44.6 ± 1.1 µM and 27.4 ± 1.1 µM, respectively [38]. This compound
inhibited bradykinin-induced Ca2+ signals of the neuroblastoma cells (NG108-15) and selectively
blocks the slow intracellular Ca2+ signal induced by membrane depolarization with high external
K+ (47 mM) in rat skeletal myotubes [38]. Compound 18 decreases IP3-induced Ca2+ oscillations,
with an EC50 value of 18.9 ± 1.35 µM [38]. Conclusively, 18 showed cell-permeant activity and was
a competitive inhibitor of IP3 receptors in cultured rat myotubes, and it separated myonuclei and
NG108-15 cells [38].

The organic extract Haliclona exigua exhibited adulticidal and embryostatic actions against human
lymphatic filarial parasite B. malayi in an experimental rodent model, and this activity could be due to
the presence of araguspongin C [4]. Compound 32 showed potent activity against the Mycobacterium
tuberculosis strain H37Rv, with a minimum inhibitory concentration (MIC) value of 3.94 µM (positive
control: rifampin, IC50 = 0.61 µM) [33].

Compound 32 displayed an in vitro anti-proliferative effect against multiple breast cancer cell lines
in a dose-dependent manner. It causes the induction of autophagic cell death in HER2-overexpressing
BT-474 breast cancer cells, which was characterized by vacuole formation and upregulation of autophagy
markers. It displayed autophagy associated with the inhibition of c-Met and HER2 receptor tyrosine
kinase activation. Compound 32 also suppressed the depression of the PI3K/Akt/mTOR signaling
cascade in the breast cancer cells that undertake autophagy. The induction of autophagic death in
BT-474 cells was associated with reduced levels of the inositol 1,4,5-trisphosphate receptor upon
management with an effective concentration of 32 [37].

2.5. Macrocycles Containing a 3-Alkylpiperidine Moiety

2.5.1. Pentacyclic Derivatives

Saraines/Sarains

An investigation of the marine sponge Reniera sarai led to the identification of saraines 1–3
(45–47) [39], which belong to the 3-alkylpiperidine subclass (Figure 6). The complexity of their
structures delayed a complete elucidation until the mid-1980s.

The main scaffold of saraines consists of a tetrahydropyridine moiety attached to a
trans-2-oxoquinolizidine ring system. They possess a pentacyclic skeleton that includes a trisubstituted
alkene and a carbonyl group. The two cycles are supplied by linking the two heterocyclic systems with
linear alkyl chains [39]. The three stereoisomers of saraines 1–3 have been reported and identified as
isosaraines 1–3 (48–50) [40–42], which were also isolated from R. sarai as minor components. Saraines
A–C (51–53) were isolated from the Mediterranean sponge R. sarai and possess an entirely different
structure from those of the previously reported saraines 1–3 (45–47) and isosaraines 1–3 (48–50). The
entire skeleton of 51–53 is composed of two piperidine rings condensed to form a central nucleus, which
linked to a pair of alkyl chains [43,44]. Compounds 45–47 and 51–53 (Figure 6) exhibited antibacterial
activity against S. aureus with MIC values between 6.25 and 50 µg/mL; a lethality against Aspergillus
salina, with LD50 values between 2.5 and 46.7 µg/mL; an inhibitory effect against potato disc infected
with Aspergillus tumefaciens, with inhibition percentages between 16% and 55%; and inhibition of the
development of fertilized sea urchin eggs, with IC50 values between 1.56 and 6.25 µg/mL. However, 45
showed neither antimicrobial activity nor the inhibition of development of fertilized sea urchin eggs at
a concentration as high as 50 µg/mL [45]. Overall, saraines show an increase in biological activity with
an increase in the size of the macrocyclic ring (A) within the two groups from 45 to 47 and from 51 to
53 (Figure 6).
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Madangamines

Madangamines A (54) [46] and B–E (55–58) [47] were isolated from the marine sponge X. ingens,
whereas madangamine F (59) was isolated from the sponge Pachychalina alcaloidifera [48]. Because of
their diazatricyclic skeleton and two peripheral macrocyclic rings, madangamines have an unusual
chemical structure. The macrocyclic ring D in madangamines varies in size, ranging from 13 to 15
carbon atoms. The ring E in 54–58 is an 11-membered ring with two double bonds, whereas 59
possesses a 13-membered ring with four double bonds [49] (Figure 7).
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Haliclonadiamines 

The bis-indane macrocycles (10E,12Z)-haliclonadiamine (60) and (10Z,12E)-haliclonadiamine 
(61) were isolated from Halichondria panicea [50], whereas papuamine (62) [51] and haliclonadiamine 
(63) [52] were isolated from Haliclona sp. Compounds 60–63 showed a potent effect against 
Mycobacterium smegmatis with inhibitory zones of 7–16 mm at a concentration of 10 μg/disc [53]. 
Compound 63 exhibited a potent effect with an inhibition zone of 16 mm at 10 μg/disc. SAR analysis 
suggests that the antitubercular activity of these compounds favors the 13-membered ring E and the 
10E,12E configuration [53] (Figure 8). Recently, Liu et al. have revised the structure of 63 using X-ray 
crystallography, establishing the absolute configurations of the stereogenic carbons as 
1S,3R,8S,9R,15S,20R,22R (64), which are opposite to those previously reported for 63 [54]. 
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Compound 54 displayed significant in vitro cytotoxicity toward murine leukemia P388 (ED50

value of 0.93 µg/mL), lung A549 (ED50 value of 14 µg/mL), MCF-7 (ED50 value of 5.7 µg/mL), and
brain U373 (ED50 value of 5.1 µg/mL) cancer cell lines, respectively [46]. Compound 59 showed weak
cytotoxicity, with EC50 values of 16.7, 19.8, >25, and 16.2 µg/mL against HL-60, SF 295 (human CNS),
HCT-8 (colon), and MDA-MB435 (melanoma) cancer cell lines, respectively [48].
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Haliclonadiamines

The bis-indane macrocycles (10E,12Z)-haliclonadiamine (60) and (10Z,12E)-haliclonadiamine (61)
were isolated from Halichondria panicea [50], whereas papuamine (62) [51] and haliclonadiamine
(63) [52] were isolated from Haliclona sp. Compounds 60–63 showed a potent effect against
Mycobacterium smegmatis with inhibitory zones of 7–16 mm at a concentration of 10 µg/disc [53].
Compound 63 exhibited a potent effect with an inhibition zone of 16 mm at 10 µg/disc. SAR analysis
suggests that the antitubercular activity of these compounds favors the 13-membered ring E and
the 10E,12E configuration [53] (Figure 8). Recently, Liu et al. have revised the structure of 63
using X-ray crystallography, establishing the absolute configurations of the stereogenic carbons as
1S,3R,8S,9R,15S,20R,22R (64), which are opposite to those previously reported for 63 [54].
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Ingenamines and Ingamines

Ingamines A (65) and B (66) [55], ingenamine A (67) [56], and ingenamines B–F (68–72) [57] were
all isolated from X. ingens, whereas ingenamine G (73) was isolated from the sponge Pachychalina sp. [8].
Meanwhile, dihydroingenamine D (74) and 22(S)-hydroxyingamine A (75) were isolated from the
sponge Petrosid Ng5 Sp5 [58] (Figure 9). Compounds 63, 74, and 75 exhibited antiplasmodial activity
against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum,
with IC50 values of 57 and 72 ng/mL for 63, 78 and 90 ng/mL for 74, and 140 and 200 ng/mL for 75,
respectively [58]. Compound 73 exhibited cytotoxic activity, with IC50 values of 11.3, 9.8, and 8.6 µg/mL
against MCF-7, B16 (leukemia), and HCT-8 cancer cells, respectively [8]. Moreover, this compound
showed antimicrobial activity with MIC values at 8 µg/mL against M. tuberculosis H37Rv, 105 µg/mL
against S. aureus (ATCC 25923), 75 µg/mL against E. coli (ATCC 25922), and with MIC values ranging
from 10 to 50 µg/mL against two of four strains of oxacillin-resistant S. aureus [8]. Xestocyclamine (76)
is a pseudo-enantiomeric to 67, and they differ only in the location of the carbon–carbon double bond in
the 11-membered ring. Compound 76 exhibited moderate inhibitory activity against protein kinase
C, with an IC50 value of 4 µg/mL. Interestingly, 76 showed selectivity against IL-1 (interleukin), as it
showed no activity against other cancer-relevant targets [59].
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2.5.2. Tetracyclic Derivatives 

Halicyclamines 

Halicyclamines A (77) and (-) halicyclamine B (78) were isolated from Haliclona sp. [60] and 
Xestospongia sp. [61], respectively (Figure 10). Haliclonacyclamines A (79) and B (80) [62] were 
isolated from Haliclona sp. 22-Hydroxyhaliclonacyclamine B (81) [63], 2-epi-tetradehydro 
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2.5.2. Tetracyclic Derivatives

Halicyclamines

Halicyclamines A (77) and (-) halicyclamine B (78) were isolated from Haliclona sp. [60] and
Xestospongia sp. [61], respectively (Figure 10). Haliclonacyclamines A (79) and B (80) [62] were isolated
from Haliclona sp. 22-Hydroxyhaliclonacyclamine B (81) [63], 2-epi-tetradehydro haliclonacyclamine
(82), tetradehydrohaliclonacyclamine A mono-N-oxide (83), and tetradehydrohaliclonacyclamine A
(84) were isolated from Halichondria sp. [64]. The anti-dormant mycobacterial activity of 77 was
reported by Kobayashi et al., with the correlation of Ded A Protein to the mechanism of action of
77 under dormancy-inducing hypoxic and standard aerobic growth conditions [65]. Compound 78
showed weak and selective antimicrobial activity and also exhibited growth inhibitions of 50% and
20% at 200 µg/disk against Bacillus subtilis and E. coli, respectively, but showed no activity toward C.
albicans [61]. Compound 79, isolated from the Haliclona sponge of the Solomon Islands, exhibited a
great antiplasmodial effect in vivo and in vitro against Plasmodium vinckei petteri-infected mice and
the chloroquine-resistant P. falciparum strain FCB1. It also shows IC50 values of 0.052 and 0.33 µg/mL
against the P. falciparum strain FCB1 and chloroquine-sensitive 3D7, respectively [66]. In vitro, 79
displayed cytotoxicity against MCF-7 cells (2.6 µg/mL) [66].

Haliclonacyclamines C (85) and D (86) were isolated from a specimen of Haliclona sp. collected
from Heron Island on the Great Barrier Reef [67].

Haliclonacyclamine E (87) was isolated from the Haplosclerida sponge Arenosclera brasiliensis,
which is endemic to the Southeastern coast of Brazil [68]. Compound 87 displayed cytotoxicity against
HL60, B16, L929 (brosarcoma), and U-138 (colon) cancer cell lines, with IC50 values of 4.23, 1.82,
3.89, and 6.06 µg/mL, respectively [69]. Haliclonacyclamine F (88) was isolated from the sponge P.
alcaloidifera. Compound 88 exhibited cytotoxicity against HL-60, SF 295, HCT-8, and MDA-MB435
cancer cell lines with IC50 values of 2.2, 4.5, 8.6, and 1.0 µg/mL, respectively [48]. Halichondramine (89)
was isolated from the Red Sea sponge Halichondria sp. [70].

A bis-piperidine alkaloid, neopetrosiamine A (90), isolated from Neopetrosia proxima, showed
potent inhibitory activity against MCF-7, CCRF-CEM (leukemia), and MALME-3M melanoma cancer
cells, with IC50 values of 3.5, 2.0, and 1.5 µM, respectively. Compound 90 also exhibited in vitro
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cytotoxicity, with an MIC value of 7.5 µg/mL, toward a pathogenic strain of M. tuberculosis (H37Rv) in a
microplate Alamar Blue assay (MABA). Additionally, 90 showed antiplasmodial activity against P.
falciparum, with an IC50 value of 2.3 µM [71]. Although 78 and 90 have very similar structural features,
with one of the alkyl chains of 90 being shorter than that of 78 and exhibiting stronger activity against
P. falciparum than 78, 78 showed higher activity than 90 against MCF7 breast cancer cells [71].

Tetradehydrohalicyclamine B (91) and 78 were isolated from the sponge Acanthostrongylophora
ingens. Both compounds showed inhibition against the constitutive proteasome and
immunoproteasome. Compound 78 revealed 4- to 10-fold higher inhibitory activity than 91 [72].
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Arenosclerins

Arenosclerins A–C (92–94) were isolated from the Brazilian endemic Haplosclerida sponge,
A. brasiliensis [68], whereas arenosclerins D (95) and E (96) (Figure 10) were isolated from the sponge
P. alcaloidifera [48]. Although these compounds were inactive against C. albicans, 92 and 94 showed
antibacterial activity against a larger number of bacteria strains than 93; however, potent antibacterial
activity was exhibited by both 93 and 94. Moreover, these compounds showed potent toxicity toward
HL-60, B16, L929, and U-138 cancer cell lines [69]. The IC50 values of 92 were 1.77, 2.34, 4.31, and 3.83
µg/mL; of 93 were 1.76, 2.24, 4.07, and 3.62 µg/mL; and of 94 were 1.71, 2.17, 3.65, and 3.60 µg/mL
against B16, L929, HL-60, and U-138 cancer cell lines, respectively [69].

Compounds 95 and 96 were tested for their cytotoxicity against HL-60, SF 295, HCT-8, and
MDA-MB-435 cancer cell lines, and their IC50 values were 2.1, 5.9, 6.2, and 1.2 µg/mL and 6.9, 8.7, >25,
and 3.1 µg/mL, respectively [48].
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2.6. Manzamines

2.6.1. Pentacyclic Manzamines

Pentacyclic manzamines are a group of macrocyclic alkaloids containing a β-carboline moiety
attached to pentacyclic rings with a double bond between C-10 and C-11 in the eight-membered
ring [73,74].

Manzamine A hydrochloride salt (97), the first reported member of manzamines, was isolated
from Haliclona sp. [75]. This compound was also isolated from Pellina sp. and was named keramamine
A [76]. Compound 97 showed a broad spectrum of biological effects, i.e., potent antipathogenic activity
against Leishmania donovani, antimycobacterial activity [77], cytotoxicity against pancreatic cancer (by
inhibiting autophagy) [78], P388 [75], human colorectal carcinoma [79], and anti-Alzheimer activity [80].
It also exhibited an inhibitory effect against herpes simplex virus (HSV-1) [81] and HSV-2 [82],
human immunodeficiency virus (HIV) [77], as well as the rodent malaria parasite Plasmodium berghei
in vivo [10].

8-Hydroxymanzamine A (98, also known as manzamine G or manzamine K) was isolated from
Pachypellina sp. and the stereochemistry of 98 was the same as 97 (Figure 11), as both of them were
dextrorotatory. Compounds 97 and 98 exhibited moderate antitumor activity against KB and LoVo
(colon) cancer cell lines and anti-HSV-II (herpes simplex) activity [82]. Compounds 97 and 98 displayed
in vitro and in vivo antimalarial effects against P. berghei. The percentage of the asexual erythrocytic
stages suppression, which registered after a single intraperitoneal injection of 97 and 98 administered
to infected mice, was 90%. These compounds increased the time of living of the infected mice to more
than 240 h, using just one dose of 97 (50 mM/kg) and 98 (100 mM/kg) [83].

3,4-Dihydromanzamine A (99) and 6-hydroxymanzamine A (manzamine Y) (100), isolated from
a marine sponge Amphimpdon sp., showed antibacterial activity against a Gram-positive bacterium,
Sarcina lutea (MIC values of 4 and 1.25 µg/mL, respectively). These compounds also exhibited in vitro
cytotoxicity against L1210 (IC50 values of 0.48 and 1.5 µg/mL, respectively) and KB cells (IC50 values of
0.61 and 2.5 µg/mL, respectively) [84].

1,2,3,4-Tetrahydro-8-hydroxymanzamine A (8-hydroxymanzamine D) (101), and 1,2,3,4-tetrahydro-
2-N-methyl-8-hydroxymanzamine A (8-hydroxy-2-N-methylmanzamine D) (102) (Figure 11) were
isolated from the marine sponges of the genera Petrosia and Cribochalina [85]. Compound 102 is cytotoxic
toward P388 cell line, with an ED50 value of 0.8µg/mL [85]. Manzamine D (1,2,3,4-tetrahydromanzamine
A) (103) was isolated from Ircinia sp. [86], whereas 3,4-dihydro-6-hydroxymanzamine A (104) and
manzamine M (105) were isolated from Amphimedon sp. [87]. Compound 105 was the first reported
manzamine congener with a hydroxyl group on the C13-C20 chain. Compounds 104 and 105 showed
cytotoxicity against L1210 cells (IC50 values of 0.3 and 1.4 µg/mL, respectively). Moreover, 104 and 105
exhibited antibacterial activity against Sarcina lutea (MIC values of 6.3 and 2.3 µg/mL, respectively)
and Corynebacterium xerosis (MIC values of 3.1 and 5.7 µg/mL, respectively) [87]. Bioassay-directed
fractionation of the CH2Cl2 crude extract of the Palaun sponge, employing an assay for the inhibitors
of methionine aminopeptidase-2 (Met AP-2), led to the identification of N-methyl-epi-manzamine
D (106) and epi-manzamine D (107) [88]. Neither of these compounds exhibited selectivity in the
yeast assay for inhibitors of Met AP-2; however, both compounds showed cytotoxicity against HeLa
and B16F10 melanoma cells. Compound 106 showed strong activity against the B16F10 cell line [88].
12,34-Oxamanzamine A (108) was isolated from an Indo-Pacific sponge identified as 011ND 51 [89].
This compound possesses an unusual ring system due to the presence of an ether bridge formed between
C-12 and C-34 of the typical manzamine structure. Compound 108 displayed less activity against
malaria and the AIDS OI pathogen, M. tuberculosis, compared to the other co-isolated manzamines,
which might be attributed to the presence of the C12–C34 ether bridge in 108 [89] (Figure 11).
ent-8-Hydroxymanzamine A (109) was isolated from an undescribed genus of an Indo-Pacific sponge.
It exhibited improved activity against P-388, with an IC50 value of 0.25 µg/mL [90]. Compound
109 displayed in vitro growth inhibitory effect against Trypanosoma gondii and host cell with 71%
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and 38% inhibition, respectively, at a concentration of 1 µM [90]. 12,28-Oxamanzamine A (110) and
12,28-oxa-8-hydroxymanzamine A (111) were isolated from two collections of an Indo-Pacific sponge.
These compounds contain a novel manzamine-type ring system, generated through a new ether bridge
formed between C-12 and C-28 or between C-12 and C-34 of the typical manzamine structure. These
compounds exhibited potent anti-inflammatory, antifungal, and anti-HIV-1 activities [91].
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Manzamine A N-oxide (112) and 3,4-dihydromanzamine A N-oxide (113) were isolated from the
Indonesian marine sponge Xestospongia ashmorica [92]. Compound 112 showed potent cytotoxicity
against L5178Y mouse lymphoma cells with an ED50 of 1.6 µg/mL [92].

Acanthomanzamines A (114) and B (115), isolated from A. ingens, contain a tetrahydroisoquinoline
ring system instead of β-carboline. Compounds 114 and 115 showed potent cytotoxicity against HeLa
cells, with IC50 values of 4.2 and 5.7 µM, respectively. Interestingly, 114 and 115 (Figure 12) exhibited
stronger cytotoxicity against HeLa cancer cell line, but less potent proteasome inhibitory activity than
their co-isolated β-carboline-containing manzamines, acanthomanzamines D and E [93]. Several other
examples of β-carboline-based manzamines were also reported from different sponge species. Examples
of these are pre-neo-kauluamine (116) from A. ingens [94], zamamidine C (117) [95], zamamidine D
(118) [96], nakadomarin A (119) from Amphimedon sp. [97], ircinol A (120) from Amphimedon sp. [98],
ircinal A (121) from Ircinia sp. [86], ircinal E (122) from A. ingens [99], and 12,28-oxaircinal A (123) from
Acanthostrongylophora sp. [100]. The reported biological activities of the aforementioned compounds
were quite interesting, Compound 116 showed proteasome inhibitory activity [94], whereas 117
displayed potent antitrypanosomal effect against Trypanosoma brucei brucei and antimalarial activity
against P. falciparum [95]. Compound 118 exhibited antimicrobial activity against several strains of
fungi and bacteria [96], whereas 119 exhibited antimicrobial effects against C. xerosis and Trichophyton
mentagrophytes, with MIC values of 11 and 23 µg/mL, respectively [97]. Compound 120 inhibited
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endothelin-converting enzyme, with an IC50 of 55 µg/mL [98]. Compound 121 displayed cytotoxicity
against L1210 and KB cancer cells with IC50 values of 1.4 and 4.8 µg/mL, respectively [86]. Compound
122 showed weak cytotoxicity and L5178Y (murine lymphoma) cells with an IC50 value of 21.7 µg/mL,
respectively [99]. Pentacyclic manzamines having a ketonic group in their eight-membered ring
instead of a double bond were also reported. Examples of this class of compounds are manzamines E
(124) [76], F (keramamine B) (125) from Xestospongia sp. [101], ent-manzanine F (126) from Petrosia sp. [90],
ent-12,34-oxamanzamines E (127) and F (128) from the sponge 011ND 35 [89], 12,34-oxamanzamine E
(129) and 6-hydroxymanzamine E (130) from Acanthostrongylophora sp. [77], 12,28-oxamanzamine E
(131) and 12,34-oxa-6-hydroxymanzamine E (132) from Acanthostrongylophora sp. [100], and the related
manzamine alkaloid 31-keto-12,34-oxa-32,33-dihydroircinal A (133) from the marine sponge of the
genus 011ND 35 [91] (Figure 12). Compounds 124 and 125 displayed cytotoxicity toward L5178Y cells,
with ED50 values of 6.6 and 2.3 µg/mL), respectively [92], whereas they showed similar significant
cytotoxicity against P388 cells with an IC50 value of 5.0 µg/mL [101]. Compound 126 inhibited M.
tuberculosis (H37Rv) with an IC50 < 12.5 µg/mL [90]. Compound 127 showed weak inhibitory activity
against M. tuberculosis with an IC50 value of 128 µg/mL, whereas 128 showed significant activity with
IC50 12.5 µg/mL [89].
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2.6.2. Tetracyclic Manzamines

Several manzamines containing a β-carboline ring system linked to a tetracyclic scaffold have
been reported. For example, manzamine B (134) was reported from Haliclona sp. [102], manzamines
H (135) and J (136) were isolated from Ircinia sp. [86], manzamine J N-oxide (137) was reported
from X. ashmorica [92], 8-hydroxymanzamine B (138) was reported from Acanthastrongylophora
sp. [100], manzamine L (139) was published from Amphimedon sp. [103], manzamine B N-oxide
(140), 3,4-dihydromanzamine B N-oxide (141) and 11-hydroxymanzamine J (142) were reported
from Acanthastrongylophora sp. [104], ma’eganedin A (143) was isolated from Amphimedon sp. [105],
8-hydroxymanzamine J (144) was reported from Acanthastrongylophora sp. [77], 3,4-dihydromanzamine
J (145) was isolated from Amphimedon sp. [87], acanthomanzamine D (146) and acanthomanzamine
E (147) were reported from A. ingens [93], zamamidines A (148) and B (149) were reported from
Amphimedon sp. [106], ircinal B (150) was published from Ircinia sp. [86], and ircinol B (151) was
reported from Amphimedon sp. [98] (Figure 13).
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Compounds 135, 136, 139, 143, 145, 150, and 151 showed cytotoxic activity against L1216 cancer
cell line with IC50 values of 1.3, 2.6, 3.7, 4.4, 5.0, 1.9, and 7.7 µg/mL, respectively. Furthermore, 135, 136,
139, 150, and 151 displayed cytotoxicity against KB cancer cells with IC50 values of 4.6, >10, 11.8, 3.5,
and 9.4 µg/mL, respectively, whereas 137 showed cytotoxicity against L1578Y with IC50 values of 1.6
µg/mL, and 148 and 149 showed cytotoxic activity against P388 cells with IC50 values of 13.8 and 14.8
µg/mL, respectively. Compounds 146 and 147 displayed a strong proteasome inhibitory effect, with
IC50 values of 0.63 and 1.5 µg/mL, respectively [93]. Compounds 139 and 140 showed weak activity
against several Gram-positive and Gram-negative bacteria [104]. Compound 143 showed potent
activity against Sarcina lutea and B. subtilis, with the same MIC value of 2.8 µg/mL [105]. The reported
antimicrobial activity of several manzamines highlights the influence of an eight-membered ring on
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the activity [77]. Moreover, the antitubercular activity is also affected by the ring size; for example,
compounds 97 and 136 have similar scaffold, except eight-membered ring in 97 and 11-membered in
136 [83]. Compound 97 exhibited potent anti-tubercular activity against M. tuberculosis (H37Rv) than
136 [83].

2.6.3. Monomacrocycle Containing Manzamines and Related Compounds

Compounds in this group have one macrocyclic ring of different sizes, namely, 10-, 11-, 13-, 14-
and 15-membered rings. Manzamine C (152) was initially isolated from the Okinawan sponge Haliclona
sp. This compound possesses an 11-membered heterocyclic ring containing a nitrogen atom [102].
Compound 152 exhibited cytotoxicity against A549, HT-29, and P-388 cells with IC50 values of 3.5,
1.5, and 2.6 µg/mL, respectively [107]. The other manzamine alkaloids containing one macrocyclic
ring are keramamine C (153) [108], acanthomanzamine C (154) [93], kepulauamine A (155) [104],
acantholactam (156) [94], and acantholactone (157) [109] (Figure 14). Compound 153 was isolated from
the Okinawan marine sponge Amphimedon sp. [108] and was probably a biogenetic precursor of 152.
Compound 154 was isolated from A. ingens [93] and was recorded as one of the first examples of a
manzamine-related alkaloid containing a tetrahydroisoquinoline ring system rather than a β-carboline
moiety. The hexahydrocyclopenta [b]-pyrrol-4(2H)-one ring in 154 could have originated from an
eight-membered ring in manzamine A (97). Compound 155 was isolated from an Indonesian marine
sponge, Acanthostrongylophora sp. This compound contains a pyrrolizine ring system, which is unique
among the manzamines. It exhibited weak inhibition against K562 (human erythroleukemic) and A549
cells and is moderately active against diverse strains of pathogenic bacteria. However, this compound
is inactive against sortase A (SrtA) and Na+/K+-ATPase [104]. Compound 156 was isolated from A.
ingens and contains a γ-lactam ring with a 2Z-hexenoic acid substituent on the nitrogen atom and
is proposed to be biosynthetically derived from compound 97. It shows no proteasome inhibitory
activity [94].

Acantholactone (157), a manzamine-related scaffold with unique δ-lactone and ε-lactam rings,
was reported from Acanthostrongylophora sp. The absolute configurations of the stereogenic carbons
of 157 were determined as 12S, 24R, 25R, and 26R by comparison of calculated and experimental
electronic circular dichroism (ECD) spectra [109].

32,33-Dihydro-31-hydroxymanzamine A (158), 32,33-dihydro-6-hydroxymanzamine A-35-one
(159), and 32,33-dihydro-6,31-dihydroxymanzamine A (160) were isolated from an unidentified
Indonesian sponge [110]. Compounds 158 and 159 showed no effect against malaria and
leishmanial [110]. Rao et al. reported that the decrease of antimalarial activity is attributed to
the reduction of the C32-C33 double bond and oxidation of C31 [110].

Manzamine X (161) was reported from Xestospongia sp. Compound 161 exhibited cytotoxic activity
against KB cells, with an IC50 value of 7.9 µg/mL [111].

6-Deoxymanzamine X (162) was isolated from Xestospongia ashmorica [92]. Compound 162 showed
cytotoxicity against the L5178 cells with ED50 value of 1.8 µg/mL, and exhibited a growth-inhibitory
effect against Spodoptera littoralis larvae with a percentage of lethality of 18.8% at a dose of 132 ppm [92].

Manadomanzamines A (163) and B (164) were reported from the Indonesian sponge,
Acanthostrongylophora sp. [112]. These compounds exhibited tubercular effect against Mycobacterium
tuberculosis, with MIC values of 1.9 and 1.5 µg/mL, respectively. Rifampin was used as a control and
showed tubercular effect with MIC values of 0.16 µg/mL. Compounds 163 and 164 showed cytotoxic
activity against HIV-1, with EC50 values of 7.0 and 16.5 µg/mL, respectively. Compound 163 was
cytotoxic against A-549 and HCT-116 cells, with IC50 values of 2.5 and 5.0 µg/mL, respectively, whereas
164 was cytotoxic against HCT-116, with an IC50 value of 5.0 µg/mL. Compounds 163 and 164 were not
cytotoxic against the normal Vero cell line at a concentration of 4.8 µg/mL. Compound 164 exhibited
antifungal effect against Cryptococcus neoformans, with MIC value of 3.5 µg/mL, whereas 163 exhibited
antifungal activity against Candida albicans with MIC value of 20 µg/mL [112].
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Keramaphidin B (165), an unprecedented pentacyclic manzamine, was isolated from Amphimedon
sp. (Figure 14). Compound 165 exhibited cytotoxic effect against P-388 and KB cells, with IC50 values
of 0.28 and 0.3 µg/mL, respectively [113].

Kauluamine (166), a manzamine dimer, was isolated from the Indonesian sponge Prianos sp. [114].
Compound 166 exhibited a moderate immunosuppressive effect in a mixed lymphoma reaction [114].

2.6.4. Structure–Activity Relationship (SAR) of Manzamine Derivatives on Antimalarial Activity

Manzamines exhibited potent antimalarial activity due to their multifunctionality scaffold. Thus,
an overview of the structure–activity relationships (SARs) of manzamines as antimalarial agents can
be summarized. The presence of β-carboline and pentacyclic ring systems played an important role in
the antimalarial activities. The absence of these rings, for example in iricinal scaffold, led to decreasing
the antimalarial activity. 9-N alkylation of the β-carboline ring led to decreasing antimalarial activity,
whereas 9-NH increased the activity. Hydroxyl group substitution of the β-carboline ring, particularly
position 8, exhibited no effect as antimalarial. Substitution of the nitro or methoxy groups at position 6
led to slight effects as antimalarial, while it was retained upon substitution of a methyl ester at position
3 of the β-carboline. The conformational of β-carboline played a vital role in antimalarial activity of
manzamines. Modification of the planarity of β-carboline by changing pyridine into piperidine and
2-N-methylation led to reduction of antimalarial activity. An amide substitution on positions 8 and 6
of the β-carboline ting system reduced antimalarial activity. A 2-N-oxide derivative of manzamine A
reserves its antimalarial potency, whereas 2-N-methylation of manzamine A decreased antimalarial
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potency against D6 and W2 strains, respectively. The hydroxyl group at C-12 was essential for
antimalarial activity. The structure of manzamine F was connected to the potent antimalarial effect of
8-hydroxymanzamine-A, with a carbonyl group at C-31 and a reduced C-32 double bond, exhibiting a
reduction in antimalarial activity. Modification of the C-31 C=O to a hydrazone and alkylation greatly
improves the antimalarial effect. Reduction of the carbonyl group at position 31 or introduction of a
double bond in conjugation with the carbonyl group (C-31) showed no antimalarial activity. A double
bond at carbon-31 in an eight-membered ring was required to maintain the integrity of the ring system
and thereby played an important role in contributing to antimalarial activity. Saturation of the double
bond at C-31 affects the integrity of the ring and resulting in a significant reduction in antimalarial
activity, while a successive reduction of the double bond at C-15 increases antimalarial activity [83].

2.7. Macrocycles Containing 3-Alkyl Pyridinium Salts

2.7.1. Cyclostellettamines

Cyclostellettamines A–F (167–172) were reported from Stelletta maxima [115] and Pachychalina
sp. [8]. Cyclostellettamines G–I (173–175), K (176), and L (177) were isolated from the marine
sponge Pachychalina sp. [8] (Figure 15). Compounds 167–177 exhibited antimicrobial activity against
Candida albicans ATCC 10231, S. aureus ATCC 25923, Pseudomonas aeruginosa strain P1, E. coli ATCC
25922, P. aeruginosa ATCC 27853 (strain Pa), oxacillin-resistant S. aureus, and oxacillin-resistant
S. aureus, whereas 168, 169, 173, and 177 showed potent activity against M. tuberculosis H37Rv
(MtH37Rv) [116]. Cyclostellettamine C (169) was the most potent antimicrobial activity among all
investigated Cyclostellettamines. With the exception of E. coli ATCC 25922 (Ec) and S. aureus ATCC
25923 (Sa), the antimicrobial activity of these cyclostellettamines is suggested to be influenced by the
size of the alkyl chains [116]. Dehydrocyclostellettamines D (178), E (179), and cyclostellettamine
G (173) were reported from the sponge of the genus Xestospongia [117]. These compounds showed
moderate inhibitory activity against histone deacetylase from K562 cells with IC50 values of 17, 30,
and 80 µM. Compounds 178, 179, and 173 exhibited cytotoxic activities against P388 cells with IC50

values of 1.3, 1.3, and 2.7 µM; against HeLa cells with IC50 values of 0.60, 1.8, and 2.8 µM; and against
3Y1 (rat fibroblastic cells) IC50 values of 4.3, 3.2, and 11 µM [117], respectively. Xu et al. isolated
8,8′-dienecyclostellettamine (180) from the sponge Amphimedon compressa. 180 exhibited strong potent
antibacterial activity [118].

Cyclostellettamines N (181), R (182), O (183), and Q (184) were reported from Haliclona viscosa [119].
Eight cyclostellettamine derivatives (185–192) were reported from Haliclona sp., without given specific
names [120]. Compounds 181 and 184–192 exhibited moderate cytotoxicity against A549 cancer
cell lines, whereas 184, 186, and 190–192 showed strong antibacterial activity against a number of
Gram-positive and Gram-negative bacteria [120]. Lee et al. studied the effect of degree of saturation,
the length of the alkyl chains, and the double-bond locations effects on the biological activities of the
compounds 184, 186, and 190–192, and they found that the biological activities were influenced by (i)
the length of the alkyl chains, (ii) the distance between the charged groups, and (iii) the electron-rich
locations [120].

In 2017, cyclostellettamine P (193) with C9 and C11 alkyl chains was detected by ion mobility–mass
spectrometry [121] (Figure 15).
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2.7.2. Njaoaminiums

Cyclic 3-alkylpyridinium salts, njaoaminiums A (194), B (195), and C (196) are alkylpyridinium
salts (proposed to be the precursor of njaoamine alkaloids) reported from Reniera sp. [122] (Figure 15).
Compound 195 exhibited growth inhibitory activity against MDA-MB-231, A549, HT29 with GI50

values of 4.8, 4.1, and 4.2 µM [122].

2.8. Motuporamines

Motuporamines A-C (197–199) (Figure 16) [123], were isolated from the marine sponge X. exigua.
Later on, three new motuporamines D–F (200–202), a mixture of motuporamines G–I (203–205)
(Figure 16) along with compounds 197–199, were isolated from the same marine sponge [124].
This subclass was characterized by the presence of a saturated macrocyclic ring of the 13 to 15 carbons
and two basic nitrogen atoms in the linear side chain. Compounds 197–199 and 203–205 exhibited
significant anti-invasion effects, with IC50 values less than 15 µM, whereas no anti-invasion activity
was shown by 200 and 201 [124]. The SARs explained the importance of the saturated 15-membered
cyclic amine, which fused to the motuporamines diamine side chain, as the required structure for
anti-invasive effects [124].
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3. Biosynthetic Considerations

Densanin A (1) was a unique alkaloid and was characterized by a hexacyclic diamine skeleton with
two long chains. Figure 17 shows a plausible biosynthetic pathway of densanin A from 3-alkylpyridine,
as proposed by Baldwin and Whitehead [125].
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Cimino et al. proposed that bis-3-alkylpiperidine was the building block of xestospongins,
petrosins, and saraines [40,126]. They indicated that there was a biosynthetic relationship between
the oligomeric halitoxins and the three macrocyclic alkaloids. Another study indicated a detailed
hypothetical pathway for the formation of araguspongines, petrosins, and aragupetrosine A in the
marine sponge Xestospongia sp. [19,126]. A smart study revealed the relationship between manzarnines
and xestospongins, petrosins, and saraines [40]. Baldwin and Whitehead provided the first suggestion
about the biogenetic origin of piperidine ring and foresaw the occurrence of ircinal A (121) and B (150)
and ingenamine alkaloids (Figure 18) [39,126]. Subsequently, three studies indicated the generation
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of the hypothetical pathways to halicyclarnine, saraines 1–3, saraines A–C, and madangarnine
skeletons [39,126].

The three basic building blocks of the biosynthesis of 3-alkylpiperidine alkaloids manzamine C
(152), keramaphidin C (165 A), and keramamine C (153) include ammonia, a propenal and a variable
chain of saturated or unsaturated linear dialdehyde [75,127,128].

The cross-electrophilic reaction between an equivalent of ammonia with a propenal unit and one
terminus of the linear dialdehyde led to a formation of dihydropyridine, with a linear alkyl aldehyde
attached at the position 3. Oxidation of the dihydropyridine ring, condensation of the free aldehyde
functionality with ammonia, methoxy amine, or simple alkyl amines followed by oxidative or reductive
transformations of the resulting imine led directly to monomeric 3-alkylpiperidines [75,85,129].

Chain extension occurred if the aldehyde functionality undertook reductive condensation with
ammonia, another equivalent of propenal, and a terminus of another dialdehyde chain to afford
a dimer with a second dihydropyridine system. Multiple replications of the elongation sequence
were necessary to generate halitoxins. Cyclization involved condensation of the terminal aldehyde
functionality at one end of the oligomer and the amino nitrogen in the dihydropyridine ring on the
other terminus of the oligomer [129].

Cyclostellettamines result from the oxidation of the dihydropyridine rings containing appropriate
linear alkyl bridges, while haliclamines result from reduction of the dihydropyridine rings. Two
dialdehydes of 11 carbon atoms were required for the biogenesis of a hypothetical macrocyclic precursor
of xestospongins, petrosins, araguspongines, and aragupetrosines. Oxidation of the alkyl chains to
afford the diketo-macrocycle intermediate, followed by carbocyclic or heterocyclic ring formation
generated either the quinolizidine or the 1-oxaquinolizidine ring systems found in the petrosins,
xestospongins, araguspongines, and aragupetrosines [19]. Additionally, transformations including
methylation and hydroxylation are common in the biosynthesis of petrosins, xestospongins, and
araguspongines [46].
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The pentacyclic skeleton of ingenamine alkaloids arose from a biological intramolecular
[4 + 2] cycloaddition reaction between the tautomeric forms of the two dihydropyridine rings in
a bis-3-alkyldihydropyridine macrocycle. The initial [4 + 2] adduct intermediate underwent redox
exchange to obtain the pentacyclic intermediate. Hydrolysis of the iminium ion functionality led to
a tetracyclic seco skeleton with aldehyde functionality. The skeleton and the aldehyde functionality
correspond exactly to the skeleton and aldehyde functional group in ircinal A (121). The condensation of
the ircinal-type intermediate with tryptamine and oxidation of the resulting product led to manzarnine
B (134) (Figure 18).

Ingenamine-type intermediates were suggested as the precursors of halicyclamine A and
madangamines. This can be performed through a cleavage of the C-18 and C–33 bond in the
ingenarnine-type intermediate, which gives rise to the halicyclamine scaffold [129]. This biogenetic
hypothesis was used to assign the relative stereochemistry at C-3 and C-l9 in halicyclamine A (77).
Cyclization to form a quinolizidine ring system transforms a halicyclamine-type intermediate into the
saraine-1 to -3 scaffold [9]. Investigation of saraine A revealed that disconnection of the C2-C3’ and
C3-Nl’ bonds in saraine A (51) generated a halicyclamine scaffold. This confirms that the production of
saraine C (53) from saraine A (51) was achieved through a halicyclamine-type intermediate [26,31,128].
Rearrangement of the ingenamine-type intermediate led to the madangamine scaffold [30,60,128]. The
3-alkylpiperidine alkaloids were isolated as racemates or unequal mixtures of enantiomers. They were
produced by the same biosynthetic manifold but have opposite absolute configurations. Araguspongine
B (31) and petrosins are reported as racemic mixtures, whereas araguspongine D (17) as a 3:7 mixture
of (+) and (-) enantiomers, araguspongine E (19) as a 3:2 mixture of (+) and (-) enantiomers, and
araguspongines F, G, H, J, and aragupetrosine A (20) as single enantiomers [5]. Araguspongines F
(33), G (34), H (35), and J (36) were obtained as single enantiomers, while the related compounds
were obtained as enantiomeric mixtures or meso-compounds; this can be explained by presuming that
enantio-selective oxidation or methylation occurs at C9 or C3 prior to or after formation of intermediary
1-oxaquinolizidine moieties [46].

A comparison of the absolute configurations of manzamine A (97), manzamine B (134), ircinal
A (121), ircinal B (150), ircinol A (120), ircinol B (151), ingenamine (67), ingamine A (65), ingenamine
E (71), and keramaphidin B (165) indicated that all of these compounds originated from the same
biosynthetic pathway of ingenamine-type intermediate [130]. 97, 121, 134, 150, and one enantiomer
of the racemic 165 were categorized in one configuration series. Compounds 65, 67, 71, 120, 151,
and another enantiomer of 165 were categorized in another configurational series. The chirality of
these alkaloids was established by the biological equivalent of an intramolecular [4 + 2] cycloaddition
reaction of an achiral bis-3-alkyldihydropyridine macrocycle. Therefore, there are enzymes capable of
catalyzing this intramolecular condensation [130].

4. Conclusion and Future Perspective

This review delivers an inclusive overview of the chemical structures and biological activities
of the reported marine-derived macrocyclic alkaloids (MDMAs). There was an incredible increase
in the rate of new macrocyclic alkaloids being isolated from marine-derived organisms. Up to 204
macrocyclic alkaloids have been discovered from marine organisms, particularly sponges. These
metabolites were categorized under eight subclasses: pyrroles (1%), quinolines (4%), bis-quinolizidines
(3%), bis-1-oxaquinolizidines (14%), 3-alkylpiperidines (25%), manzamines (34%), 3-alkyl pyridinium
salts (15%), and motuporamines (4%). The majority of these metabolites were isolated from three
genera, Xestospongia, Acanthostrongylophora, and Haliclona. MDMAs displayed potent activities that
enabled them to be used as anticancer, anti-invasion, antimalarial, antiplasmodial, and antimicrobial.
The reported deep-rooted mode of actions and molecular targets of these compounds were recognized.
In this review, the reported structure–activity relationships (SARs) of the marine macrocyclic alkaloids,
including the detailed antimalarial SAR of manzamines, were discussed. The multifunctionality of
the complex chemical structures provides a wide range of different affinities to receptors. Based on
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the chemical diversity and biological activities of the MDMAs, it is worth studying marine sponges
further to find promising lead compounds for the development of marine drugs.
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