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Abstract

Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection
of novel signals in available cohorts. We introduce “genome-wide association neural networks (GWANN)” a novel approach that uses
neural networks (NNs) to perform a gene-level association study with family history of Alzheimer’s disease (AD). In UK Biobank, we
defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls. The data was split
into an 80:20 ratio of training and testing samples, and GWANN was trained on the former followed by identifying associated genes
using its performance on the latter. Our method identified 18 genes to be associated with family history of AD. APOE, BIN1, SORL1,
ADAM10, APH1B, and SPI1 have been identified by previous AD GWAS. Among the 12 new genes, PCDH9, NRG3, ROR1, LINGO2, SMYD3,
and LRRC7 have been associated with neurofibrillary tangles or phosphorylated tau in previous studies. Furthermore, there is evidence
for differential transcriptomic or proteomic expression between AD and healthy brains for 10 of the 12 new genes. A series of post
hoc analyses resulted in a significantly enriched protein–protein interaction network (P-value < 1 × 10−16), and enrichment of relevant
disease and biological pathways such as focal adhesion (P-value = 1 × 10−4), extracellular matrix organization (P-value = 1 × 10−4), Hippo
signaling (P-value = 7 × 10−4), Alzheimer’s disease (P-value = 3 × 10−4), and impaired cognition (P-value = 4 × 10−3). Applying NNs for
GWAS illustrates their potential to complement existing algorithms and methods and enable the discovery of new associations without
the need to expand existing cohorts.
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Introduction
Alzheimer’s disease (AD) affects ∼30 million people in the
world, making it the most common form of dementia [1]. It is
characterized by the build-up of Aβ and tau proteins in the brain,
leading to neuronal death and impaired cognitive function [2].
In the last 10 years, genome-wide association studies (GWAS)
have revolutionized our understanding of the inherited basis of
disease, and they have been critical in identifying multiple risk
loci and novel disease pathways associated with AD involving
the microglia and lysosome [3]. However, the classical GWAS
analysis depends on sample size, and, despite the number of
single-nucleotide polymorphisms (SNPs) identified until today,
they still only explain a fraction of the heritability of the

disease [4]. Gene-based methods have been developed to identify
the joint effects of rare variants [5, 6] and common variants [7]
and gene-level analysis from GWAS summary data [8]. However,
there are currently no methods to perform gene-based discovery
using machine learning methods and genetic data.

Along with the modern availability of large datasets [9–12], to
complement and enhance current GWAS methods, we propose
to use an approach based on machine learning to shed light
on more complex patterns in genomic mechanisms involving
gene interactions and nonlinear relationships. Machine learning
methods, more particularly neural networks (NNs), have been
instrumental in the advancement of multiple engineering indus-
tries due to their efficacy in analyzing complex data patterns
[13, 14], especially where large amounts of data are available.
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Compared to the success of classical GWAS, the success of NNs
in gene discovery has been limited. Using knowledge from prior
GWAS or a shortlisted set of SNPs obtained from linear models,
machine learning methods such as stacked NNs [15], ensemble
architectures [16], and support vector machines [17] have been
used to achieve a better disease risk prediction when compared
with polygenic risk scores. NNs have also recently been employed
and tested on various complex traits and diseases including eye
color and schizophrenia [18]. However, our aim in this work was
to develop NNs specialized to perform a gene-level association
study using SNP data available in the UK Biobank (UKB) [19]. The
objective was to approach this task without the use of information
from prior GWAS. Our method is gene-based and considers groups
of SNPs within and around each gene in the genome to estab-
lish the association of the gene with the phenotype of interest.
Since the method tested the association of a single gene at a
time, the objective was not to achieve better disease prediction
performance than previously mentioned methods, as this would
not be possible, given the polygenic nature of AD. In this paper, we
demonstrate the application of our new genome-wide association
neural networks (GWANN) method as a complementary method
to existing GWAS methods, to identify associations with family
history of AD/dementia, a proxy that has been successfully used
to identify new genes for AD in the UKB [20, 21]. We present the
genetic associations to family history of AD found by the method
and systematically support the results with post hoc enrichment
analyses using transcriptomic data from postmortem AD brains,
biological pathways and gene ontologies, protein–protein interac-
tion (PPI) data, disease and trait gene sets, and data about target
tractability for drug development.

Materials and Methods
Population
We utilized data from the UKB (http://www.ukbiobank.ac.uk).
The data comprise health, cognitive, and genetic data collected
from ∼500 000 individuals aged between 37 and 73 years from
the UK at the study baseline (2006–2010) [19, 22]. We used
imputed SNP genotype data as input to GWANN. UKB genotyping
was conducted by Affymetrix using a BiLEVE Axiom array for
49 950 participants and further updated using an Affymetrix
Axiom array for the remaining 438 427 individuals, based on
the first array (95% marker content shared). The released
genotyped data contained 805 426 markers on 488 377 individuals.
Information on the genotyping process is available on the
UKB website (http://www.ukbiobank.ac.uk/scientists-3/genetic-
data) [22]. Genotype imputation was performed by combining
the UK10K haplotype and Haplotype Reference Consortium as
reference panels [23]. A number of individuals (n = 856) either
with inconsistencies between their genetic predicted and reported
sex or abnormal number of sex chromosomes were removed. In
addition, 968 outliers were identified based on heterozygosity
and missingness and removed. The dataset was further limited
to only individuals of “White British” descent resulting in 409 703
remaining individuals. A genetic relationship matrix along with
genome-wide complex trait analysis was used to identify 131 818
individuals with relatives within the dataset, using a relationship
threshold of 0.025. Only one person from each pair of related
individuals was retained. Only biallelic SNPs with minor allele
frequency (MAF) > 1% and imputation quality info score > 0.8
were retained for the analysis, and all indels and multi-allelic

SNPs were dropped. For the analysis, we used the imputed
genotype dosages.

Definition of cases and controls
The cases were defined as individuals with AD diagnosis (n = 1176)
or parental history of dementia (n = 40 934). The parental histories
of dementia were defined according to a previous study on family
history of AD [20]. Individuals with other neurological disorders
(Supplementary Table S1) [24] were removed from the control
groups. We divided the entire range of ages into three groups
(age-group1: 38–52, age-group2: 53–61, age-group3: 62–73 years)
and paired them with the two possibilities of sex (male and
female) to obtain six broad groups—(age-group1, male), (age-
group1, female), etc. An equal number of controls (n = 42 110)
were randomly sampled while balancing for the six broad groups.
Eighty percent (n = 67 380) of the data were used to train the NNs,
and 20% (n = 16 840) of the data were reserved as a held-out test
to evaluate the performance of the NNs and ascertain association
with the phenotype.

Training the neural network model
Gene locations were mapped according to GRCh37/hg19. For every
gene, SNPs within the gene and in the 2500 bp flanking region
were considered. Since NNs are computationally more intensive
than linear models, we set the limit to 2500 bp as a trade-
off between increased computational time and including down-
stream and upstream SNPs in the analysis. This also minimized
the chances of overlap between genes that are very close to
each other. We divided every gene into windows of maximum
50 SNPs, and the final analysis was done on all windows of all
genes. A different NN was trained for each window per gene in
the entire genome. This resulted in 70 848 NNs. In addition to
the SNPs, age (field 21003), sex (field 31), the first six genetic
principal components obtained from UKB variables (field 22009),
and education qualification (field 6138) were used as covariates.
Education qualification was transformed into years of educa-
tion using the International Standard Classification of Education
encoding.

Each sample for GWANN consisted of SNPs and covariates for
a homogenous group of 10 cases or controls, enabling the NNs of
GWANN to identify similar patterns across the individuals in the
group. The NN was trained to predict if a group was formed by
cases or controls (Fig. 1). Since NNs are inherently stochastic, for
each window, the method was run 16 times with different random
seeds to get a stable aggregate performance metric on the held-
out test set and to then determine the level of statistical signifi-
cance of this metric being significantly above chance predictions
of family history of AD. The aggregate metric was compared to a
null distribution obtained from simulated data generated using
the “dummy” method of PLINK 2.0 [25] to obtain a P-value. An
empirical threshold, θ1 = 1 × 10−25, was determined such that
95% of the gene windows with P-value < θ1 would also satisfy P-
value < 7.06 × 10−7—the Bonferroni-corrected genome-wide sig-
nificance threshold—if the method were repeated another 16
times with different random seeds. This was to ensure that only
the most confident hits were reported as significant associations.
The negative log likelihood (NLL) of the NNs were used as the test
metrics to evaluate significance and for all post hoc analyses. If
multiple windows of a gene were significant, the window with
the best test metric was selected. Further information about
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Figure 1. NN architecture used in the GWANN method. The top-left branch generates a 1D encoding from the SNP input, while the bottom-left branch
does so for the covariate input. The right trunk merges the encodings of both branches to output whether the input belongs to cases or controls.

Table 1. GWANN hit genes associated with family history of AD.

Gene Genomic interval P-value Gene Genomic interval P-value

APOE 19:45406673–45414451 6.95 × 10−160 SRGAP2B 1:144042910–144042910 1.06 × 10−39

BIN1 2:127863681–127867174 3.07 × 10−92 HSP90AB4P 15:58981684–58987724 5.71 × 10−36

NRG3 10:83832534–83855173 2.09 × 10−57 LINGO2 9:28386903–28396747 1.11 × 10−34

LRRC7 1:70399066–70428546 3.1 × 10−53 PALD1 10:72301529–72311482 1.70 × 10−34

ROR1 1:64591756–64611493 2.07 × 10−51 PCDH9 13:67345123–67362138 7.27 × 10−32

RPS6KC1 1:213372832–213408630 1.68 × 10−50 ADAM10 15:59012608–59042081 1.69 × 10−31

APH1B 15:63589709–63603802 9.95 × 10−47 SPI1 11:47374633–47390692 1.01 × 10−30

AKR1C6P 10:4942736–4956083 1.24 × 10−46 SMYD3 1:245922632–245930742 1.80 × 10−28

SORL1 11:121432788–121448972 9.62 × 10−46 SYNPO 5:150015017–150033470 1.62 × 10−27

P-values lower than 6.95 × 10−159 have been cropped to a value of 6.95 × 10−160.

the neural network architecture, model training, and significance
establishment can be found in Supplementary Information.

Results
Identification of genes related to family history
of Alzheimer’s disease using GWANN
On applying GWANN to family history of AD in the UKB, 32
genes passed the empirical significance threshold before prun-
ing for linkage disequilibrium (LD). After identifying LD blocks
(genes with r2 ≥ 0.8) among these genes, we retained the gene
with the best test metric within a block as the hit gene. This
resulted in narrowing down to 18 associated genes (Fig. 2, Table 1,
Supplementary Table S2). Among these hits, APOE, BIN1, ADAM10,
SORL1, SPI1, and APH1B have been previously associated with
AD by large GWAS [3] (Fig. 3). In addition to these AD-associated
genes, LINGO2, LRRC7, NRG3, PCDH9, ROR1, and SMYD3 have been
previously identified via SNP × SNP interaction studies to be asso-
ciated with phosphorylated tau [3]. Six genes, SYNPO, SRGAP2B,
PALD1, AKR1C6P, HSP90AB4P, and RPS6KC1, had no evidence for
previous GWAS association with AD or AD-related traits. To fur-
ther understand the 12 new GWANN hits, we obtained informa-
tion about them from the Agora AD knowledge portal (Fig. 3b).
Besides PCDH9 and AKR1C6P, all hits had evidence for differential
transcriptomic or proteomic expression between postmortem AD
and healthy brains. RNAseq levels of PCDH9 had evidence of
association with a clinical consensus diagnosis of cognitive status
at time of death (COGDX).

We also performed a GWAS using PLINK 2.0 [25] on the same
data that was used for GWANN (TradGWAS). After LD prun-
ing, TradGWAS identified APOE and SORL1 as significant genes

(P-value < 5 × 10−8), both of which were identified by GWANN.
When compared with the genes identified by the largest AD GWAS
run in the European population using the European Alzheimer &
Dementia Biobank (EADB GWAS) [12], GWANN had an overlap of
five genes (APOE, SORL1, APH1B, BIN1, SPI1), and TradGWAS had
an overlap of two genes (APOE, SORL1) (Fig. 3c). We also looked
at the overlap with the EADB GWAS hit genes using the top
100 genes from GWANN and TradGWAS (Fig. 3d). This showed
an overlap of seven genes (APOE, SORL1, BIN1, ABCA7, BCKDK,
UFC1, CR1) between the EADB GWAS and TradGWAS and seven
genes (APOE, SORL1, BIN1, ABCA7, APH1B, SPI1, CTSH) between the
EADB GWAS and GWANN. If an intergenic hit SNP in the EADB
GWAS was not deterministically mapped to either the upstream
or downstream gene, both were considered when calculating
the overlap. The EADB GWAS reported 89 hit loci, but since we
calculated the overlap on a gene level, we used the 84 unique
genes that these loci were mapped to and added APOE to the list
of hits. We also tested the top 100 genes for association in the
“Asian or Asian British” and “Black or Black British” populations
of the UKB (Supplementary Table S3). The number of samples in
each population was >20 times smaller than the “White British”
population, with 358 cases in the Asian population and 340 cases
in the Black population. APOE and AKR1C6P were significant in
the Asian population, and APOE was significant in the Black
population at the Bonferroni threshold of P-value < 5 × 10−4.

Enriched biological pathways, gene ontology
terms, diseases, and protein–protein interaction
network
Gene set enrichment analysis (GSEA) [26] was applied to the
GWANN summary test metrics for all genes to identify enriched
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Figure 2. Manhattan plot after running GWANN on family history of AD. Significant hits were identified at an empirically determined P-value threshold of
P-value <1 × 10−25 (top dotted line). After calculating the LD between significant genes, the gene with the best NLL within an LD block was identified as
the hit gene. The P-values lower than 6.95 × 10−159 have been cropped to a value of 6.95 × 10−160. The bottom dotted line marks the Bonferroni-corrected
threshold for the number of gene windows that were tested, P-value = 7.06 × 10−7.

pathways in Reactome, Wiki, Kyoto Encyclopaedia of Genes and
Genomes (KEGG), and Gene Ontology (GO) gene sets obtained from
MSigDB [27] (Fig. 4a–d, Supplementary Table S4). GSEA calculates
the normalized enrichment score (NES) based on the test metric
of all genes analyzed using a Kolmogorov–Smirnov-like test [26].
Hence, some pathways had a significant NES due to the cumula-
tive contribution of genes that were nominally significant but not
among the list of 18 GWANN hits. The enriched pathways with
the GWANN hits present in the GSEA leading edge were extra-
cellular matrix organization (P-value = 1.04 × 10−4), signaling by
receptor tyrosine kinases (P-value = 7.64 × 10−4), axon guidance (P-
value = 2.23 × 10−3), diseases of signal transduction by growth fac-
tor receptors and second messengers (P-value = 1.11 × 10−2), and
ErbB signaling (P-value = 2.29 × 10−2). Some of the most enriched
GO terms with GWANN hits in the GSEA leading edge were reg-
ulation of neuron projection development (P-value = 7.03 × 10−8),
glutamatergic synapse (P-value = 2.64 × 10−6), synapse organiza-
tion (P-value = 5.66 × 10−6), distal axon (P-value = 7.77 × 10−5), and
regulation of synapse structure or activity (P-value = 7.72 x 10−4).

Disease and trait enrichment was performed using Dis-
GeNET [28]. We used the top 100 genes (without LD pruning)
ranked by the test metric for this analysis and filtered out
diseases and traits with >5000 genes mapped to them (Fig. 4e,
Supplementary Table S5). Some of the most enriched traits with
the largest number of overlapping genes were AD (FDR = 2.56
× 10−4), impaired cognition (FDR = 4.23 × 10−3), autism spectrum
disorders (FDR = 1.19 × 10−2), and mental deterioration (FDR = 3.50
× 10−4).

Using the same set of genes as used for the disease and
trait enrichment, we generated a PPI network using STRING [29]
(Fig. 4f). Some of the gene symbols were not recognized by the
STRING protein database, leaving a set of 88 genes that were
accepted. The resultant PPI network was significantly enriched
with 72 edges (P-value < 1 × 10−16). Given a network of 88 proteins,

the expected number of edges for a set of randomly selected
proteins is 21, thereby rendering the GWANN PPI network to
have significantly more connections than an equivalent network
of random proteins. The network in Fig. 4f shows each protein
colored by the group (Supplementary Table S6) of experimental
factor ontology traits it enriched.

We also performed the same enrichments for TradGWAS
(Supplementary Fig. S1). Pathways related to ErbB signaling
and calcium signaling overlapped with GWANN. The other top
enriched pathways were mainly related to cholesterol, lipids,
and lipoproteins (Supplementary Fig. S1a–d). The PPI network
showed similar levels of enrichment to the GWANN PPI network
(P-value < 1 × 10−16, Supplementary Fig. S1e).

Enrichment of transcriptomic data from
Alzheimer’s disease postmortem brains using
GWANN hits
We examined two studies on differential transcriptomic expres-
sion in AD brains. Patel et al. [30] reported differentially expressed
genes (DEGs) between AD cases, controls, and non-AD mental
disorders in multiple brain regions. We analyzed their DEGs for
AD versus controls, non-AD mental disorders versus controls,
and AD-specific DEGs. Patel et al. [31] identified DEGs for asymp-
tomatic AD versus controls, symptomatic AD versus controls, and
symptomatic versus asymptomatic AD in various brain regions.
We applied GSEA to assess DEG set enrichment.

In the first study (Patel et al.—A) [30], all brain regions showed
enrichment for AD versus controls and “only AD” versus controls,
while the cerebellum and parietal lobes were enriched for “non-
AD” versus controls (Table 2). Key GWANN hits in the GSEA leading
edge were PCDH9, APOE, SORL1, and LRRC7. The temporal lobe,
despite enrichment, had no GWANN hits in the leading edge but
included UFC1 and MAP2K1 (nominal GWANN hits). AD versus
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Figure 3. Overlap of GWANN hits with previous studies. (a) Heatmap showing the count of previous GWAS where the GWANN hits were identified to
be associated with the phenotypes on the x-axis. (b) Heatmap showing the presence of significant evidence for the terms on the x-axis for the GWANN
hits. (c) Heatmap showing the overlap between GWANN hits (GWANN), a GWAS run using PLINK 2.0 on the same data as GWANN (TradGWAS), and
the largest European AD GWAS (EADB GWAS) [12]. (d) Similar heatmap to (c) but instead of using the GWANN and TradGWAS hits, the top 100 genes
from both methods were considered for the overlap with the EADB GWAS hit genes. The sample size of each method is mentioned in the x-axis of the
heatmaps, and the diagonals show the number of genes of each method considered while calculating the overlap.

controls and “only AD” versus controls showed identical enrich-
ment in the temporal lobe. In the second study (Patel et al.—
B) [31], asymptomatic AD versus controls showed no enrich-
ment. The entorhinal cortex and temporal lobes were enriched
for symptomatic AD versus controls and symptomatic AD versus
asymptomatic AD. GWANN hits in the leading edge were BIN1,
SORL1, SYNPO, and SRGAP2B.

The same enrichments were also performed for TradGWAS
(Supplementary Table S7). The brain regions and conditions
enriched were similar to GWANN.

Potential of GWANN targets for Alzheimer’s
disease drug discovery
To assess the tractability of the GWANN hits for aiding drug
discovery, we used TargetDB [32] to score them based on
information collected from literature and knowledge about
their chemistry, biology, structure, and genetics. ADAM10, APOE,
SMYD3, BIN1, SORL1, and ROR1 were reported to be tractable,
and SPI1, LRRC7, APH1B, NRG3, and PCDH9 were reported as
challenging but tractable (Supplementary Table S8). Among the
tractable genes, ROR1 has a drug, cirmtuzumab, associated with

it, which is currently under clinical trials for different cancers and
neoplasms [33].

Discussion
We developed GWANN and applied it to identify genes associated
with family history of AD using data from the UKB. In doing
so, we were able to identify 18 genes significantly associated
with the phenotype. The post hoc enrichment analyses showed
enriched biological and disease pathways relevant to AD and
neurodegeneration. Several GWANN hits were also identified as
tractable drug targets.

Role of hit genes and enriched biological
pathways in neurodegeneration and Alzheimer’s
disease
While some of the GWANN hits have not been identified in previ-
ous GWAS, many of them, or their associated biological pathways,
have been linked to AD or neurodegeneration. The six well-known
AD genes identified by GWANN have not been discussed here.
In the following paragraphs, the pathways and gene ontologies
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Figure 4. Post hoc enrichment analysis after GWANN analysis. (a–d) Gene set enrichment analysis for (a) Reactome, (b) Wiki, (c) KEGG, and (d) GO using
GWANN summary metrics. (e, f) Genes were ranked according to the metric 1 – NLLNN, where NLLNN was the negative log likelihood of the neural
network for a given gene. (e) Disease and trait enrichment using the top 100 genes. (f) Enriched PPI network (P-value < 1 × 10−16) for the top 100 genes.
The colors within the nodes highlight the trait categories enriched by the protein encoded by the gene.

mentioned in parentheses were enriched and contain the gene
being discussed.

Our post hoc analyses link LINGO2 to synapse organization
(GO:0050808) and structure (GO:0050803). Previous findings

suggest that LINGO2 promotes lysosomal degradation of amyloid-
β protein precursor, thereby potentially protecting against AD [34,
35]. This could explain its importance in maintaining a healthy
synapse by facilitating the clearance of amyloid-β, as identified
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Table 2. Enrichment of DEGs identified in two transcriptomic studies on AD brains.

AD versus Cont Non-AD versus Cont Only AD versus Cont

Patel et al.—A [30] Cerebellum 3.48 × 10−2

(PCDH9)
3.48 × 10−2

(PCDH9)
3.48 × 10−2

(PCDH9)
Frontal 1.24 × 10−2

(SORL1)
5.65 × 10−2 1.81 × 10−2

(SORL1)
Parietal 8.75 × 10−7

(APOE, SORL1, PCDH9)
1.02 × 10−15

(APOE, BIN1, LRRC7, SORL1)
2.50 × 10−3

(PCDH9)
Temporal 1.24 × 10−2 9.26 × 10−1 1.24 × 10−2

AD versus Cont AsymAD versus Cont AD versus AsymAD

Patel et al.—B [31] Cerebellum 8.49 × 10−1 4.88 × 10−1 4.82 × 10−1

Entorhinal 4.20 × 10−3

(BIN1, SORL1, SYNPO)
8.89 × 10−1 4.20 × 10−3

(BIN1, SRGAP2B, SYNPO)
Frontal 8.89 × 10−1 1.92 × 10−1 1.50 × 10−1

Temporal 1.88 × 10−2

(SYNPO)
9.07 × 10−1 2.56 × 10−2

(SYNPO)

The genes mentioned in parentheses were the GWANN hits in the leading edge of the GSEA for each condition and brain region. Cont - controls, Non-AD -
non-AD mental disorders, AsymAD - asymptomatic AD.

by the previously mentioned studies. While not genome-wide
significant for AD, LINGO2 shows nominal significance in GWAS
for nonhypertensive AD and brain atrophy [36, 37]. SYNPO,
another GWANN hit, is involved in synaptic plasticity [38]
and autophagic clearance of p-Ser262 MAPT [39]. Our post hoc
enrichment analyses highlighted its localization to the actin
cytoskeleton (GO:0015629). The role of the actin cytoskeleton in
facilitating autophagy [40] and the involvement of SYNPO with
the organization (GO:0007015) and binding (GO:0003779) of this
cellular component could explain how it aids in the clearance of
phosphorylated tau. It was also identified to be downregulated in
patients with dementia of Lewy bodies and Parkinson’s disease
dementia, suggesting its role in other neurodegenerative disorders
with similar pathology to AD [41]. ROR1, a new GWANN hit,
contributes to synaptic health through cytoskeletal involvement
[42]. It encodes a receptor tyrosine kinase (GO:0004713) associated
with the actin cytoskeleton (GO:0015629). Actin filaments help in
maintaining the integrity of the neuronal cytoskeleton, and ROR1
overexpression has been shown to prevent the degradation in vitro,
even in the presence of amyloid� by preserving the actin network
[42]. Epigenetically, ROR1 shows differential hydroxymethylation
between late-onset AD patients and controls, correlating with
MMSE and MoCA cognitive scores [43].

NRG3, along with known AD hits (APOE, BIN1, APH1B, ADAM10),
is involved in receptor tyrosine kinase signaling (R-HSA-1250342,
R-HSA-1963642) and synapse organization/signaling (GO:0099177,
GO:0050808). A single-cell RNAseq study identified the NRG3-
ERBB4 ligand–receptor pair as crucial for intercellular commu-
nication in AD brains, with their ablation reducing excitatory
synapse formation [44]. ERBB4 showed nominal significance in
our analysis (P-value = 2.59 × 10−10). A hypothesis-driven study
found NRG3 SNPs and haplotypes significantly associated with
AD risk and age of onset [45]. Hence, despite not being genome-
wide significant in previous studies, the NRG3 gene and associated
biological pathways have been shown to possess a link to AD.

PCDH9 facilitates neural cell adhesion (GO:0007156, GO:0098742),
contributes to forebrain development (GO:0030900), and is
associated with the distal axon (GO:0150034). Its variants have
been nominally associated with AD [46] and essential tremor [47]
in previous GWAS. SMYD3 has been shown to be significantly
elevated in AD patients’ prefrontal cortex and tauopathy mouse

models, with its inhibition helping rescue cognitive defects and
restore synaptic function in pyramidal neurons [48].

Selection of the significance threshold
We ran the method 16 times to obtain a stable metric, defining
hit stability as the percentage of intersection between paired runs.
The empirical P-value threshold was selected as the largest value
ensuring 95% stability for eight runs, which would guarantee
at least 95% stability for 16 runs (Supplementary Information,
Supplementary Fig. S2b). This approach reduced false positives
but increased false negatives. Raising the threshold to 1 × 10−15

would have included well-known AD genes like PICALM, EPHA1,
and ABCA7. Using the Bonferroni threshold of 7.06 × 10−7 would
have added ACE, CD2AP, IL34, and APP. However, these less strin-
gent thresholds would have also included many genes (53% and
65%, respectively) without previous GWAS evidence for AD asso-
ciation. While some might genuinely relate to a family history
of AD, others would increase false positives. We therefore chose
the conservative empirical threshold of 1 × 10−25 to limit false
positives and report the most confident hits.

Comparison of methods and datasets
We studied the overlap of hit genes and top 100 genes between
GWANN, TradGWAS, and the EADB GWAS (Fig. 3c and d). There
was a larger overlap between the hits of (i) GWANN and EADB
GWAS (n = 5) as compared to the overlap between the hits of (ii)
TradGWAS and EADB GWAS (n = 2). However, for the top 100 genes,
the overlap was the same (n = 7) in (i) and (ii). A possible reason
for the smaller overlap between the hits in (ii), despite employing
similar methods, can potentially be attributed to the lower power
in TradGWAS. Additionally, the overlap between the top 100 genes
for (iii) TradGWAS and GWANN (n = 21) was larger than (i) or (ii).
This would suggest that there seems to be a greater effect of
dataset similarity as compared to the method. Although the EADB
GWAS included the signal from the UKB, the inclusion of addi-
tional datasets made the signal sufficiently different as compared
to the data analyzed by TradGWAS and GWANN. The effective
dataset used in the EADB GWAS (n = 788 989) was almost 10 times
the size of the GWANN or TradGWAS data (n = 84 220), which also
contributed to the power of the analysis. We also tested multiple

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae704#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae704#supplementary-data
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approaches to calculate the overlap between the different meth-
ods and observed the same pattern (Supplementary Fig. S3).

Alongside the traditional GWAS methods that are directly com-
parable to GWANN, it is worth discussing alternative but related
applications of NNs and machine learning methods. Graph NNs
have been applied to known gene–disease associations along
with additional sources of information including known disease
mechanisms, gene connectivity, and gene annotations to prioritize
the known disease-associated genes [49]. Another study used
gradient boosting to build disease prediction models using clinical
biomarkers, plasma protein levels, and other quantitative traits
in the UKB [50]. They used their model’s prediction probabilities
to generate augmented case–control cohorts based on different
probability thresholds and perform a phenome-wide association
study on these augmented cohorts, resulting in the identification
of putative novel genes associated with different diseases. These
methods demonstrate alternative approaches to identifying new
gene–disease associations in existing cohorts by augmenting the
findings of traditional linear methods utilizing data modalities
other than genetics.

Limitations and considerations
GWANN did not identify some well-known AD hits like CLU, CR1,
and TREM2, even with increased P-value thresholds. This could
be due to several factors. Firstly, we limited the analysis to SNPs
with MAF > 0.01. Excluding lower frequency variants could be a
possible explanation for missing genes with rarer AD-associated
variants, like TREM2. Secondly, to address the computational bur-
den, the analysis was limited to a narrow genomic region, consid-
ering only SNPs within genes and 2500 bp flanking regions. This
exclusion of most intergenic SNPs led to a lot of potential AD-
associated SNPs not being considered in the analysis. Additionally,
we also limited the number of SNPs per NN to a maximum of 50 to
avoid having multiple NN architectures to accommodate the wide
range of SNPs between genes (1–10 000 SNPs). However, it would be
more beneficial to include a much larger range of SNPs to utilize
the true potential of NNs in identifying nonlinear relationships.
Thirdly, the use of a 1:1 case-to-control ratio to prevent overfitting
to controls (majority class) resulted in a reduced sample size,
potentially weakening signals from some genes. These differences
in SNP selection, sample size, and methodology compared to tra-
ditional GWAS likely contributed to GWANN’s inability to identify
known AD loci.

GWANN’s inability to provide SNP-level statistics for hit
genes limits its comparability with standard GWAS methods and
compatibility with post-GWAS analysis tools. While packages like
SHAP [51] and Captum [52] offer methods to assign importance
to neural network input features, implementing these across
multiple runs of GWANN proved complex. The NLL of neural
networks for each gene serves as an alternative to traditional
effect size estimates, with smaller NLLs suggesting stronger
associations. However, the NLL does not indicate the effect
direction. Additionally, since we had to run the method more
than once, it contributed to increasing the computational cost.
Hence, effort is required to make the method scalable and
efficient.

Finally, we acknowledge that while the analyzed cohort had
diagnosed AD cases, the majority were those with a family history.
Family history has been previously used as a proxy for AD [20,
21], but the findings warrant validation in external cohorts with
diagnosed AD cases. We attempted to validate the findings in the
Asian and Black populations of the UKB, but the validation was
underpowered due to very small sample sizes. While it does not

serve as a substitute for external validation, in the absence of it,
the series of post hoc enrichment analyses serve as an additional
source of confidence for our findings.

Conclusion
We applied our method to family history of AD using data from the
UKB and introduced a new method to complement the success of
existing GWAS methods. GWANN identified genes associated with
family history of AD that have previously not been identified by
GWAS. A series of post hoc enrichment analyses provided evidence
for differential expression of RNA and proteins associated with
the hits between the brains of AD patients and healthy controls.
Among the new hits, LINGO2, NRG3, PALD1, PCDH9, SMYD3, and
SYNPO have evidence of association with AD or other neurode-
generative disorders from previous in vitro and in vivo studies.
Additionally, enrichment of biological pathways and gene ontolo-
gies provided possible explanations for the role of these genes
in the processes contributing to AD. Furthermore, SMYD3, LRRC7,
NRG3, PCDH9, and ROR1 were identified as tractable targets for
drug development. Overall, the findings suggest the potential of
GWANN to augment the effort of existing methods in understand-
ing the pathogenesis of AD and other diseases.

Key Points

• We present a new method to perform gene-level disease
association using neural networks, called genome-wide
association neural networks (GWANN).

• GWANN was applied to family history of Alzheimer’s
disease (AD) in the UK Biobank and identified 18 genes
significantly associated with family history of AD—
six well-known AD-associated genes and 12 potentially
novel hits.

• Post hoc enrichment analyses of GWANN results revealed
biologically relevant pathways and processes associated
with AD and neurodegeneration.

• Several of the genes identified by GWANN were reported
as tractable targets for drug development, suggesting
potential avenues for AD therapeutics.

• The findings suggest the possibility of using GWANN
as a complementary method to GWAS, to enable the
identification of novel signals in existing cohorts.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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