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Abstract

Background

In patients with degenerative cervical myelopathy (DCM) that have spinal cord compression

and sensorimotor deficits, surgical decompression is often performed. However, there is

heterogeneity in clinical presentation and post-surgical functional recovery.

Objectives

Primary: a) to assess differences in muscle fat infiltration (MFI) in patients with DCM versus

controls, b) to assess association between MFI and clinical disability. Secondary: to assess

association between MFI pre-surgery and post-surgical functional recovery.

Study design

Cross-sectional case control study.

Methods

Eighteen patients with DCM (58.6 ± 14.2 years, 10 M/8F) and 25 controls (52.6 ± 11.8

years, 13M/12 F) underwent 3D Dixon fat-water imaging. A convolutional neural network
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(CNN) was used to segment cervical muscles (MFSS- multifidus and semispinalis cervicis,

LC- longus capitis/colli) and quantify MFI. Modified Japanese Orthopedic Association

(mJOA) and Nurick were collected.

Results

Patients with DCM had significantly higher MFI in MFSS (20.63 ± 5.43 vs 17.04 ± 5.24, p =

0.043) and LC (18.74 ± 6.7 vs 13.66 ± 4.91, p = 0.021) than controls. Patients with increased

MFI in LC and MFSS had higher disability (LC: Nurick (Spearman’s ρ = 0.436, p = 0.003)

and mJOA (ρ = -0.399, p = 0.008)). Increased MFI in LC pre-surgery was associated with

post-surgical improvement in Nurick (ρ = -0.664, p = 0.026) and mJOA (ρ = -0.603, p =

0.049).

Conclusion

In DCM, increased muscle adiposity is significantly associated with sensorimotor deficits,

clinical disability, and functional recovery after surgery. Accurate and time efficient evalua-

tion of fat infiltration in cervical muscles may be conducted through implementation of CNN

models.

Introduction

Degenerative cervical myelopathy (DCM) is a progressive disease that could lead to symptoms

such as hyperreflexia, proprioceptive loss, weakness, imbalance, and gait disturbances [1,2]. It

is the most common cause of spinal cord dysfunction in the elderly [3,4]. The economic bur-

den of surgical hospitalizations for degenerative cervical spine diseases including DCM is a

staggering $USD 2 Billion per annum, not accounting for additional costs owing to time lost

from work, rehabilitation costs, and nonsurgical treatment costs [5].

Patients may have varying degrees of cord compression on magnetic resonance imaging

(MRI) but it is currently unknown if the severity of compression is directly related to symptom

severity [6,7]. Moreover, a considerable number of patients undergoing cervical decompres-

sion surgery report less than 50% improvement in clinical function as measured by modified

Japanese Orthopedic Association (mJOA) [8]. This variability in clinical presentation and

response to surgery indicates a multifactorial nature of DCM’s pathophysiology. Several poten-

tial pathological mechanisms have been shown to contribute to functional disability in DCM,

namely demyelination of spinal cord white matter regions/tracts [9–12], neuronal and volu-

metric loss of gray matter [13]. Fatty infiltration of cervical spinal musculature is emerging as a

potential driver of disability [14]. An improved understanding of specific pathophysiological

processes may inform both the clinical assessment of and management for patients with DCM.

Muscle fat infiltration (MFI) is commonly observed in patients with cervical spine diseases

including whiplash associated disorders (WAD) from a motor vehicle collision [15], traumatic

spinal cord injury [16], and DCM [14]. Increased MFI in cervical flexors (longus capitis/colli

and sternocleidomastoid muscles) [17] and extensors (multifidus and semispinalis cervicis)

[18,19] is associated with increased pain and clinical disability in patients with WAD. In a

smaller clinical cohort of the patients used in this study, we previously showed that in patients

with DCM there is an increased MFI in the multifidus muscles that may be associated with

clinical disability, as measured by mJOA, and Nurick scales [14]. Changes in muscle
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composition may occur due to aging [20], pre-existing degenerative changes [15,21], and/or

chronic denervation [22–24]. Insidious damage to the spinal cord in patients with DCM may

lead to decreased innervation of the cervical muscles resulting in secondary muscle degenera-

tion, observed as MFI. Along with multifidus muscles, other cervical extensors such as semi-

spinalis cervicis and flexors such as longus capitus and longus colli may also be adversely

affected. Therefore, a comprehensive assessment of MFI in cervical spine musculature is war-

ranted to understand both the mechanisms that drive clinical disability and heterogeneity in

post-surgical symptoms and recovery. It may help to identify specific muscle groups that are

affected and inform interventions through targeted physical therapy (flexors/extensors) regi-

mens to facilitate better cervical neuromuscular function [25,26].

One barrier to quantifying muscle injury is the arduous manual segmentation required of

each muscle. Recent advances in the use of artificial intelligence in medical imaging have

enabled automated segmentation of cervical muscles [27]. Convolutional neural networks

(CNN), in particular, permit a rapid and accurate quantification of MFI.

The purpose of this study was to examine 1) muscle degeneration as MFI of the cervical

muscles in patients with DCM compared to healthy controls, 2) associations between MFI and

clinical disability; and 3) to demonstrate implementation of a recently developed multi-muscle

CNN model to segment seven bilateral cervical muscles and quantify MFI. We hypothesized

that patients with DCM will have elevated MFI in deep cervical flexors and extensors and

increased MFI will relate to worse myelopathy and clinical dysfunction.

Material and methods

Participants

Eighteen patients with DCM (8F/10M, 58.6 ±14.0 years) were recruited from a single academic

spine practice. Patients were included if they presented with clinical symptoms of cervical

myelopathy such as upper extremity weakness, sensory loss, a lack of hand or leg coordination,

or gait instability, in combination with radiographic signs of spinal cord compression. Patients

with other neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, spinal tumors or

trauma, diabetes, peripheral or vascular neuropathies, or a history of spinal injury or other sur-

gery were excluded. Twenty-five age and sex matched healthy controls (12F/13M, 52.6 ± 11.8

years) were recruited. In addition to the exclusion criteria for patients, controls were screened

for current spinal conditions, neck pain or other neurological deficits. Apart from these 43 par-

ticipants, 6 additional participants were excluded from the analysis due to MRI artifacts during

image acquisition- misprescribed field of view [4] and fat-water swapping [2]. All participants

provided written informed consent as approved by the Northwestern University institutional

review board. A subset of these participants was examined in our preliminary study [14].

Clinical and Health Related Quality of Life Scores (HRQOL)

All participants completed two commonly used clinical scales for myelopathy- mJOA and

Nurick. The mJOA scale (ranging from 0–18) assesses sensorimotor dysfunction in upper and

lower extremity [28] and the Nurick scale (ranging from 0–4) evaluates ambulatory status [29].

Health related quality of life questionnaires were assessed: Neck Disability Index (NDI),

Numerical Rating Scale (NRS) for pain and discomfort, pain interference scale (Pain6a), and

Health and Well-Being survey- SF-36 physical (SF-36P) component scores. The NDI evaluates

neck pain and its effect on activities of daily living [30]. The NRS scale quantifies pain and dis-

comfort on a scale of 0–10, where 0 = no discomfort/pain, 10 = extreme discomfort/pain [31].

Health and Well-Being survey- SF-36 measures bodily pain, restrictions in physical function

and general health due to health problems [32].
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A subset of 11 patients with DCM completed these questionnaires at their 6-month follow-

up after cervical decompression surgery. In these patients, recovery rate was calculated as

(Change in mJOA/(18- Pre-op) �100 [33].

MRI acquisition and assessment

Participants underwent magnetic resonance imaging of the cervical spine using a 3.0 T Sie-

mens (Erlangen, Germany) Prisma scanner. A 64 channel head [40] and a neck coil [24] were

used to acquire high-resolution 3D fat-water images of the cervical and upper thoracic spine

(C2-T1) with a dual-echo gradient-echo FLASH sequence (2-point Dixon, TR = 6.59 ms,

TE1 = 2.45 ms, TE2 = 3.68 ms, flip angle = 12˚, field-of-view = 190 mm × 320 mm, slab over-

sampling of 22% with 36 partitions to prevent aliasing in the superior- inferior direction, in-

plane resolution = 0.7 mm × 0.7 mm, slice thickness = 3.0 mm, number of averages = 6, acqui-

sition time = 4 min 23 s).

Automated segmentation of the seven bilateral cervical muscle group was performed using

a recently trained dense V-net CNN model and the in-phase and out-of-phase images. The

model was run using the NiftyNet (Version 0.6.0) open-source deep-learning platform built

on TensorFlow (Version 1.15) in Python (Version 3.6) [34,35]. The CNN demonstrated high

accuracy and excellent reliability (ICC2,1 > 0.800) for the MFI measures of all muscle groups

in an independent testing dataset. The mean absolute error and root mean squared error in

MFI measures was less than 2.0% and 3.0%, respectively. The CNN reduces the time to seg-

ment a single dataset from 4 to 8 hours down to only seconds (Weber et. al., in review). MFI

was calculated as the fat signal/(fat signal + water signal) × 100 using the mean fat and water

signal from each of the muscle segmentations. MFI metrics were extracted for the following

cervical muscle groups- left and right multifidus and semispinalis cervicis (MFSS), longus colli

and longus capitis (LC), semispinalis capitis (SSCap), splenius capitis (SPCap), levator scapula,

(LS), sternocleidomastoid (SCM), and trapezius (TR) [Fig 1]. The average MFI of left and right

muscles of each muscle group was used for further analysis.

Statistical analysis

Normality of the data was assessed using the Shapiro-Wilk test [36]. One-way Analysis of

Covariance (ANCOVA) was performed to evaluate significant differences in MFI between

subject groups with age, sex, and BMI as covariates. Severity of symptoms was defined using

mJOA groups- Normal (mJOA = 18), Mild (mJOA = 17, 16 or 15), Moderate (mJOA = 14, 13,

12) [37]. One-way ANCOVA was conducted to assess significant differences in MFI between

mJOA groups and Nurick scores controlling for age, sex and BMI in the model. Spearman’s

correlation was used to assess the association between clinical or HRQOL scores (mJOA, Nur-

ick, Neck NRS, Arm NRS, NDI, Pain6a, SF-36P) and MFI. Paired sample t-tests were con-

ducted to assess improvement in clinical and HRQOL scores, and Spearman’s correlation was

used to evaluate the relationship between clinical scores post-surgery and pre-surgical MFI.

Statistical tests were performed using IBM SPSS Statistics (IBM Corp. Released 2015. IBM

SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.) and significance was set

at p� 0.05.

Results

Participant characteristics- demographic, clinical & HRQOL scores

The patient cohort consisted of 18 subjects (8 females and 10 males) while the control group

consisted of 25 subjects (12 females and 13 males); Female: Male (8F:10M) vs (12F:13M)
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(X2(1) = 0.053, p = 0.818), mean ages 58.6 ± 14.2 years vs 52.6 ± 11.8 years (p = 0.144), mean

BMI 26.0 ± 4.1 kg/m2 vs 25.2 ± 3.7 kg/m2 (p = 0.523) respectively. Patients had lower mJOA

scores (14.7 ± 1.6, ranging from 12–17 vs 18.0 ± 0, p<0.001), higher Nurick (1.8 ± 0.9, ranging

from 1–4 vs 0 ± 0, p<0.001), neck discomfort (4.4 ± 1.8 vs 0.2 ± 0.6, p<0.001), arm discomfort

(3.6 ± 2.9 vs 0.2 ± 0.4, p<0.001), NDI (16.89 ± 7.50 vs 1.24 ± 2.05, p<0.001) and Pain-6a

(61.02 ± 5.53 vs 41.84 ± 3.68, p<0.001); and lower SF-36P (38.87 ± 9.09 vs 56.49 ± 4.30,

p<0.001) as compared to controls [Table 1].

Fig 1. Example renderings of the cervical spine muscle segmentations. We used a previously developed convolutional neural

network (CNN) to segment seven bilateral cervical muscles (14 muscles total). Example segmentations from a randomly selected

DCM participant are shown. a) Two-dimensional renderings of the cervical spine segmentations at the C3 through C7 vertebral

levels overlaid the axial water images. b) Three-dimensional renderings of the cervical spine muscle segmentations. The muscle

groups segmented included the MFSS (left = red, right = yellow, LC (left = light blue, right = light green), SSCap (left = beige,

right = purple), SPCap (left = dark pink, right = orange), LS (left = light pink, right = light gray), SCM (left = dark gray,

right = brown), and TR (left = dark blue, right = dark green). L = left, R = right, A = anterior, P = posterior, S = superior, I = inferior.

MFSS = multifidus and semispinalis cervicis, LC = longus colli and longus capitis, SSCap = semispinalis capitis, SPCap = splenius

capitis, LS = levator scapula, SCM = sternocleidomastoid, TR = trapezius.

https://doi.org/10.1371/journal.pone.0253863.g001
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Muscle fat infiltration and its association with clinical and HRQOL scores

Muscle fat infiltration in the deeper cervical muscle groups such as MFSS, and LC differed sig-

nificantly between patients with DCM and healthy controls. Specifically, patients with DCM

had significantly higher MFI in LC as compared to controls (Right LC- 18.57 ± 7.01 vs

13.27 ± 4.74, p = 0.010, Left LC- 18.91 ± 7.38 vs 14.04 ± 5.20, p = 0.023, Mean LC- 18.74 ± 6.7

vs 13.66 ± 4.91; F (1, 38) = 5.81, p = 0.021, partial η2 = 0.133) after controlling for age, sex and

BMI (covariates evaluated at age = 55.12, sex = 0.53 and BMI = 25.50) [Fig 2a]. There was a sta-

tistically significant between-subject effect of age (F (1, 38) = 17.19, p<0.001, partial

η2 = 0.311) and BMI (F(1, 38) = 6.82, p = 0.013, partial η2 = 0.152) but not sex (F(1, 38) = 1.31,

p = 0.260, partial η2 = 0.033) on MFI. Similarly, patients with DCM had significantly higher

MFI in MFSS as compared to controls (Right MFSS- 20.58 ± 5.84 vs 16.88 ± 5.34, p = 0.046,

Left MFSS- 20.69 ± 5.27 vs 17.20 ± 5.31, p = 0.048, Mean MFSS- 20.63 ±5.43 vs 17.04 ± 5.24; F

(1, 35) = 1.38, p = 0.043, partial η2 = 0.138) after controlling for age, sex and BMI (covariates

evaluated at age = 55.75, sex = 0.50 and BMI = 25.47) [Fig 2b]. There was a statistically signifi-

cant between-subject effect of age (F (1, 35) = 11.35, p = 0.002, partial η2 = 0.245) and BMI (F

(1, 35) = 9.80, p = 0.004, partial η2 = 0.219) but not sex (F (1, 35) = 1.67, p = 0.205, partial

η2 = 0.046) on MFI.

There were no significant differences in MFI levels between patients with DCM and con-

trols in SPCap (8.91 ± 4.78 vs 8.05 ± 4.74, (p = 0.562)), SSCap (15.58 ± 5.15 vs 14.22 ± 4.92,

(p = 0.385)), SCM (8.70 ± 4.90 vs 6.81 ± 3.88, (p = 0.164)), TR (6.66 ± 4.09 vs 5.45 ± 4.14,

(p = 0.344)), and LS (5.35 ± 3.50 vs 4.68 ± 3.48, (p = 0.541)) muscle groups [Table 2].

Increased MFI was significantly associated with clinical disability, pain, and physical dys-

function. Patients with elevated Nurick scores had significantly higher MFI in LC (Spearman’s

ρ = 0.436 (p = 0.003)), (F (3, 36) = 3.53, p = 0.024, partial η2 = 0.228) [Fig 3a]. Patients with

lower mJOA scores had significantly higher MFI in LC (Spearman’s ρ = -0.399 (p = 0.008)).

Healthy controls (mJOA = 18, MFI- LC = 13.65 ± 4.90) had lower MFI than patients with mild

disability (17�mJOA� 15, MFI- LC = 18.48 ± 7.52) and moderate disability (14�mJOA

�12, MFI- LC = 19.0 ± 6.25), (F (2, 37) = 3.60, p = 0.037, partial η2 = 0.163) after adjusting for

age, sex and BMI (covariates evaluated at age = 55.12, sex = 0.53, BMI = 25.50) [Fig 3b].

Increased MFI in MFSS were significantly associated with increasing Nurick scores (ρ = 0.341

(p = 0.031)) and decreasing mJOA scores (ρ = -0.332 (p = 0.036)). Similar associations were

observed between MFI and HRQOL scores such as NDI (ρ = 0.432 (p = 0.004)), Pain6a (ρ =

0.335 (p = 0.035)), and SF36-P (ρ = -0.420 (p = 0.026)) [Table 3]. Age and BMI had a signifi-

cant association with MFI in both healthy controls and patients with DCM. Specifically, MFI

levels increased with increasing age and BMI in both groups [Fig 4a and 4b].

Table 1. Participant’s demographic, clinical and HRQOL characteristics.

Subjects Sex Age (years) BMI (kg/m2) mJOA Nurick Neck NRS Arm NRS NDI Pain6a SF-36P

Controls 12F

13M

52.6 (11.8) 25.2 (3.7) 18.0 (0.0) 0.0 (0.0) 0.2 (0.6) 0.2 (0.4) 1.24 (2.05) 61.02 (5.53) 56.49 (4.30)

Patients 8F

10M

58.6 (14.2) 26.0 (4.1) 14.7 (1.6) 1.8 (0.9) 4.4 (1.8) 3.6 (2.9) 16.89 (7.50) 41.84 (3.68) 38.87 (9.09)

p-value 0.818 0.144 0.523 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

BMI = Body Mass Index, mJOA = modified Japanese Orthopedic Association, NRS = Numerical Rating Scale, Pain6a = Pain Interference Scale, NDI = Neck Disability

Index, SF-36P = Health and well-being survey (physical component score).

Mean (SD) and p-value are reported.

https://doi.org/10.1371/journal.pone.0253863.t001
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Association with post-surgical recovery

A subset of subjects consisting of 11 patients (4 females and 7 males) with DCM that com-

pleted follow up testing after decompression surgery had a mean age of 55.10 ± 15.37 years

(ranging from 25–74 years) and BMI of 25.26 ± 3.94 kg/m2. Patients demonstrated significant

improvement in their clinical disability after surgery. Nurick scores decreased (0.73 ± 0.65 vs

1.73 ± 0.91, p = 0.004) and mJOA scores increased (14.82 ± 1.90 vs 16.00 ± 1.94, p = 0.029).

Higher MFI in LC pre-surgery was associated with post-surgical recovery rate of Nurick (ρ =

-0.664 (p = 0.026)) [Fig 5a] and mJOA (ρ = -0.603 (p = 0.049). Similarly, patients who demon-

strated�50% recovery in mJOA scores had lower MFI (LC) than those with<50% recovery

(14.03 ± 7.27 vs 21.09 ±1.28, p = 0.043) [Fig 5b]. However, MFI levels in MFSS before surgery

were not associated with post-surgical improvement in Nurick (ρ = 0.139 (p = 0.683)) and

mJOA scores (ρ = 0.255 (p = 0.449)).

Discussion

In this study, we demonstrate that 1a) patients with DCM have higher MFI in deep cervical

flexors and extensors as compared to age-and-sex matched healthy controls, 1b) there were no

significant group differences in MFI within the more superficial muscles (SPCap, SSCap,

SCM, TR, and LS), 2) increased MFI in cervical muscles is associated with higher levels of

Fig 2. Mean group differences in MFI. a) MFI in cervical flexors (LC) between patients with DCM and controls; b) MFI in

cervical extensors (MFSS) between patients with DCM and controls. Mean (SE) are reported. � denotes significance at

p�0.05. MFI = muscle fat infiltration, LC = longus colli and longus capitis, MFSS = multifidus and semispinalis cervicis.

https://doi.org/10.1371/journal.pone.0253863.g002

Table 2. Muscle fat infiltration in seven cervical muscle groups.

MFSS LC SPCap SSCap SCM TR LS

Controls 17.04 (5.24) 13.66 (4.91) 8.05 (4.74) 14.22 (4.92) 6.81 (3.88) 5.45 (4.14) 4.68 (3.48)

Patients 20.63 (5.43) 18.74 (6.70) 8.91 (4.78) 15.58 (5.15) 8.70 (4.90) 6.66 (4.09) 5.35 (3.50)

p-value 0.043 0.021 0.562 0.385 0.164 0.344 0.5S41

MFSS = multifidus and semispinalis cervicis, LC = longus colli and longus capitis, SSCap = semispinalis capitis, SPCap = splenius capitis, LS = levator scapula,

SCM = sternocleidomastoid, TR = trapezius.

Mean (SD) and p-values are reported.

https://doi.org/10.1371/journal.pone.0253863.t002
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clinical disability before and after surgery, and 3) multi-muscle segmentation model, a recently

developed deep learning CNN can be applied for automated quantification of MFI in patients

with DCM. The findings of this study may be useful in understanding underlying pathological

mechanisms that drive injury and clinical dysfunction in DCM. It may also help explain the

specific sensorimotor deficits commonly observed in patients with comparable radiographic

spinal cord compression [6,7]. MRI findings of altered muscle adiposity are present across a

number of spinal pathologies. For example, patients with severe WAD have higher MFI in cer-

vical flexors and extensors as compared to healthy controls and patients with mild/moderate

WAD [15–19]. Elevated levels of MFI in chronic whiplash may be reduced through a regimen

of neck specific exercises [38]. These changes in muscle composition occur concurrently with

decreases in neck disability and increases in muscle strength. In patients with disc degenera-

tion and low back pain, patients with lower MFI in multifidus muscles before total disc

replacement surgery had better post-surgical outcomes [39], which is similar to the rotator

cuff injury literature [40–42].

These studies suggest that MFI may be an important pathophysiological marker in variety

of conditions affecting the appendicular skeleton and the axial spine such as rotator cuff injury

[40–42], WAD [15–19], disc herniation [43,44], degenerative disc disease [45], and DCM [14],

respectively. However, studies on comprehensive examination of cervical muscle composition

and its effects on symptomology, diagnostic, and prognostic utility in patients in DCM are

limited.

Fig 3. Association between MFI and clinical scores. Mean group differences in MFI across varying severity of clinical disability in

patients with DCM as measured by a) Nurick (Grade 0—IV), and b) mJOA groups (Normal = 18, Mild = 17–15, and moderate = 14–

12). Mean (SE) are reported. � denotes significance at p�0.05. MFI = muscle fat infiltration, LC = longus colli and longus capitis,

mJOA = modified Japanese Orthopedic Association.

https://doi.org/10.1371/journal.pone.0253863.g003

Table 3. Association between muscle fat infiltration, clinical and HRQOL scores.

mJOA Nurick NDI Neck NRS Arm NRS Pain6a SF-36P

MFI (MFSS) -0.332 (0.036) 0.341 (0.031) 0.346 (0.029) 0.301 (0.059) 0.302 (0.060) 0.335 (0.035) -0.420 (0.026)

MFI (LC) -0.399 (0.008) 0.436 (0.003) 0.432 (0.004) 0.378 (0.012) 0.420 (0.005) 0.557 (0.001) -0.465 (0.008)

MFI = Muscle Fat Infiltration, MFSS = multifidus and semispinalis cervicis, LC = longus colli and longus capitis, mJOA = modified Japanese Orthopedic Association,

NDI = Neck Disability Index, NRS = Numerical Rating Scale, Pain6a = Pain Interference Scale, SF-36P = Health and well-being survey (physical component score).

Spearman’s ρ (p-value) are reported.

https://doi.org/10.1371/journal.pone.0253863.t003
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Changes in muscle composition such as increased MFI of the deep, not superficial, flexors

and extensors may have direct implications on the function of the cervical spine muscles and

mechanics. Deep neck flexors and extensors provide physical support to the spine vertebral

column and play an important role in postural biomechanics, proprioception, and fine motor

control [46,47]. Additionally, patients with DCM often present with cervical sagittal vertical

misalignment resulting in forward head posture (FHP) [48,49], which could reflect excessive

Fig 4. Association between MFI and demographic characteristics. Scatterplots depicting the relationship between a) MFI and age

in patients with DCM and controls; b) MFI and BMI in patients with DCM and Controls. MFI = muscle fat infiltration, BMI = body

mass index.

https://doi.org/10.1371/journal.pone.0253863.g004

Fig 5. Association between pre-surgical MFI and post-surgical functional improvement in clinical disability. a) Scatterplot depicting

relation between MFI and Nurick recovery rate, Spearman’s ρ is reported; b) Mean group differences in MFI across mJOA recovery rate

dichotomized as<50% and�50%. Mean (SE) are reported. � denotes significance at p�0.05. MFI = muscle fat infiltration, LC = longus colli

and longus capitis, mJOA = modified Japanese Orthopedic Association.

https://doi.org/10.1371/journal.pone.0253863.g005
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loading on a weakened muscular system. Biomechanical modeling of increasing FHP and its

influence on cervical muscles showed significant lengthening of the cervical extensors such as

MFSS and shortening of the cervical flexors such as LC. As a result of sustained contractions,

cervical extensor muscles may weaken [50] and could likely fatigue. Prolonged shortening of

the cervical flexors may contribute to generalized disuse atrophy and increased MFI [17,51].

Muscle denervation due to spinal cord compression, and the accompanied increased fatty

infiltration, may further diminish the capacity of cervical muscles to maintain dynamic posture

and tolerate corresponding biomechanical stresses. Sarcopenia refers to loss of muscle mass

and function, is a key part of frailty in the elderly [52]. Numerous studies have shown that

increased frailty is associated with adverse clinical outcomes after spine surgery in patients

with traumatic spinal cord injury [53], degenerative spine diseases [54–56], and DCM [57]. In

this study we found that increased MFI is associated with increasing pain and clinical disability

as measured by Nurick, mJOA, Neck NRS, and NDI scores. These findings are consistent with

the aforementioned literature and validate the impact of muscle composition and quality on

the nature/causes of impairment and clinical dysfunction in patients with DCM. In older

adults with disability, fatty infiltration in skeletal muscles may be decreased through physical

exercise [20,58]. In chronic WAD, MFI in cervical multifidus was reduced after 10 weeks of

neck specific exercises [38]. Similarly, neck specific exercises such as flexor/extensor training

may be useful in improving clinical outcomes in patients with DCM and MFI may be a modifi-

able biomarker for therapeutic interventions.

Changes in fat infiltration may occur with increasing age as lean body mass decreases and

body adiposity increases [59]. Our findings demonstrate increase in MFI with increasing age

and BMI both in healthy controls and patients. However, statistically significant differences in

MFI between groups persisted even after controlling for age and BMI. Therefore, we consider

our finding of increased MFI in patients with DCM as a pathological and clinically important

change in muscle composition.

In patients with DCM, surgical decompression shows variable and limited neurological

improvement [60]; surgical interventions combined with conservative rehabilitation show

clinical equipoise [61–63]. We previously demonstrated that increased demyelination (lower

magnetization transfer ratios (MTR)) in anterior and lateral cord regions and descending

motor tracts such as corticospinal, reticulospinal tracts are associated with poor functional

recovery after surgery [64]. Sarcopenia in deep cervical flexors (LC) has been shown to predict

poor post-surgical improvement in clinical function in patients with myelopathy [65]. In this

study, our preliminary analysis evaluating MFI and post-surgical functional recovery showed

that increased pre-surgical MFI in LC muscles is adversely related to post-surgical improve-

ment in clinical scores of mJOA and Nurick. It can be hypothesized that cervical flexor train-

ing before and after surgery may promote surgical outcomes and MFI could be a predictive

biomarker for better prognosis. However, further large sample investigations are needed to

understand and confirm the role of cervical musculature in neurological functional recovery

and evaluate the utility of fat-water imaging and MFI in predicting surgical outcome in DCM.

Recent advances in artificial intelligence techniques have led to development of automated

tools and application of machine learning algorithms in the field of spinal imaging [27,66,67]. In

this study, we utilize a recently developed CNN model that segments seven bilateral cervical

muscle groups (14 muscles in total) and measures muscle composition in each muscle group

(Weber et. al., in review). This CNN was validated in patients with WAD and shown to be highly

time efficient as compared to manual segmentation (drawing regions of interest), accurate and

reliable for MFI measures (when tested against different human raters). Conventional MRI tech-

niques (T1, T2 weighted imaging) are excellent in detailed visualization of spinal anatomy in spi-

nal diseases such as DCM, however they do not provide information about specific
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neuropathophysiological processes such as demyelination, axonal and neuronal loss [68].

Advanced MR techniques such as diffusion tensor, myelin-water, magnetization transfer and

fat-water imaging provide several useful quantitative markers of spinal cord injury. Although

these MRI based metrics are shown to be associated with clinical impairment and show diagnos-

tic and predictive utility, their translation to clinical use has not been realized [69]. Development

and application of CNN models such as the one implemented in this study will be essential to

enhance future efficiency and clinical implementation of quantitative MRI techniques.

We acknowledge there are limitations in our study. Firstly, while we have controlled our

analysis for confounders such as age, sex, and BMI in assessing differences in MFI; composi-

tion of the cervical musculature may also be influenced by other factors such as total lean body

mass, physical activity, or neck-specific exercise levels. Secondly, quantification of MFI

depends on the accuracy of segmentation of the muscles by the implemented CNN, and subtle

differences in field of view during MRI acquisition may affect definition of the muscle bound-

aries. To address this limitation, we visually screened our database to identify and exclude any

such dataset where the CNN may have performed inaccurately. Thirdly, demyelination of the

spinal cord regions and white matter tracts may be a prominent pathomechanism in DCM.

Here, we studied the role of increased MFI on DCM symptomology in isolation. Additionally,

cervical spine misalignment is associated with neck disability in patients with DCM [70], how-

ever this study did not control for differences in spinal alignment between participant groups.

Future studies that evaluate cumulative impact of cervical spine alignment with cord compres-

sion, demyelination, and muscle adiposity are needed as this work shows the early associations

that may warrant further investigation. Lastly, while we aimed to include patients with varying

degrees of cervical myelopathy, participation of patients with severe myelopathy may be lim-

ited due to severity of clinical disability or urgent need of therapeutic interventions.

Conclusion

Compared to healthy controls, patients with DCM have increased fat infiltration in deep cervi-

cal flexors and extensor muscles. These adverse changes in muscle composition associate with

sensorimotor deficits, physical function, pain, and disability both before and after surgery.

MFI could be a potential biomarker for patient assessments, better candidate selection for sur-

gery and prognosis. Future investigations focusing on predictive utility of fat water imaging

should compare differential recovery among patients with DCM after surgery. Secondly, this

study demonstrates the novel application of machine learning in medical imaging, specifically

in automated segmentation of muscles across the cervical spine and quantification of MRI

based metric of muscle composition (MFI). We build upon our previous work [14] utilizing

this multi-muscle model that can be easily applied to the cervical spine in DCM and other

pathologies. Implementation of machine learning could facilitate translation of MRI metrics

such as MFI that are otherwise limited to research environments, into clinical practice.
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