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Purpose: Children’s heart sounds were denoised to improve the performance of the

intelligent diagnosis.

Methods: A combined noise reduction method based on variational modal

decomposition (VMD) and wavelet soft threshold algorithm (WST) was proposed,

and used to denoise 103 phonocardiogram samples. Features were extracted after

denoising and employed for an intelligent diagnosis model to verify the effect of the

denoising method.

Results: The noise in children’s phonocardiograms, especially crying noise, was

suppressed. The signal-to-noise ratio obtained by the method for normal heart sounds

was 14.69 dB at 5 dB Gaussian noise, which was higher than that obtained by WST only

and the other VMD denoising method. Intelligent classification showed that the accuracy,

sensitivity and specificity of the classification system for congenital heart diseases were

92.23, 92.42, and 91.89%, respectively and better than those with WST only.

Conclusion: The proposed noise reduction method effectively eliminates noise in

children’s phonocardiograms and improves the performance of intelligent screening for

the children with congenital heart diseases.

Keywords: congenital heart disease, wavelet soft threshold, variational mode decomposition, heart sound

denoising, intelligent classification

INTRODUCTION

The prevalence of congenital heart diseases among newborns in China is rising up to 0.898% (1, 2).
Among them, ventricular or atrial septal defects are the most common. Pathological murmurs
are produced by blood flow through the abnormal cardiovascular morphology and structure in
addition to the periodic first or second heart sounds (3–5). Therefore, heart auscultation is the
main method of screening for congenital heart diseases (6). Phonocardiogram (PCG) is generated
by the use of an electronic stethoscope, which promotes intelligent diagnosis for congenital heart
diseases (7), in which time domain features of heart sounds (8), frequency domain features (9, 10)
and time-frequency domain features (11, 12) have been analyzed in the machine learning models
(11, 13) or neural networks (12, 14). However, PCG often contains noise due to the subject
ambient and activity conditions, such as power noise, breathing sounds, friction between the
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piezoelectric thin-film sensor of the stethoscope and the
body surface, and especially for children whose emotions are
uncontrolled. Young children are prone to struggle and cry, and
their PCG is relatively weak with a low signal-noise ratio. Noise
in the recordings mixes randomly and intermittently with heart
sounds, or may exhibit bandwidth characteristics, or pulsatility,
all of which can reduce the accuracy of PCG feature analysis
and extraction. Therefore, it is necessary to effectively reduce the
noise of children’s PCG fromdifferent sources andmanifestations
before feature extraction for the intelligent diagnosis of the
congenital heart disease.

Currently, denoising methods for PCG are mainly divided
into 3 categories: blind source separation algorithms (15–
17), adaptive noise reduction based on empirical mode
decomposition (18), and threshold noise reduction based on
wavelet (10, 11, 14, 19). The blind source separation algorithms,
relying on information theory and matrix analysis, are often used
to distinguish heart and lung sounds and to denoise them. The
matrix decomposition algorithms, which are typical blind source
separation algorithms, such as singular value decomposition
(16) and non-negative matrix decomposition (15), are employed
to restore or isolate the sound source. However, blind source
separation algorithms lead to complex and tedious operation and
do not deal with the difference between the noise and murmur.
It is unknown whether the blind source separation algorithm
scan distinguishes the noise from abnormal heart or lung sounds.
The original murmur part could be lost after the PCG from
ventricular septal defect patients were denoised with 2D group
sparsity algorithm (17). The denoised signal was only used for
heart sound localization, but not for murmur extraction. The
empirical mode decomposition which is a spatiotemporal filter
(18, 20) decomposes the PCG non-linearly in the time domain
(21, 22) with good adaptability, but has problems such as modal

FIGURE 1 | Distribution of heart sound types. Normal heart sound (normal), ventricular septal defect (VSD), atrial septal defect (ASD), atrial septal defect + ventricular

septal defect (ASD + VSD), patent ductus arteriosus (PDA), right ventricular double outlet (DORV), other pathological murmurs (others).

aliasing and end effect. The problems remain unsolved even if
the improvements were proposed (23, 24). The wavelet threshold
method is a common noise reduction method in the heart sound
classification (10, 11, 14) where the difference in thresholds
of detailed components of each scale between the signal and
noise under orthogonal wavelet transformexists to reconstruct
the denoised signal. However, wavelet denoising method lacks
self-adaptability and has poor suppression effect on the burst
noise. The VMD algorithm proposed by Dragomiretskity (25)
based on the variational theory in functional analysis can
overcome the end effect and modal aliasing problems of
the empirical mode decomposition, and has stronger noise
robustness. Recently, the VMD method has achieved good
results in the field of vibration signal noise reduction (26,
27). It has also been employed for PCG segmentation of the
first and second heart sounds (17, 28), but rarely for noise
reduction (29). Although VMD is a well-established signal
processing method, there are still some shortcomings in its
application for PCG denoising. First, the modes cannot be
flexibly selected according to the actual decomposition of PCG
under various noise intensities (29). Second, the decomposition
performance of VMD decreases with the increase in noise
intensity (26, 27), resulting in the residual noise in some of
the modes that contain heart sound information. When the
number of decomposition layers and the range of modalities used
for signal reconstruction are fixed, the denoising performance
of VMD significantly decreases under strong Gaussian noise.
Therefore, neither VMD nor WST can effectively reduce strong
ambient noise or the burst noise in children’s PCGs under
non-standard acquisition environments. Therefore, we aimed to
develop a noise reduction method combining both VMD and
WST to improve intelligent diagnosis of children’s congenital
heart diseases.
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MATERIALS AND METHODS

PCG Recording
The PCG signals of 103 subjects were obtained for the screening
study by an electronic stethoscope (ChildCare G-100, Shanghai
Tuoxiao Intelligent Technology Co., Ltd., Shanghai, China) in
a standard clinical setting with a hardware sampling rate of
44.1 KHz and 16 bit AD sampling. The demography of 103
samples was shown in Figure 1 with 37 normal heart sounds and
66 pathological precordial murmurs. All the subjects have signed
the informed consent form with the hospitals. All PCG signals
were resampled to 2,000Hz and processed with MATLAB 2020a.

Principle of VMD
VMD defines the Intrinsic Mode Functions (IMFs) as
Equation (2.1).

uk (t) = Ak (t) cos (φk (t)) (2.1)

Where uk (t) is an amplitude-modulated-frequency-modulated
signals that represents the k-th IMF, φk (t)I is a non-decreasing

function, φk
′

(t) ≥ 0. Ak (t) is slowly varying with respect
to φk (t).

VMD aims to decompose signal x(t) into K modes with
limited bandwidth. Hilbert transform for uk (t) exist to obtain
1-sided spectrum. The 1-sided spectrum is modulated to
the fundamental band by multiplication with the complex
exponential. Then, the bandwidth is estimated by the squared L2

of the gradient of the demodulated signal. Correspondingly, the
constrained variational model is expressed as:

min{uk},{ωk}

{∑

k

∥∥∥∥∥∂t

[
δ (t)+

j
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uk (t)

]
e−jωkt
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∑
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uk = x

Where, ωk is center frequency corresponding to uk.Quadratic
penalty factors α and Lagrange multipliers λ are applied to
solve the constrained model. Augmented Lagrange multipliers
are combined with the operator alternating direction method to
iteratively solve ωk and uk for well convergence property of the
quadratic penalty under finite weights and strict enforcement of
the constraints:
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VMD Algorithm and Its Parameter Selection
1) Initialization: û1

k
,ω1

k
, λ̂1, n← 0

2) Iteration: n← n+ 1
3) Circulation: k = 1 :K, ω ≥ 0
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4) When decomposition number reaches K, stop the inner
loop and update λ:

λ̂n+1 (ω)← λ̂n (ω)+ τ

(
x̂ (ω)−

∑

k

ûn+1
k (ω)

)

5) Stop the iteration if the stop condition is met; otherwise, go
to step 2) to continue the iteration.

∑
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/
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FIGURE 2 | Analysis of the value of K: the frequency-amplitude in double

logarithmic coordinates of heart sound of a 1-year-old healthy boy collected in

a quiet environment.

TABLE 1 | The time and frequency features in closed atrioventricular valve (CAV)

and closed semilunar valve (CSV) periods.

Features Description

1–3 Max, Min, and Mean absolute in CAV

4–6 Max, Min, and Mean absolute in CSV

7–8 Max and Mean: power spectral density of CAV

9–10 Max and Mean: power spectral density of CSV

Frontiers in Medical Technology | www.frontiersin.org 3 May 2022 | Volume 4 | Article 854382

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Zhang et al. VMD Noise Reduction

Where τ is the Lagrangian multiplier update parameter, also
known as the noise tolerance, and was set to 0. The penalty
factor α was set to 2,500 (17). The K-value was set by analyzing
the frequency-amplitude spectrum of the heart sound signal.
The frequency-amplitude in double logarithmic coordinates of
heart sound of a 1-year-old healthy boy collected in a quiet
environment was recorded in Figure 2. Ideally, if the frequency-
amplitude curve of the signal has n peaks, K = n. However,
excessive decomposition layers are likely to cause overlapping
frequencies of the modes. Therefore, similar wave crests were
neglected in the current study and the finally K = 6.

Reconstruction Modal Screening Index
Permutation entropy peck and correlation coefficient RSigk were
combined to establish screening indexes for reconstruction to
avoid the loss of pathological information in children’s heart
sound signals by noise reduction processing:

RSpk = β
(
1− RSigk

)
+ (1− β) peck (2.4)

The screening index RSpk existed to find out the IMFs with
low correlation coefficients and high permutation entropies
for rejection. Where β is a propensity parameter set to 0.3,
indicating that the mode with the higher permutation entropy
was preferred. The degree of randomness of noise level is
positively correlated with peck. The smaller RSigk is, the more
random the IMF is.

Reconfiguration Process
After decomposing the PCG into 6 layers of VMD, the RSpk
of each IMF was calculated. The IMFs with RSpk greater than
the index threshold T_RSpk were identified as containing higher
noise. In the current study, T_RSpk = 0.6 was used. If the
RSpk of a mode was >0.6 and its RSigk was <0.5, it would be
rejected. These unremoved IMFs were combined with WST to
obtain the denoised heart sound signal. There were 2 methods for
combination with WST. Of the two methods, 1 was to denoise
each IMF retained separately using WST before reconstructing
and is defined as VWG. The other was to reconstruct the
modalities first, and further use WST to obtain the final noise-
reduced heart sound signal and is defined as VGW. Daubechies
6 wavelet was chosen, the number of decomposition layers was 6,
and the threshold value was chosen to be a universal threshold.

The proposed denoising method for children’s PCG can be
summarized as follows.

1) Decomposition of PCG by VMD.
2) Screening the modes according to their permutation

entropies and correlation coefficients with the original signal.
3) Processing the retained modes: applying WST on each mode

and then reconstructing the modes; or reconstructing
these modes first and then applying WST on the
reconstructed signal.

Noise Reduction Experiment
Random noise from outside the body may form an overall
Gaussian ambient noise in PCG (30). To simulate the different
levels ambient noise, the high-quality children’s PCG signals

collected by professional medical staff were superimposed
with 5 and 10 dB of Gaussian white noise. The noise-added
signals were then denoised with the VWG, VGW, and WST
method. The VMD-based denoising method proposed in (29)
was also employed for Gaussian noise reduction, where the
last IMF in the method was chosen as the noise reduction
signal after VMD decomposition. Signal-to-noise ratio and
root mean square error help to quantitatively evaluate the
denoising performance.

PCG signals of a 28-day-old child with congenital heart
disease were also employed for experiment. The child
was suffering from ventricular septal defect (1.0 cm from
perimembranous to sublet valve), a trial septal defect (ostium
secundum is 0.2 cm), mild tricuspid regurgitation, slightly
stronger mitral valve cusp echo, mild to moderate mitral
regurgitation, and pulmonary hypertension. The PCG was
recordedunder the state of intermittent crying and about 40 s,
whose noise showed intermittency in time and the intensity
varied with the strength of the cry. The signal noise reduction
ratio (31) existed to evaluate the noise reduction:

dnSNR = 10 ∗ log 10 (Ps/Pd) (2.5)

Where Ps is the power of the noise-containing PCG, and Pd
is the power of the denoised PCG. The small dnSNR indicates
that the noise is reduced and the signal is smooth. Further,
the Mel filter energy of PCG recorded under severe crying was
analyzed because of wide use Mel-frequency cepstral coefficients
the intelligent auscultation (7, 11), where the upper and lower
limit frequencies were set to 30 and 500Hz, respectively, due to
the electronic stethoscope with hardware filtering bandwidth of
30–500 Hz.

Intelligent Diagnosis Model
PCG features were extracted after denoising, and employed for
established classification model. The previously studied method
of children’s intelligent heart sound diagnosis (14) was adopted.
A double qualification of peak detection plus threshold range
was applied to the signal reconstructed after the signal was
reconstructed by Hadamard product in the fourth and fifth level
of detail. The types of features employed are shown in Table 1.
A 10-10-1 back propagation neural network was employed for
classification. The outputs of the network were quantified as 0 or
1 by a threshold of 0.5, which represent normal heart sounds or
abnormal heart sounds, respectively. The Jack-Knife method (32)
existed to evaluate the generalization ability of the classification
system due to the limitation of the number of samples. One
sample at a time from 103 cases was set aside for validation of
the trained model, and the remaining 102 samples were used for
training the model.

RESULTS

Noise Reduction Effect Onambient Noise
The noise reduction effect on the simulatedambient noise added
to a normal PCG is shown as an example Figure 3. From the
overall waveform, the Gaussian noise with a signal-to-noise ratio
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of 10 dB was effectively suppressed, and there was no significant
difference between the denoised PCG and the clean normal PCG.
It was true also for the Gaussian noise with a signal-to-noise ratio
of 5 dB but with more burrs in the baseline compared with the
clean normal PCG, which meant that some noise remained. The
details of the waveform containing the second heart sound are
located at the bottom of Figure 3. The waveform of the second
heart sound was distorted after being denoised with the VMD-
based method (29). The waveform other than the second heart
sound has more obvious noise fluctuations than that using the
VGW when the noise intensity is enhanced. In addition, some
details were lost after denoising with the WST only (marked by
blue arrows). The signal-to-noise ratios and root mean square
errors obtained by the simulated noise reduction for the several
common pediatric PCG are shown in Tables 2, 3, respectively.
The signal-to-noise ratios and root mean square errors obtained
by the combined denoising method were greater than those by
theWST only and the VMD-basedmethod at the 2 different noise
levels. As the noise intensity increased, the signal-to-noise ratios
obtained by the VWG, VGW, and only WST decreased, and

the root mean square errors increased. Generally, the difference
between the signal-to-noise ratios obtained by VWG and VGW
was little, except for the noise reduction of the PCG of the case
of the patent ductus arteriosus. Only 4 groups of the denoising
metrics obtained by the VMD-based method (29) were better
and the rest groups were significantly worse than those obtained
by WST.

The actual ambient noise differed from the ideal analog noise
due to the electronic stethoscope’s hardware filtering. The noise
reduction of the PCG of a healthy newborn containing periodic
impulse noise is illustrated in Figure 4. The first and second IMFs
containing noise components were removed by filtering IMFs
automatically. Finally the noise was suppressed significantly by
both VWG and VGWmethods.

Noise Reduction Effect on Crying Noise
The PCG of a child in a quiet state is shown in Figure 5,
mainly with systolic murmurs. The noise due to the loud
crying was in the fourth cardiac cycle and almost dominated
the heart sound wave form in the cycle shown in Figure 5.

FIGURE 3 | The PCG of a healthy child collected professionally in a quiet environment and the denoising results for the PCG with 5 dB and 10 dB Gaussian noise

added, respectively. The comparison of details is shown at the bottom: clean PCG and denoised PCG using the WST, VGW (red line), VMD-based method (blue line).
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TABLE 2 | Comparison of signal-to-noise ratio (SNR) of PCG signals with Gaussian noise after noise reduction.

PCG 5 dB 10 dB

VWG VGW WST VMD-based VWG VGW WST VMD-based

Normal (13Y) 15.61 15.85 9.38 13.06 19.32 19.42 12.61 3.13

Normal (4Y) 13.92 13.88 8.55 4.63 16.43 16.74 11.68 3.82

Normal (1Y) 13.30 13.55 9.88 11.65 17.28 17.43 13.34 7.68

Normal (7Y) 14.76 15.46 10.20 14.38 19.69 19.86 13.67 4.94

VSD (2Y) 8.81 8.22 4.13 7.25 9.19 9.49 6.27 2.17

ASD (4Y) 11.49 11.27 6.45 4.08 13.71 13.68 9.53 3.60

ECD (4Y) 12.86 12.83 6.59 4.69 13.92 13.77 9.58 4.67

PDA (6Y) 6.75 8.02 5.30 4.09 7.37 8.89 8.40 2.52

TABLE 3 | Comparison of root mean square error (RMSE) of PCG signals with Gaussian noise after noise reduction.

PCG 5 dB 10 dB

VWG VGW WST VMD-based VWG VGW WST VMD-based

Normal (13Y) 0.0266 0.0269 0.0531 0.0317 0.0145 0.0146 0.0318 0.0996

Normal (4Y) 0.0277 0.0286 0.0486 0.0735 0.0157 0.0156 0.0315 0.0807

Normal (1Y) 0.0314 0.0315 0.0475 0.0380 0.0187 0.0183 0.0311 0.0599

Normal (7Y) 0.0274 0.0275 0.0483 0.0287 0.0152 0.0151 0.0307 0.0849

VSD (2Y) 0.0467 0.0465 0.0769 0.0518 0.0377 0.0364 0.0550 0.0931

ASD (4Y) 0.0454 0.0509 0.0823 0.1049 0.0377 0.0383 0.0573 0.1109

ECD (4Y) 0.0387 0.0379 0.0756 0.0950 0.0373 0.0359 0.0547 0.0953

PDA (6Y) 0.0431 0.0350 0.0512 0.0581 0.0403 0.0353 0.0359 0.0697

FIGURE 4 | Noise reduction for a collected PCG with ambient noise that exhibits impulsive interference.

Figures 5, 6 compared the denoising performance of the WST,
VWG, and VGW for the PCG including crying noise from
the time domain and the time-frequency domain, respectively.
As shown in Figure 6, the impact of these were crying noise
was mainly manifested in the energy of the 9th and above

filters, which mixes the PCG components above 155Hz. It can
be seen that the burst noise was filtered out with the systolic
murmurs preserved, but the WST method did not suppress the
crying noise. Correspondingly, the dnSNRs obtained by using
the WST, VWG, and VGW to denoise the loud crying noise
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FIGURE 5 | PCG without crying noise (top), PCG with severe crying noise and noise reductions for the PCG with severe crying noise.

FIGURE 6 | Comparison of Mel filter energies after noise reductions for PCG with severe crying noise.

FIGURE 7 | PCG segmentation after noise reduction.

are 15.93, 3.48, and 3.49 dB, respectively. And the dnSNRs
obtained by using these methods to denoise the 8 fragments
randomly cut from the PCG of 40 s were 14.22, 10.91, and
11.03 dB, respectively. The dnSNRs obtained by the proposed
denoising method were significantly lower than those by the
WST only.

Diagnosis After Noise Reduction
An example of the segmentation of the PCG of a 1-year-old
child with the ventricular septal defect denoised with the VWG is
shown in Figure 7. The predictions obtained from the training of
the features extracted after using the 3 noise reduction methods
are shown in Figure 8. In the classification using theWST only, 9
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FIGURE 8 | The results of PCG classification with the WST only, VWG and VGW, respectively.

TABLE 4 | Classification performance based on different noise reduction

methods:accuracy (Acc), sensitivity (Se), and specificity (Sp).

Methods Performance

Acc Se Sp

WST only (14) 87.38% 93.94% 75.68%

VWG 92.23% 92.42% 91.89%

VGW 92.23% 93.94% 89.19%

cases with the normal heart were misclassified and 4 cases with
abnormal heart were misdiagnosed. In the classification using
the VWG, 3 cases in the normal heart falsely predicted and 5
cases in the abnormal heart falsely predicted. In the classification
using the VGW, 4 cases in the normal heart falsely predicted and
4 cases in the abnormal heart falsely predicted. The accuracy,
sensitivity, and specificity of the intelligent classifications are
shown in Table 4. The classification using the VWG achieved the
best performance but with no improved sensitivity.

DISCUSSION

This study proposed a noise reduction method combining both
the VMD and WST according to the random and diverse
characteristics of noise. Themethod is adaptive in decomposition
and the selection of IMFs. The VMD and WST complement
each other and optimize denoising effect on PCG by suppressing
strong both the Gaussian noise and burst noise. It is found
that the method can effectively suppress the noise in PCG,
improve the performance of intelligent screening for congenital
heart disease.

Advantages and Shortcomings
Although the wavelet threshold method is widely employed
for pre-processing of PCG classification, the threshold function
affects approximation of the denoised signal to the original
signal. The WST lacks adaptability to suppress the burst noise
in PCGs because the wavelet function and threshold function

have been set before the noise reduction, which was proved
by the denoising effect on crying noise in the current study
(Figures 5, 6). According to Figure 6, the deficiency of the WST
also compromised the performance of the classification based on
the Mel-frequency cepstral coefficients. The denoised PCGs with
the WST (14) were smooth, but lost some details in the heart
sound (marked by blue arrows in Figure 3), which may be the
reason for the lower signal-to-noise ratios obtained by the WST
on the reduction of the ambient noise (Table 2). VMD separates
noise and heart sounds by decomposing them into different
modalities. However, when the number of decomposition layers
is fixed, the decomposition performance decreases as the noise
increased, resulting in the noise and heart sound components
in the same IMF. Thus, improper screening of IMFs can lead
to the residual noise or loss of heart sound components. The
waveform distortion of the second heart sound occurs in Figure 3
because only the last IMF was selected after decomposition when
the major heart sound components were present in both of the
last 2 IMFs. The similar reason is given for the worse denoising
metrics obtained by the VMD-based method (29) for Gaussian
noise with a signal-to-noise ratio of 10 dB in Tables 2, 3. The
residual noise in the last IMF after decomposition leads to several
poor denoising metrics obtained by the VMD-based method for
Gaussian noise with a signal-to-noise ratio of 5 dB. To address
these weaknesses, this study proposes the combination of the
VMD and WST for PCG noise reduction. The adaptability of
VMD provides a theoretical basis for the separation of noise
from heart sounds, especially burst noise. The peck and RSigk
of IMFs were employed to compare the heart sounds before
noise reduction to screen the IMFs, which retains IMFs with as
many heart sound components as possible and as little noise as
possible for reducing signal distortion. Therefore, the VWG and
VGW are also adaptive in the screening of IMFs. As shown in
Figure 4, after the PCG was decomposed into the 6 IMFs by
VMD, the noise was separated into the first and second IMFs,
which were automatically picked out and rejected due to their
each RSpk>0.6 and RSigk <0.5. However, some of the IMFs used
for reconstruction still contain residual noise. So, the WST was
employed for further noise reduction. The results proved that
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TABLE 5 | Comparison of performance with other methods.

Method Database Performance

WPT and SVD (33) / SNR:22.21 dB (10 dB), 18.37 dB (5 dB)

VMD denoising (29) PCGs collected clinically

(Michigan)

SNR:24.1 dB (10 dB), 19.1 dB (5 dB)

Ours SNR:7.99 dB (5 dB)

GSD (17) PCGs collected clinically

(Michigan)

SNR:30.3 dB (10 dB), 35.26 dB (15 dB)

OMLSA and WT (34) PCGs collected clinically

(Washington)

SNR:11.76 dB (5 dB)

Matched Filters, Support Vector Machine, ANN (35) PCGs collected clinically Se = 84–93%,Sp = 91–99%

Wavelet hard thresholding, iterative backward elimination, SVM (11) PCGs collected clinically Acc = 92.6%

Butterworth band-pass filter, MFCCs, CRNN (12) The CinC challenge 2016 database Se = 98.66%, Sp = 98.01%,

Acc = 98.34%

WST (14), ANN Ours SNR:10.64 dB (10 dB), 7.56 dB (5 dB)

Acc = 87.38%, Se = 93.94%, Sp = 75.68%

Proposed, ANN Ours SNR:14.91 dB (10 dB), 12.39 dB (5 dB)

Acc = 92.23%, Se = 92.42%, Sp = 91.89%

the VWG and VGW outperform the WST and the VMD-based
method (29).

The current noise reduction algorithm has to be optimized in
parameter settings. The denoising performance still degrades at
high levels of noise. For example, the mean signal-to-noise ratio
obtained by the current denoising method was reduced by 18%
at 5 dB Gaussian noise. In addition, although the current noise
reduction method improved the performance of the intelligent
diagnostic system, there were still several cases of the normal
PCG which were misclassified as abnormal. Continuous low-
frequency noise was present in these recordings and resulted in
high correlation coefficients between noise-containing IMFs and
non-noise-reduced PCG, which affected the screening of IMFs.
We tried to adjust parameters in the current denoising method
for further improvement of noise reduction and found it to be
feasible. Therefore, adaptive adjustment of the noise reduction
parameters in the method was needed so that the method can
cope with more types of noise in PCGs.

Furthermore, it should be noted that the features employed
for diagnosis are not sufficient to distinguish mild murmurs from
the normal heart sound. The current noise reduction method
failed so that 4 congenital heart disease murmurs were classified
as the normal heart sounds. These murmurs were weak and cloud
easily be classified as the normal heart sounds. The degree of
murmurs also need to be considered in intelligent diagnosis and
the features that better characterize mild murmurs vs. the normal
heart sounds need to be explored.

Performance Comparison
The performance of the current methods was compared with
those of the previous studies in PCG noise reduction or
classification, as shown in Table 5. The signal-to-noise ratios
obtained in the current study were only lower than those of
studies (17) and (33). Both studies are blind source separation
methods that could effectively separate S1 and S2 from the
PCG with noise, and eliminate murmurs. Although blind source
separation methods obtained high signal-to-noise ratios, the

murmurs for classification were ignored. The difference in the
databases used in the studies was also the reason for the
significant difference in the signal-to-noise ratios obtained by
each method, such as study (29). In study (29), there was
a lack of adaptability in modal screening and the set of K
of VMD was not based on analysis of the spectrum of the
heart sounds, which might cause under-decomposition. From
the studies using the same dataset, the current noise reduction
method performed best in terms of the signal-to-noise ratio.
It is 1-sided to consider only noise reduction metrics such as
signal-to-noise ratio for the intelligent diagnosis studies, and
more important to consider the retention of valid information
such as murmurs. The deep learning approach performs best
for heart sound classification, but its development for congenital
heart disease screening is limited by the dataset size of children’s
PCGs. Performance of the methods in all the studies was above
90% except the classification using the WST for PCGs denoising.
In general, the classification based on the proposed denoising
method has comparable performance in diagnosing congenital
heart disease murmurs.

Limitations
Only 1 case with the crying noise was employed for the
experiment to show effect of the method on suppression of the
crying noise. However, prediction of intelligent diagnosis was
performed with noise reduction in all the data. The effectiveness
of the noise reduction method for the adult heart sounds is not
studied in detail in this study. The PCG samples of children’s
heart sounds suffered from low quantities and data imbalance.

CONCLUSION

A novel denoising method based on combined VMD and WST
is proposed in the study. This method allows for flexibility in the
selection of IMFs in VMD noise reduction and overcomes the
short comings of denoising strong Gaussian noise with VMD and
suppressing burst noise with WST. The method results in better
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noise reduction metrics than previous methods and effectively
suppresses the noise in the child PCG from the congenital heart
disease, but not the murmurs. It is found that the performance of
classification system based on VWGmethod is improved and the
accuracy of intelligent diagnosis of the congenital heart diseases
is enhanced with the PCG denoised by the method.
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