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Abstract Osteoarthritis is the most common joint disease in the world with significant societal 
consequences but lacks effective disease-modifying interventions. The pathophysiology consists of 
a prominent inflammatory component that can be targeted to prevent cartilage degradation and 
structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response 
in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism 
in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is 
the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production 
and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic 
reprogramming and decreases the inflammatory response of chondrocytes through inhibition of 
NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia 
is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and 
inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.

Editor's evaluation
This manuscript focuses on identifying how metabolism can influence the response of cartilage cells 
to inflammation. This has a relevance to the painful disease known as osteoarthritis. Modulation of 
call metabolism in the right direction can serve to protect joint cartilage from the negative effects of 
inflammation with causes onset and disease progression.

Introduction
Joint disease afflicts millions of individuals around the world, though these conditions are greatly 
understudied. While many different diseases can affect the joints, osteoarthritis (OA) is the most 
common, affecting over 200 million individuals (Allen et al., 2022). Significant advancements have 
been made in the treatment of classical inflammatory joint diseases, such as rheumatoid arthritis or 
psoriatic arthritis, due to identification of therapeutic targets and biomarkers (Palfreeman et al., 
2013; Shams et al., 2021). Disease modifying compounds, especially with the advent of biologics, 
have revolutionized the management of these patients and allowed improved joint outcomes. 
However, OA still lacks disease modifying interventions, leading to significant medical and financial 
burden in the United States and around the globe. (Bedenbaugh et al., 2021; Zhao et al., 2019). 
OA can affect many different joints and presents in a variety of manners, likely contributing to the 
lack of clear disease pathophysiology or therapies, though inflammatory and biomechanical factors 

Research Article

*For correspondence: 
abuamery@wustl.edu

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 20

Received: 01 June 2022
Preprinted: 09 June 2022
Accepted: 01 August 2022
Published: 02 August 2022

Reviewing Editor: Jameel Iqbal, 
DaVita Labs, United States

‍ ‍ Copyright Arra et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.80725
mailto:abuamery@wustl.edu
https://doi.org/10.1101/2022.06.09.495504
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Arra et al. eLife 2022;11:e80725. DOI: https://doi.org/10.7554/eLife.80725 � 2 of 24

play a role, amongst other factors (Deveza and Loeser, 2018; Mobasheri and Batt, 2016). OA 
is characterized by joint degradation, with articular cartilage damage and joint space narrowing. 
Clinically, patients have increased pain and loss of joint mobility that can progress to significantly 
impair functionality. Interventions include use of NSAIDs and intra-articular steroid injections for 
pain relief as well as joint replacement surgeries. However, there are currently no medications for 
preventing or reversing joint damage caused by OA, and several clinical trials have failed (Hermann 
et al., 2018). Furthermore, the disease is indolent and slowly progressing, often presenting with its 
classical symptoms long after joint degradation has begun and usually long after inciting factors, 
such as joint injury, have taken place (Blasioli and Kaplan, 2014; Roos and Arden, 2016). Clearly, 
there is a need for novel biomarkers, therapeutic targets, and overall understanding of disease 
pathophysiology.

Various groups have shown that inflammation is a driver of OA, even though it may not present like 
traditional inflammatory diseases such as rheumatoid arthritis (Arra et al., 2022; Arra et al., 2020; 
Goldring and Otero, 2011). Joint inflammation causes cartilage-resident chondrocytes, as well as 
other joint infiltrating cells, to generate catabolic enzymes to promote an overall joint degradative 
state (Blasioli and Kaplan, 2014). Inflammatory stimuli activate signaling pathways such as the NF-κB 
pathway, which are important drivers of OA disease but have not been successfully targeted in OA 
(Arra et al., 2022; Arra et al., 2020; Catheline et al., 2021; Choi et al., 2019). These stimuli can 
range from cytokines to mechanical stress to inorganic particulate matter, making it difficult to target 
specific inflammatory mediators (Liu-Bryan and Terkeltaub, 2015; van den Bosch, 2019). Due to this, 
it is necessary to identify targetable cellular processes that modulate downstream inflammatory and 
catabolic activity in articular chondrocytes in response to a variety of stimuli.

Metabolic reprogramming is one such process that has gained interest in various cell types and 
disease state as a disease driver and may also be important in OA (Chiellini, 2020; Zheng et al., 
2021). Intracellular metabolism does far more than energy production and can modulate the inflam-
matory response of cells through regulation at various levels, ranging from epigenetics modifications 
to redox modulation (Gaber et al., 2017; Lu and Wang, 2018). As such, chondrocyte intracellular 
metabolism has come into focus recently as a potential therapeutic target for modulating catabolic 
activity through regulation of inflammatory signaling pathways. Supporting this finding, we have 
shown recently that inflammatory stimuli alter the metabolism of chondrocyte, which can then regu-
late inflammatory responses (Arra et al., 2020).

Glucose metabolism has been fairly extensively studied in chondrocytes, though the role of other 
substrate pathways, such as fatty acid or amino acid metabolism, has been less well studied. However, 
understanding the role of these other substrate pathways is critical since many metabolic pathways 
are interconnected and likely play a role in OA pathogenesis. In support of this claim, several groups 
have displayed recently that modulation of metabolic pathways can protect against OA and rheuma-
toid arthritis (RA) in animal models (Abboud et al., 2018; Coleman et al., 2018; Liu-Bryan, 2015; 
Ohashi et al., 2021; Shen et al., 2019). In humans, studies have shown that OA and RA joints have 
altered metabolite levels in the synovial fluid, though it is unclear if these changes are due to disease 
or drivers of disease (Akhbari et al., 2020; Kim et al., 2014; Zhai, 2019; Zheng et al., 2017). Finally, 
it has been displayed that systemic metabolic diseases such as obesity, diabetes, and hypercholes-
terolemia (Baudart et al., 2017) likely influence OA development, potentially through nutrient avail-
ability (Sellam and Berenbaum, 2013; Zhuo et al., 2012). Based on these findings, it is probable that 
altered cell metabolism can be used not only as a biomarker of joint health but also as a therapeutic 
target. To help address some of the knowledge gaps in the field, we focused in this study on the role 
of glutamine in chondrocyte physiology and in response to inflammatory stimulation.

Glutamine is highly abundant throughout the body and is essential for many anabolic processes 
but can also be utilized for energy production (Cruzat et al., 2018). Some recent studies have elabo-
rated the function of glutamine metabolism in chondrocyte physiology, though more understanding 
is required. One group demonstrated that inflammatory stimulation altered glutamine uptake and 
glutamate release in chondrocytes, with glutamate receptor involved in modulation of chondrocytes 
inflammatory response (Piepoli et al., 2009). Another group showed that glutamine metabolism is 
critical for regulating anabolic activity, glutathione production, and epigenetic modifications in chon-
drocytes (Stegen et al., 2020). Furthermore, several studies have highlighted that glutamine levels 
are altered in synovial fluid of OA patients (Akhbari et  al., 2020; Anderson et  al., 2018). These 
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studies highlight that glutamine is likely to be an important substrate for chondrocytes, both in healthy 
and disease states.

In this study, we aim to characterize the role of glutamine metabolism in the inflammatory response 
of chondrocytes. Recent work has begun to explore the role of glutamine in the chondrocyte inflam-
matory response, primarily utilizing glutamine supplementation to display potentially protective 
effects (Ma et al., 2022). However, the overall paucity of data in the field suggests the need for further 
research and a different approach to understanding the role of glutamine in OA chondrocytes. We 
utilize glutamine deprivation in the context of IL-1β stimulation as well as supplementation of gluta-
mine downstream products to determine their function in the inflammatory response. We focus on 
NF-κB signaling as well as autophagy, both of which have been shown to be cooperatively important 
players in OA disease.

Results
Chondrocytes utilize glutamine for intracellular energy metabolism
We have previously shown that chondrocytes under inflammatory conditions undergo metabolic repro-
gramming, with increased reliance upon glycolysis and decreased oxidative phosphorylation (Arra 
et al., 2020). Several studies have demonstrated that there is mitochondrial dysfunction with inflam-
matory stimulation (Arra et al., 2020; López-Armada et al., 2006). During these conditions, there is 
decreased reliance upon glucose as a source of TCA cycle substrates, though other energy substrates 
such as glutamine can still fuel TCA activity to drive anabolic reactions (Martínez-Reyes and Chandel, 
2020; Meiser et al., 2016). Thus, we seek to determine if chondrocytes can utilize glutamine to fuel 
anaplerotic TCA cycle activity. We observe that IL-1β stimulation alters the expression of glutamine 
and glutamate transports, as well as several key glutamine metabolic enzymes (Figure 1A–E).

However, enzyme expression may not necessarily reflect glutamine utilization. To determine this, 
we measured viability of chondrocytes in the presence or absence of glutamine. Culturing chon-
drocytes in glutamine free media led to a slight decrease in viability, suggesting that chondrocytes 
require glutamine for energy production (Figure 1F). Since the first step of glutamine metabolism 
and entry to TCA cycles is conversion to glutamate, a process catalyzed by glutaminase (GLS), we 
utilized a GLS inhibitor, CB-839, which mimics the effect of glutamine deprivation on cell metabolism 
by preventing glutamate generation. We confirmed that GLS inhibition significantly reduced intracel-
lular glutamate to levels approaching that of glutamine deprivation (Figure 1G). We also observed 
a decrease in ATP levels with GLS inhibition, further confirming that chondrocytes do utilize gluta-
mine for energy production (Figure 1H). Given that chondrocytes clearly rely upon glutamine, we 
then performed Seahorse analysis to confirm that chondrocytes utilized glutamine for metabolism 
and energy production. We note that IL-1β stimulation increases glycolysis and causes a dramatic 
decrease in OxPhos, likely via mitochondrial dysfunction (Figure 1I–L). We observed that glutamine 
deprivation led to a decrease in both extracellular acidification rate (ECAR) and oxygen consump-
tion rate (OCR), with a more dramatic effect on OCR, likely due to contribution of glutamine to TCA 
anaplerotic activity (Figure 1I–L). ECAR is generally viewed as a surrogate for glycolytic activity in 
the form of lactic acid mediated acidification, though there is also a contribution of carbon dioxide 
generated from de-carboxylation during TCA cycle. We observe similar effects on metabolism with 
GLS inhibition, indicating that glutamine breakdown by GLS is an essential step for energy metabo-
lism (Figure 1—figure supplement 1A-D).

We sought to determine if human OA cartilage also exhibits altered expression of glutamine meta-
bolic enzymes. We noted that human OA cartilage displays increased expression of various gluta-
mine metabolic enzymes (Figure  1—figure supplement 1E-H), potentially suggesting increased 
glutamine metabolism. We validate that OA cartilage is more catabolic and inflammatory through 
measurement of NF-κB inhibitor zeta (Nfkbiz) and matrix metalloprotease 3 (Mmp3) expression, 
respectively (Figure 1—figure supplement 1I-J). We also note that IL-1β stimulation of human chon-
drocytes isolated from knee cartilage caused some glutamine metabolic enzyme changes, though less 
significantly than OA chondrocytes (Figure 1—figure supplement 1K-M), indicating that metabolic 
changes in human cells may be a chronic change or in response to other inflammatory stimuli.

https://doi.org/10.7554/eLife.80725
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Figure 1. Chondrocytes rely upon glutamine for energy production. (A–E) Primary murine chondrocytes were treated with IL-1β (10ng/mL) for 24hr. 
Gene expression of Gls2, Gdh, Gs, Eaat2, and Asct2 was measured by quantitative PCR. Results from n=6-10 independent biological samples (as 
depicted in individual panels). Unpaired Student’s T test was performed (A: **p=0.0011, B: p=0.375, C: *p=0.0227, D: ***p=0.0005, and E: ***p=0.0003). 
(F) Primary murine chondrocytes were cultured in media with 4mM glutamine and 0mM glutamine under constant glucose conditions. After 24hr, 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.80725
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Glutamine deprivation causes metabolic reprogramming to inhibit 
glycolysis
Given that glutamine primarily supplies TCA cycle activity (Yoo et  al., 2020), and not glycolytic 
substrates, we were surprised to observe that glutamine deprivation of chondrocytes was able to 
cause a reduction in both glycolysis and oxidative phosphorylation. We sought to determine what 
impact glutamine deprivation may have on systems such as glycolysis which tend to primarily utilize 
glucose, and if glutamine modulation is able to modify glycolytic activity. Furthermore, we have previ-
ously shown that metabolic reprogramming toward increased glycolysis induced by IL-1β can promote 
catabolic activity and OA disease (Arra et al., 2020).

We observe that glutamine deprivation itself was able to induce metabolic reprogramming that 
supports TCA activity. We noted increased expression of glutaminase (Gls) with glutamine deprivation 
(Figure 2—figure supplement 1A) and slight increase in some TCA cycles enzyme expression such 
as malate dehydrogenase (Mdh) and succinate dehydrogenase subunit A (Sdha), with insignificant 
changes in others (Figure 2—figure supplement 1B-E). However, glutamine deprivation inhibited 
the expression of various glycolytic and pentose phosphate pathway (PPP) enzymes (Figure 2A–C). 
Furthermore, we observe that glutamine deprivation can prevent many of the glycolytic and PPP 
enzymes metabolic changes observed with IL-1β stimulation (Figure 2A–C). This is further supported 
by the finding that glutamine deprivation can reduce lactate production by chondrocytes, a marker of 
glycolytic activity (Figure 2—figure supplement 1F), confirming that the decrease in ECAR seen with 
glutamine deprivation is at least partially due to decreased glycolytic activity (Figure 1J). Based on our 
findings, it appears that glutamine deprivation supports TCA cycle activity but inhibits glycolysis and 
PPP. This may be a compensatory mechanism utilized by cells in the absence of glutamine to sustain 
ATP production via utilization of the energy favorable TCA cycle, as well as anabolic activity.

We then performed some targeted proteomics in the context of glutamine deprivation 
(Figure 2D–E) and noted that glutamine deprivation does not reduce levels of TCA metabolites such 
as α-KG, malate, and oxaloacetate but does reduce levels of pyruvate generated from glycolysis 
(Figure 2D–K). However, we did note that glutamine is in fact required for the production of various 
downstream substrates, such as asparagine and aspartate (Figure 2I–J). Given that glutamine depriva-
tion reduced OxPhos activity and ATP levels, but did not reduce TCA metabolite levels, chondrocytes 
may be able to generate TCA metabolites by utilization of other anaplerotic processes. These systems 
can generate metabolites but usually do not generate energy. As an example, we noted increased 
expression of Psat1 with glutamine deprivation (Figure 2—figure supplement 1G), which has recently 
been displayed to be one source of glucose-based α-KG to fuel TCA cycle (Hwang et al., 2016).

viability was measured by (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) assay. Results from n=6 samples from one representative 
experiment. Unpaired Student’s T test was performed, ****p<0.0001. (G) Primary murine chondrocytes were treated with CB-839 (1uM). Intracellular 
glutamate was measured by luminescent assay (n=6). Unpaired Student’s T test was performed, ****p<0.0001. (H) Primary murine chondrocytes were 
treated with CB-839 and/or IL-1β for 24hr. Intracellular ATP was measured by luminescent assay. Results from one representative experiment (n=8). 
One-way ANOVA was performed followed by Tukey’s multiple comparisons test, ****p<0.0001. (I–L) Primary sternal chondrocytes were cultured in 
media containing glutamine or media without glutamine for 24hr. Cells were then treated with IL-1β (10ng/mL) for 24hr. All values were normalized to 
cell viability of treatments relative to untreated cells as measured by MTT assay. (I–J) Extracellular acidification rate (ECAR) measurement in glycolysis 
stress test (Injection 1: no treatment, Injection 2: glucose, Injection 3: oligomycin, and Injection 4: 2-DG) or (K–L) Oxygen consumption rate (OCR) 
measurement in MitoStress test (Injection 1: no treatment, Injection 2: oligomycin, Injection 3: Carbonyl cyanide-p-trifluoromethoxyphenylhydrazo
ne (FCCP), and Injection 4: antimycin A/rotenone) was performed on Seahorse Instrument. Measurements were performed every 6min with n=eight 
replicates per timepoint for each condition. Arrows represent injections timepoints. Graphs shown in Figure 1J and L are from a single timepoint. One-
way ANOVA was performed followed by Tukey’s multiple comparisons test. J:**p=0.0077 and ****p<0.0001; L:****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Depicting original raw data related to Figure 1.

Figure supplement 1. Chondrocytes rely upon glutamine for energy production.

Figure supplement 1—source data 1. Depicting original raw data related to Figure 1—figure supplement 1.

Figure 1 continued

https://doi.org/10.7554/eLife.80725
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Glutamine metabolism by GLS contributes to inflammatory gene 
expression
We have previously depicted that altered metabolism can regulate the inflammatory and catabolic 
response of chondrocytes. Since the metabolic changes induced by glutamine deprivation opposed 

Figure 2. Glutamine deprivation causes metabolic reprogramming to inhibit glycolysis. (A–C) Primary murine chondrocytes were cultured in media 
containing 4 mM glutamine or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β (10 ng/mL) for 24 hr. Gene expression of G6pd2, Eno1, 
and Ldha was measured by quantitative PCR from n=6 replicates. One-way ANOVA was performed followed by Tukey’s multiple comparisons test. 
A: *p=0.0242, ****p<0.0001, B: ****p<0.0001, and C: ****p<0.0001. (D–K) Under similar conditions, metabolite levels were measured by Liquid 
chromatography–mass spectrometry (LC-MS) with n=3 replicates. One-way ANOVA was performed followed by Tukey’s multiple comparisons test. D: 
***p=0.0003, E:***p=0.0006, F: p>0.05, G: p>0.05, H:*p=0.036, I: **p=0.0012, J:**p=0.0079, and K: **p=0.009.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Depicting original raw data related to Figure 2.

Figure supplement 1. Glutamine deprivation causes metabolic reprogramming to inhibit glycolysis.

Figure supplement 1—source data 1. Depicting original raw data related to Figure 2—figure supplement 1.

https://doi.org/10.7554/eLife.80725
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the metabolic changes we observe with IL-1β stimulation, we suspected that glutamine may also play 
a role in modulating the inflammatory response induced by IL-1β.

To determine the role of glutamine metabolism in the inflammatory response, we cultured chon-
drocytes in media with and without glutamine under sufficient glucose conditions and treated them 
with IL-1β. We observed that glutamine deprivation led to a decrease in inflammatory and catabolic 
gene expression in response to IL-1β, with a reduction in expression of genes such as interleukin 6 
(Il6) and matrix metalloprotease 13 (Mmp13) (Figure 3A–B). We then sought to determine the mech-
anism by which glutamine can regulate the inflammatory response. We measured NF-κB activity since 
it is the principle inflammatory response pathway to IL-1β that we have previously demonstrated is 
important for OA development (Arra et al., 2022; Arra et al., 2020). We observe using chondro-
cytes derived from p65-luciferase reporter mice that glutamine deprivation dose dependently inhibits 
NF-κB activation, as measured by luciferase activity (Figure 3C). It has also previously been displayed 
that IκB-ζ is a critical pro-inflammatory mediator of NF-κB activity in chondrocytes treated with IL-1β 
(Arra et al., 2022; Choi et al., 2018). We observe that glutamine deprivation leads to a decrease in 
IκB-ζ protein expression and stability, at least partially due to inhibition of NF-κB activity (Figure 3D). 
Our earlier work has also shown that IκB-ζ is a redox sensitive protein that is stabilized by oxidative 
stressors from metabolic sources such as Lactate Dehydrogenase A (LDHA) and the mitochondria, so 
we measured reactive oxygen species (ROS) levels in the absence of glutamine in response to IL-1β 
stimulation. We observed decreased ROS production in the absence of glutamine (Figure 3E), likely 
due to decreased inflammatory response and a reduction in pro-oxidative metabolic changes we have 
previously characterized. It should be noted that glutamine is important for the production of the anti-
oxidant molecule glutathione in chondrocytes; however, this result seems to suggest that glutamine 
deprivation can reduce oxidative species generation more significantly than glutathione production 
may be reduced (Stegen et al., 2020).

We then interrogated if GLS inhibition can modulate the inflammatory response similar to glutamine 
deprivation. We observed that GLS inhibition by CB-839 was also effective at decreasing the inflam-
matory response, suggesting that glutamine to glutamate conversion is important for the inflamma-
tory response (Figure 3—figure supplement 1A). We also observed that GLS inhibition was also able 
to potently decrease IκB-ζ protein expression (Figure 3—figure supplement 1B), indicating that 
glutaminolysis contributes to IκB-ζ-mediated gene expression. Furthermore, GLS inhibition reduced 
NF-κB activation (Figure 3—figure supplement 1C).

The glutaminolysis reaction performed by GLS generates glutamate and free ammonia from 
glutamine (Yoo et al., 2020). Glutamate can then be converted to a-ketoglutarate, glutathione, or 
undergo transaminase reactions. On the other hand, ammonia is a reactive species, often viewed 
as a waste product, and can be incorporated into amino acids or urea for its removal (Kurmi and 
Haigis, 2020; Spinelli et al., 2017). We sought to determine if glutamate or ammonia generated by 
GLS can regulate the inflammatory response of chondrocytes. We supplemented chondrocytes with 
ammonia or glutamate and measured the inflammatory response. We observed that ammonia supple-
mentation was pro-inflammatory, activating NF-κB and increasing IκB-ζ protein levels in the setting 
of IL-1β stimulation (Figure 3—figure supplement 1D). It also increased expression of inflammatory 
and catabolic genes (Figure 3G–H). Ammonia supplementation also partially rescued inflammatory 
gene expression under glutamine deprivation conditions. Glutamate supplementation did not have a 
significant impact on NF-κB activation (Figure 3—figure supplement 1D). This finding suggests that 
ammonia generation from glutamine metabolism may be involved in promoting inflammation through 
stabilization of IκB-ζ and its transcriptional program. While glutamine is a major source of ammonia 
production, it is not the only source of ammonia, as asparagine is another amino acid with an amide 
side chain that can generate ammonia. We then sought to determine if asparagine supplementation 
in the absence of glutamine may be able to rescue the effect of glutamine deprivation. However, we 
observed that asparagine supplementation was unable to do so, suggesting that glutamine depriva-
tion may activate unique pathways (Figure 3—figure supplement 1E).

Given that we did not observe an increase in inflammation with glutamate supplementation, we 
then tested the efficacy of glutamate dehydrogenase (GDH) inhibitor, EGCG, which blocks the conver-
sion of glutamate to α-KG (Li et al., 2006), a process that also releases an ammonia group and is 
critical for the generation of pro-inflammatory downstream metabolites such as succinate. We note 
that EGCG treatment also slightly reduced the inflammatory response represented by Il6 expression, 

https://doi.org/10.7554/eLife.80725
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Figure 3. Glutamine deprivation inhibits the inflammatory response. (A–B) Primary murine chondrocytes were 
cultured in media containing 4 mM glutamine or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β (10 
ng/mL) for 24 hr. Gene expression of Il6 and Mmp13 was measured by quantitative PCR (qPCR). One-way ANOVA 
was performed followed by Tukey’s multiple comparisons test. A:****p<0.0001 (n=16) and B: *p=0.0489 (n=6). 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.80725
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though less potently than glutamine deprivation (Figure 3—figure supplement 1F). This is expected 
given that EGCG blocks α-KG production and glutamate-based ammonia release in TCA cycle but 
does not alter glutamine generation into glutamate or other downstream products. Hence, EGCG 
only partially mimics glutamine deprivation and as such is less anti-inflammatory.

Glutamine deprivation activates autophagy
Since it is well known that nutrient deprivation can induce autophagy (Russell et al., 2014), we sought 
to determine what impact glutamine deprivation would have on chondrocyte autophagy processes, 
especially in the context of inflammation. We note that IL-1β stimulation of chondrocytes leads to a 
decrease in autophagy, as noted by accumulation of p62 protein. We then observe that there is an 
upregulation of autophagy with glutamine deprivation, as indicated by a decrease in p62 protein, which 
is often an indication of autophagy progression as p62 is degraded by autophagosomes (Figure 4A, 
quantified in Figure 4—figure supplement 1A-B). We also note a significant decrease in LC3 protein 
levels with glutamine deprivation due to increased consumption of LC3 through autophagy. We 
validated this through chloroquine treatment, an inhibitor of autophagy, which can rescue LC3 and 
p62 levels in glutamine deprivation conditions, indicating that LC3 and p62 are being processed by 
autophagy. We validated these findings by immunofluorescence, which displayed that chloroquine 
treatment led to far greater increase in LC3-positive punctate in cells under glutamine deprivation 
conditions compared to glutamine replete conditions (Figure 4B). We confirm that these findings 
are due to protein processing since we do not observe similar changes at the gene expression level 
(Figure 4—figure supplement 1C-D). Interestingly, we note that glutamine deprivation also leads to 
a transient decrease in gene expression of microtubule-associated protein 1A light chain 3b (Lc3b) 
and sequestosome (Sqstm1) at less than 24 hr, which recovers at the 24 hr timepoint (Figure 4—
figure supplement 1E-F). We also observe that LC3 protein levels start to decrease rapidly with 
glutamine deprivation, but p62 levels do not decrease until 48 hr (Figure 4—figure supplement 1G). 
We observed similar effects with GLS inhibition by CB-839 (Figure 4—figure supplement 1H).

We then supplemented chondrocytes deprived of glutamine with glutamate or ammonia and 
measured levels of LC3 and p62 to determine how glutaminolysis affects autophagy. We noted 
ammonia supplementation was able to inhibit autophagy and reverse the effect of glutamine depriva-
tion on LC3 and p62 expression, similar to chloroquine treatment (Figure 4C, Quantified in Figure 4—
figure supplement 1J-K, Figure 4—figure supplement 1I). Ammonia treatment led to an increase 

(C) Primary murine chondrocytes were isolated from NF-κB-luciferase reporter mice. Chondrocytes were then 
cultured in media containing 4 mM, 2 mM, or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β for 24 
hr. NF-κB activity was measured by luciferase assay. n=4. One-way ANOVA was performed followed by Tukey’s 
multiple comparisons test. ****p<0.0001. (D) Primary murine chondrocytes were cultured in media containing 4 
mM glutamine or 0 mM glutamine for 24 hr. Cells were treated with IL-1β for the indicated timepoints. IκB-ζ 
protein (85kDa) was measured by immunoblotting, with actin (42kDa) used as housekeeping. Image displays 
representative experiment. (E) Primary murine chondrocytes were cultured in media containing 4mM glutamine 
or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β (10 ng/mL) for 24 hr. ROS levels were measured by 
2’,7’ –dichlorofluorescin diacetate (DCFDA) assay using microplate reader. n=6. One-way ANOVA was performed 
followed by Tukey’s multiple comparisons test. ****p<0.0001. (F) Primary chondrocytes were cultured in media 
containing glutamine and supplemented with ammonium chloride at the indicated concentrations for 24 hr in the 
presence of IL-1β. IκB-ζ protein was measured by immunoblotting. (G–H) Primary chondrocytes were cultured 
in media containing 4 mM or 0 mM glutamine for 6 hr. Cells were then supplemented with or without 2 mM 
ammonium chloride. IL-1β stimulation was performed for 24 hr. Gene expression of Il6 and Mmp13 was measured 
by qPCR. n=4. One-way ANOVA was performed followed by Tukey’s multiple comparisons test. G: ****p<0.0001, 
**p=0.0065, and H: **p=0.0096, ***p=0.0005.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Depicting original raw data related to Figure 3.

Source data 2. Original raw data for Figure 3D, F.

Figure supplement 1. Glutamine deprivation inhibits the inflammatory response.

Figure supplement 1—source data 1. Depicting original raw data related to Figure 3—figure supplement 1.

Figure supplement 1—source data 2. Original raw data related to Figure 3—figure supplement 1B.

Figure 3 continued

https://doi.org/10.7554/eLife.80725
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Figure 4. Glutamine deprivation promotes autophagy, and ammonia inhibits autophagy. (A) Primary murine chondrocytes were cultured in media 
containing 4 mM glutamine or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β (10 ng/mL) in the presence or absence of chloroquine (10 
μM) for 24 hr. Protein expressions of p62 (62kDa) and LC3-II (17kDa) were measured by immunoblotting, with representative image displayed. Bands 
quantified in supplemental figure. (B) Primary murine chondrocytes were plated on coated cover slips cultured in glutamine containing or glutamine 
free media for 12 hr. Cells were treated with chloroquine (10 μM) for 6 hr. Cells were fixed with 4% formaldehyde in PBS, and immunofluorescence (IF) 
was performed for LC3B and p62. Cells were mounted on slides and imaged with representative images displayed. (C) Primary chondrocytes were 
cultured in media containing 4 mM or 0 mM glutamine. Cells were supplemented with ammonium chloride at the indicated concentrations. After 6 
hr, cells were treated with IL-1β (10 ng/mL) for 24 hr. Immunoblotting was performed for p62 and LC3B to display autophagosome processing. Image 
displays representative experiment. Bands quantified in supplemental figure. (D) Primary chondrocytes were cultured in media containing 4 mM or 0 
mM glutamine. Cells were supplemented with glutamate (200 μM). After 6 hr, cells were treated with IL-1β (10 ng/mL) for 24 hr. Immunoblotting was 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.80725
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in LC3b and p62, likely through blockade of autophageosome-lysosome fusion. We also observe 
that glutamate supplementation appeared to increase autophagy, as noted by a decrease in p62 
levels (Figure 4D, quantified in Figure 4—figure supplement 1L-M, Figure 4—figure supplement 
1I). These findings were confirmed through increased number of LC3 positive punctate in ammonia 
treated cells but not in glutamate treated cells, indicating opposing effects of ammonia and glutamate 
on autophagy (Figure 4E).

One of the major cell stress response factors involved in regulating metabolism and autophagy is 
activating transcription factor 4 (ATF4), which can modulate intracellular metabolism (B’chir et al., 
2013; O’Leary et al., 2020; Stegen et al., 2022). Mechanistically, we observe that glutamine depri-
vation is able to increase ATF4 protein expression, which is reduced with IL-1β stimulation (Figure 4—
figure supplement 1N-O). We note that at around 12 hr of glutamine deprivation, Atf4 expression 
increases (Figure 4—figure supplement 1P). ATF4 activation is a well-known response system to 
amino acid deprivation, and it is known to be a driver of autophagy processes (Jin et al., 2021; Ye 
et al., 2010). ATF4 is also a mediator of metabolic reprogramming, which we observe with glutamine 
deprivation and IL-1β stimulation. Suspecting that ATF4 may be important in OA, we note that OA 
mouse cartilage (meniscal-ligamentous injury [MLI]) has decreased expression of ATF4, mimicking the 
effect of IL-1β stimulation (Figure 4—figure supplement 1Q). Based on these results, it is predicted 
that ATF4 may be an anti-inflammatory factor and will be the focus of future work.

mTOR2 but not mTOR1 is activated by glutamine deprivation
Since mammalian target of rapamycin (mTOR) signaling is another critical factor connecting metab-
olism and autophagy, we interrogated mTOR activation in the setting of glutamine deprivation and 
inflammation. mTOR activation has been shown to be a driver of metabolic changes, especially for 
glycolytic pathways (Linke et al., 2017; Magaway et al., 2019). Glutamine deprivation decreased 
glycolysis and glycolytic enzyme expression, hence we suspected that mTOR modulation may be 
involved. We note that mTOR1 and mTOR2 activity are increased with IL-1β stimulation as measured 
by increased phosphorylation of S6 riboprotein and phosphorylation of AKT-473 (Figure  5A–B), 
supporting the inhibition in autophagy we previously measured. With glutamine deprivation, we 
noticed a decrease in mTOR1 activity, as measured by phosphorylation of S6 ribosomal protein but 
an increase in mTOR2 activity, as measured by increased AKT-473 phosphorylation (Figure 5A–B).

We then utilized rapamycin, an mTOR1 inhibitor, to interrogate the role of mTOR in the inflamma-
tory response and glutamine metabolic gene expression changes. Rapamycin has been suspected 
to be protective in many disease states through the downstream effects of mTOR inhibition, such 
as increasing longevity and preventing aging-associated diseases in animal models (Selvarani et al., 
2021). We validate that rapamycin can block mTOR1 activation through complete abrogation of phos-
pho-S6 expression (Figure 5—figure supplement 1A). We show that rapamycin treatment can reverse 
some metabolic changes induced by IL-1β, such as increased glycolytic enzyme expression using LDHA 
as a representative gene (Figure 5—figure supplement 1B). We also note that rapamycin treatment 
is able to upregulate expression of glutamine synthase (Gs) and Gls but did not affect glutamic-
oxaloacetic transaminase 2 (Got2) expression (Figure 5—figure supplement 1C-E). However, under 
glutamine deprivation conditions, rapamycin treatment only affected Gls expression, but not Gs or 
Got2. We then measured the impact of mTOR1 inhibition by rapamycin on the inflammatory response 

performed for p62 and LC3b. Image displays representative experiment. Bands quantified in supplemental figure. (E) Primary murine chondrocytes were 
plated on coated cover slips cultured in glutamine containing or glutamine free media for 12 hr. Cells were supplemented with ammonium chloride (2 
mM) or glutamate (200 μM). Cells were fixed with 4% formaldehyde, and IF was performed for LC3b and p62. Cells were mounted on slides and imaged 
with representative images to display autophagosome punctate.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Depicting original raw data related to Figure 4.

Source data 2. Original raw data related to Figure 4A,C,D.

Figure supplement 1. Glutamine deprivation promotes autophagy, and ammonia inhibits autophagy.

Figure supplement 1—source data 1. Depicting original raw data related to Figure 4—figure supplement 1.

Figure supplement 1—source data 2. Original raw data related to Figure 4—figure supplement 1G,H,I,O.

Figure 4 continued

https://doi.org/10.7554/eLife.80725
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and unexpectedly observed that rapamycin increases the expression of inflammatory and catabolic 
genes (Figure 5C–D). It also reverses some of the inflammatory inhibition induced by glutamine depri-
vation, suggesting an important role for mTOR1 in the anti-inflammatory effect of glutamine depriva-
tion. Rapamycin treatment has been displayed systemically to be anti-osteoarthritic in several studies 
(Pal et al., 2015), though there is precedence for rapamycin to be pro-inflammatory in intra-cellular 
processes (Weichhart et al., 2008).

Discussion
This work displays that glutamine utilization by chondrocytes is important for their physiology and 
inflammatory response and may be an important player in OA. We show that chondrocytes utilize 
glutamine for energy production even when glucose is abundant, indicating that chondrocytes rely 

Figure 5. Glutamine deprivation modulates mTOR activation. (A) Primary murine chondrocytes were cultured in 
media containing 4 mM glutamine or 0 mM glutamine for 24 hr. Cells were then treated with IL-1β (10 ng/mL). 
After 24 hr, lysates were collected, and immunoblotting was performed for pAKT (60kDa) and total Akt (58kDa). 
(B) Under similar conditions, immunoblotting was performed for pS6 and total S6 (32kDa). (C–D) Primary murine 
chondrocytes were cultured in media containing 4 mM glutamine or 0 mM glutamine for 24 hr. Cells were then 
treated with IL-1β (10 ng/mL) in the presence or absence of rapamycin 50 nM for 24 hr. Gene expression of Il6 and 
Mmp13 was measured by quantitative PCR. Results from one representative experiment. n=4. One-way ANOVA 
was performed followed by Tukey’s multiple comparisons test. C:****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Depicting original raw data related to Figure 5.

Source data 2. Original raw data related to Figure 5A, B.

Figure supplement 1. Glutamine deprivation modulates mTOR activation.

Figure supplement 1—source data 1. Depicting original raw data related to Figure 5—figure supplement 1.

Figure supplement 1—source data 2. Original raw data related to Figure 5—figure supplement 1A.

https://doi.org/10.7554/eLife.80725
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upon multiple substrates for metabolism. However, we observe that glutamine deprivation is able 
to decrease chondrocyte glycolysis and oxidative phosphorylation, which was unexpected since 
prior groups have mainly described glutamine as fueling the TCA cycle in the mitochondria (Yoo 
et al., 2020). This finding was enlightened when we noted that glutamine deprivation caused meta-
bolic reprogramming to inhibit glycolytic activity by significantly decreasing expression of glycolytic 
enzymes but maintained TCA metabolites. This was an unanticipated new interaction between gluta-
mine and glucose metabolism which may be a compensatory mechanism that forces chondrocytes to 
rely upon other energy sources such as fatty acid oxidation to maintain anabolic processes. In addi-
tion, this reprogramming caused by glutamine deprivation may actually be protective in the context of 
inflammation, as will be discussed further. Future work utilizing an untargeted metabolomics approach 
will be useful for understanding the contribution and interactions of various substrate pathways to 
chondrocyte metabolism and physiology.

From an inflammatory standpoint, which is important for OA pathophysiology and cartilage degra-
dation, we observed that glutamine deprivation was able to decrease chondrocyte expression of 
inflammatory and catabolic genes in response to IL-1β stimulation. Mechanistically, we observed 
decreased NF-κB activation and expression of IκB-ζ with glutamine deprivation. We also note that 
glutamine deprivation reduces ROS generation in response to IL-1β stimulation, which we have previ-
ously shown is protective and can block IκB-ζ expression (Arra et  al., 2022; Arra et  al., 2020). 
This effect may be mediated via the metabolic reprogramming induced by glutamine deprivation, 
reversing metabolic changes induced by IL-1β that we have previously shown are pro-inflammatory. 
For example, LDHA and PPP activity have previously been shown to be pro-inflammatory in chondro-
cytes (Arra et al., 2020), but these processes are decreased in the setting of glutamine deprivation. In 
this manner, glutamine deprivation may further decrease the inflammatory response through a reduc-
tion in oxidative stressors and metabolic modulation. We find that our results may conflict with some 
recent work which showed that glutamine supplementation to chondrocytes is protective through 
reduction in inflammatory factors. There are several differences in the methodology used to study 
the impact of glutamine between these two studies. We utilize glutamine deprivation, while the other 
group utilized glutamine supplementation of up to 20 mM to media that already contained glutamine 
at 2.5 mM concentration. It is possible that both of these processes can activate protective mecha-
nisms, such as autophagy or reduction in oxidative stress with deprivation, or production of α-KG and 
activation of long non-coding RNA (lncRNA’s) with over-supplementation. Overall, it is clear that the 
role of substrate metabolism in chondrocytes requires more nuanced study.

We then noted that glutamine deprivation is able to promote autophagy and activates stress 
response systems such as ATF4 pathway. These systems are likely required for maintenance of amino 
acid levels and anabolic activity in the absence of glutamine. However, autophagy and stress systems 
have also been shown to be protective and may hold therapeutic potential (Aman et  al., 2021). 
For example, intermittent fasting and rapamycin as autophagy promoting compounds have gained 
interest recently as modalities for driving protective autophagy (Johnson et al., 2013; Mattson and 
de Cabo, 2020). Our prior work has also demonstrated that autophagy can also regulate inflamma-
tory responses through modulation of NF-κB and other pathways (Adapala et al., 2020), which may 
be involved in the anti-inflammatory effect of glutamine deprivation. Our future work will focus on 
understanding the role of ATF4 stress response system and autophagy in the modulation of chondro-
cyte inflammatory response and NF-κB activity. We can also utilize well-accepted autophagy assay 
systems such as LC3-GFP mice as well as knockout models of critical autophagy components in order 
to further study autophagic flux in the setting of nutrient deprivation. This can provide greater insight 
into the effects on autophagic flux and downstream impact on inflammatory processes.

Our work also briefly explored the interaction of mTOR and inflammatory response in the setting of 
nutrient deprivation. Interestingly, our work displays that inhibition of mTOR1 by rapamycin was pro-
inflammatory and pro-catabolic, in contrast with other studies that showed that rapamycin is protec-
tive in vivo (Caramés et al., 2012; Takayama et al., 2014). This finding raises questions regarding 
the therapeutic potential of rapamycin for the treatment of aging associated disease such as OA, 
which has gained interest in recent the years (Selvarani et al., 2021). Rapamycin is well known to 
be an activator of autophagy, a supposedly ‘protective’ process, yet use of rapamycin increases the 
production of catabolic factors in the setting of inflammation. It is possible that these results are due 
to the complex interactions of mTOR1 and mTOR2, which can have significantly different downstream 

https://doi.org/10.7554/eLife.80725
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functions (Jhanwar-Uniyal et  al., 2019). It is possible that dysregulation of the balance of these 
systems can influence cell metabolism and also lead to a pro-inflammatory state (Szwed et al., 2021). 
Our future work will explore the differing roles of mTOR1 and mTOR2 in the chondrocyte inflamma-
tory response to better understand the role of modulators such as rapamycin as therapeutics.

Our study then focused on the GLS reaction, which is one of the rate-limiting steps of gluta-
mine metabolism (Herranz, 2017). We demonstrated that ammonia is an inhibitor of autophagy and 
promotes inflammatory responses, while glutamate is not. Prior studies on the role of ammonia in 
regulation of autophagy have demonstrated that ammonia is able to both induce and inhibit auto-
phagy through various mechanisms (Soria and Brunetti-Pierri, 2019). It is possible that ammonia 
derived from glutamine may be pathological, especially if it is not appropriately recycled. The role 
of ammonia and ammonia-removal processes in chondrocytes require further study, especially in the 
context of inflammation, to determine their importance in joint disease. In addition, measurement 
of ammonia levels in synovial fluid may provide insight into the health of OA and RA joints. Our 
finding that glutamate treatment does not influence inflammatory response is in agreement with a 
prior study showing that exogenous glutamate did not influence inflammatory response of chon-
drocytes, although N-methyl-d-aspartate (NMDA) receptor blockade was anti-inflammatory, raising 
interesting questions about the role of glutamate in chondrocyte physiology (Piepoli et al., 2009). 
Overall, our work suggests that glutaminolysis may be pro-inflammatory through the production of 
ammonia which can block protective autophagy unless systems exist for ammonia incorporation and 
removal that can prevent this effect.

The results of this work lay the foundation for further investigation into glutamine metabolism as a 
possible therapeutic target. Several inhibitors exist that may hold some therapeutic potential, such as 
the GLS inhibitor CB-839, which is currently in clinical trials for anti-tumor potential and can be repur-
posed for the treatment of OA. Use of genetic mouse models will also provide more detailed in vivo 
pre-clinical information when combined with OA models. In addition, further work will be performed 
to determine if glutamine and downstream metabolite levels can be correlated to OA disease severity, 
allowing for the development of biomarkers. Another major knowledge gap is the understanding of 
non-glutamine amino acid and fatty acid utilization by chondrocytes, which can be performed through 
combined metabolomic, proteomic and transcriptomics-based approaches. Finally, more work needs 
to be performed using human samples such as articular cartilage and synovial fluid to create better 
translational models since OA is unlikely to be a single disease entity but a variety of sub-conditions 
with their own unique pathophysiology (Deveza and Loeser, 2018). A complete understanding of 
chondrocyte metabolism may provide an expanded toolbox for the understanding of OA and give rise 
to a personalized approach for patient treatment.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus, 
musculus) C57BL/6mice Jackson Labs RRID:IMSR_JAX:000664

Genetic reagent (Mus, 
musculus) NF-kB luciferase reporter mice Jackson Labs RRID:IMSR_JAX:027529

Biological sample (human) Human osteoarthritis chondrocytes
Isolated from discarded human tissues, 
Arra et al., 2020

Biological sample (mouse) Murine chondrocytes

Isolated from sterna of newborn pups 
of genetic strains indicated above, Arra 
et al., 2020

Antibody Anti-ATF4 (rabbit polyclonal) ThermoFisher
10835–1-AP, 
RRID:AB_2058600 1:1,000 for Western blot

Antibody
Biotinylated secondary (horse anti-
rabbit polyclonal) Vector Biolabs BP-1100 1:1,000 for IHC

Antibody Anti-LC3b (rabbit polyclonal) Cell Signaling Technology 2775, RRID:AB_915950
1:1,000 Western blot; 1:100 
for IF

https://doi.org/10.7554/eLife.80725
https://identifiers.org/RRID/RRID:IMSR_JAX:000664
https://identifiers.org/RRID/RRID:IMSR_JAX:027529
https://identifiers.org/RRID/RRID:AB_2058600
https://identifiers.org/RRID/RRID:AB_915950
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Antibody Anti-p62 (mouse monoclonal) Abnova 2C11, RRID:AB_437085
1:1,000 Western blot; 1:100 
for IF

Antibody Anti-IkB-z (rat monoclonal) Invitrogen
14-16801-82, 
RRID:AB_11218083 1:1,000 Western blot

Antibody Anti-p-Akt (rabbit polyclonal) Cell Signaling Technology 9271, RRID:AB_329825 1:1,000 Western blot

Antibody Anti-Akt (rabbit polyclonal) Cell Signaling Technology 9272, RRID:AB_329827 1:1,000 Western blot

Antibody Anti-p-S6 (rabbit polyclonal) Cell Signaling Technology 2211, RRID:AB_331679 1:1,000 Western blot

Antibody Anti-S6 (rabbit polyclonal) Cell Signaling Technology 2217, RRID:AB_331355 1:1,000 Western blot

Antibody Anti-Actin (mouse monoclonal) Sigma-Aldrich A2228, RRID:AB_476697 1:10,000 Western blot

Sequence-based reagent quantitative PCR primers Integrated DNA technologies N/A Custom DNA oligos

Peptide, recombinant 
protein Collagenase D Roche COLLD-RO

Peptide, recombinant 
protein Pronase Roche PRON-RO

Peptide, recombinant 
protein IL-1b Peprotech 211-11B 10ng/mL

Commercial assay or kit
Diaminobenzidine (DAB) peroxidase 
kit Vector Biolabs SK4100

Commercial assay or kit Lactate assay kit Eton Biosciences 1.2E+09

Commercial assay or kit Purelink RNA Mini Kit Ambion 12183025

Commercial assay or kit
High capacity cDNA Reverse 
Transcription Kit Applied Biosystems 4368814

Commercial assay or kit ATP assay kit Biovision K255

Commercial assay or kit Luminescence assay kit GoldBio I-930

Commercial assay or kit Glutamate-Glo Assay kit Promega J7021

Chemical compound and 
drugs CB-839 Selleck S7655

Chemical compound and 
drugs Rapamycin MedChem Express HY-10219

Chemical compound and 
drugs Ammonium Chloride Sigma-Aldrich A9434

Chemical compound and 
drugs L-glutamic acid Sigma-Aldrich G1626

Chemical compound and 
drugs

Streptavidin Horseradish peroxidase 
(HRP) Vector Biolabs SA-5004–1

Chemical compound and 
drugs DAPI Cell Signaling Technology 9071

Chemical compound and 
drugs Trizol ThermoFisher 15596026

Chemical compound and 
drugs DCFDA Sigma-Aldrich D6883

Chemical compound and 
drugs MTT Sigma-Aldrich M655

Chemical compound and 
drugs Immunocal Fisher Scientific NC9044643

Chemical compound and 
drugs iTaq universal SYBR Green BioRad 1725120

Software and algorithm Gen5 software Agilent BioTek BTGENSCPRIM

Software and algorithm Prism Graphpad RRID:SCR_002798

 Continued
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software and algorithm Wave Agilent BioTek RRID:SCR_014526

Animals
Male and female mice on C57BL/6 background were used. All the animals were housed at the Wash-
ington University School of Medicine barrier facility. All experimental protocols were carried out in 
accordance with the ethical guidelines approved by the Washington University School of Medicine 
Institutional Animal Care and Use Committee (approved protocol #21–0413).

Murine cell culture
For murine chondrocyte experiments, chondrocytes were isolated from sterna of newborn pups 
(C57BL/6  J) age P1-P3 without consideration for sex. Cells were isolated by sequential digestion 
with pronase (2 mg/mL, PRON-RO, Roche) at 37°, followed by collagenase D (3 mg/mL, COLLD-RO, 
Roche) two times at 37°, and cultured in DMEM (Life Technologies, Carlsbad, CA, USA) containing 
10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (15140122, ThermoFisher, Waltham, MA, 
USA) and plated in tissue culture plates. For glutamine deprivation conditions, media was changed 
to high glucose DMEM containing glutamine or devoid of glutamine (Life Technologies, Carlsbad, 
CA, USA). For experiments, cells are treated with recombinant mouse IL-1β (211-11B, Peprotech, 
Cranbury, NJ, USA) at 10 ng/mL, CB-839 (S7655, Selleck, Chemicals, Houston, TX, USA), rapamycin 
(HY-10219, MedChem Express, Monmouth Junction, NJ, USA), ammonium chloride (A9434, Sigma-
Aldrich, USA), L-asparagine (A0884, Sigma-Aldrich, St. Louis, MO, USA), or L-glutamatic acid (G1626, 
Sigma-Aldrich, St. Louis, MO, USA).

Human cell culture
Cartilage fragments from discarded tissue post-surgery were collected in Dulbecco’s Modified Eagle 
Medium: Nutrient Mixture F-12 (DMEM/F-12, Gibco, ThermoFisher, Waltham, MA, USA) containing 
10% heat-inactivated FBS (Gibco, ThermoFisher, Waltham, MA, USA), 2% penicillin, and streptomycin 
(10,000 U/mL, Gibco, ThermoFisher, Waltham, MA, USA). Tissue fragments were digested using an 
enzyme cocktail containing 0.025% collagenase P (Roche, 1.5 U/mg) and 0.025% pronase (Roche, 7 U/
mg) in complete DMEM/F-12 medium in a spinner flask. After incubation at 37°C for overnight, the 
digest was filtered through 70 µm pore-size cell strainer and centrifuged at 1500 rpm for 5 min. Pellet 
was washed with calcium- and magnesium-free Hank’s Balanced Salt Solution (Gibco, ThermoFisher, 
Waltham, MA, USA) and suspended in complete DMEM/F-12 supplemented with 50 mg/L L-ascorbic 
acid.

MLI model
MLI surgery was utilized to induce OA in mice. In this procedure, medial meniscus was surgically 
removed from the joint without disrupting patella or other ligaments. Sham surgery was performed 
on the contralateral joint in which a similar incision was made on the medial side without removal of 
the meniscus. After 2 weeks (acute phase), mice are sacrificed, and joints were collected for histology.

Immunohistochemistry
Mouse long bones were harvested keeping knee joints intact and fixing in 10% neutral buffered 
formalin for 24 hr at room temperature followed by decalcification in Immunocal (StatLab, McKinney, 
TX) for 3 days with fresh Immunocal changed every 24 hr. Tissues were processed, embedded into 
paraffin, and sectioned 5 μm thick then stained with hematoxylin-eosin or safranin-O to visualize carti-
lage and bone. For immunohistochemistry, sections were deparaffinized and rehydrated using three 
changes of xylenes followed by ethanol gradient. Antigen retrieval in murine sections was performed 
by incubating samples in citrate buffer (pH 6.0) at 55°C overnight, followed by washing in PBS and 
subsequent quenching of endogenous peroxidase activity by incubation in 3% H2O2 for 15 min at 
room temperature. Sections were then blocked using blocking solution (10% normal goat serum, 
5% BSA, and 0.1% Tween-20) for 1 hr at room temperature. Sections were incubated overnight at 
4° with anti-ATF4 (10835–1-AP, ThermoFisher, Waltham, MA, USA, RRID:AB_2058600) antibody at 
a 1:200 dilution. Sections were rinsed in PBS several times followed by addition of 1:500 dilution 

https://doi.org/10.7554/eLife.80725
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of biotinylated secondary antibody (BP-1100, Vector Biolabs, Burlingham, CA, USA) for 1 hr. Post-
secondary antibody incubation, sections were washed with PBS-Tween or Phosphate buffered saline-
Tween (PBS-T) several times followed by incubation with streptavidin-HRP (2 μg/mL) for 20 min. After 
extensive washing with PBS, sections were developed using DAB peroxidase kit (SK4100, Vector 
Biolabs, Burlingham, CA, USA), with development on each slide standardized to the same amount of 
time.

Protein analysis by immunoblotting
Cell lysates for protein analysis were prepared by scraping cells in 1× Cell Lysis Buffer (Cell Signaling 
Technology, Danvers, MA, USA) containing 1× protease/phosphatase inhibitor (Thermo Fisher Scien-
tific, Waltham, MA, USA; Halt Protease Phosphatase Inhibitor Cocktail). Blotting was performed using 
primary antibodies for LC3B (2775, CST, Danvers, MA, USA, RRID:AB_915950), p62 (2C11, Abnova, 
Taiwan, RRID:AB_437085), IκB-ζ (Cat# 14-16801-82, Invitrogen, RRID:AB_11218083), p-AKT (9271, 
CST, Danvers, MA, USA RRID: AB_329825), total Akt (9272, CST, Danvers, MA, USA, AB_329827), 
phospho-S6 (2211, CST, Danvers, MA, USA, RRID:AB_331679), total S6 (2217, CST, Danvers, MA, 
USA, RRID:AB_331355), and actin (Cat# A2228, Sigma, St. Louis, MO RRID:AB_476697). Protein 
concentration was determined by bicinchoninic acid assay (BCA) assay (23225, Pierce, ThermoFisher, 
Waltham, MA, USA), and equal amounts of protein were loaded onto SDS-PAGE gel. Representative 
images are displayed. Images were quantified using ImageJ software (RRID:SCR_003070). Images 
were inverted, and band pixel density was measured using ‘measure’ tool. Bands were normalized to 
housekeeping genes.

Immunocytochemistry
Chondrocytes were plated on sterile, gelatin-coated glass coverslips placed in 24-well plates at lower 
concentration. Cells were cultured under normal media conditions, and treatments were performed in 
the 24-well plate. For staining, media was removed, and cells were fixed in 4% formaldehyde in PBS 
for 30 min. Cells were washed with PBS containing 0.1% saponin. Cells were blocked using blocking 
buffer (1× PBS, 5% normal goat serum (NGS), and 0.1% saponin) for 1 hr at room temperature. Cells 
were incubated with anti-LC3b (12741, CST, Danvers, MA, USA; RRID:AB_2617131) or anti-p62 (2C11, 
Abnova, Taiwan, RRID:AB_437085) antibodies at 1:100 concentration in antibody dilution buffer (1× 
PBS, 1% BSA, and 0.1% saponin) overnight at 4°. Cells were washed with wash buffer (1× PBS and 
0.1% saponin) three times and incubated with fluorescent conjugated secondary antibody at 1:1000 
in antibody dilution buffer for 2 hr at room temperature. Samples were washed with wash buffer three 
times. Slides were coverslipped with antifade mounting media containing DAPI (9071, CST, Danvers, 
MA, USA). Images were taken on fluorescent microscope.

Measurement of extracellular lactic acid
Chondrocytes were cultured for 1 day with IL-1β treatment (10 ng/mL) with appropriate experimental 
conditions in 96-well plates containing 200 μL of DMEM containing 10% FBS. Supernatant media was 
collected and centrifuged to separate cell debris and floating cells. Supernatant was used immediately 
for lactic acid assay to measure secreted lactate in the media using a 1:20 dilution (Cat# 1200011002, 
Eton Biosciences, San Diego, CA, USA). Unconditioned DMEM with 10% FBS was used as a control 
for subtracting background.

Measurement of gene expression by qPCR
Trizol (Sigma, St. Louis, MO, USA) was added to samples to isolate mRNA from cell culture samples. 
Chloroform was added at a ratio of 0.2:1 to Trizol to samples, followed by centrifugation at 12,000 g 
for 15 min. Aqueous layer was isolated, and equal amount of 70% ethanol was added. RNA was then 
isolated from this fraction using PureLink RNA mini kit (Cat# 12183025, Ambion, Grand Island, NY, 
USA), and cDNA was prepared using High Capacity cDNA Reverse Transcription kit (Cat# 4368814, 
Applied Biosystems). Quantitative PCR (qPCR) was carried out on BioRad CFX96 real time system 
using iTaq universal SYBR green super-mix (Cat#1725120, BioRad, Hercules, CA, USA). mRNA expres-
sion was normalized using actin as a housekeeping gene. Full list of primers is listed in Table 1.

Measurement of cellular metabolism by Seahorse
Primary chondrocytes were plated in Seahorse XF96 plates at 50,000 cells per well and cultured in 
media containing glutamine or without glutamine. Cells were then treated with IL-1β (10 ng/mL). After 
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Table 1. List of primers.

Primer Sequence (5’→3’)

m-Il6 GCTACCAAACTGGATATAATCAGGA

CCAGGTAGCTATGGTACTCCAGAA

m-Mmp13 GCCAGAACTTCCCAACCAT

TCAGAGCCCAGAATTTTCTCC

m-Atf4 TCGATGCTCTGTTTCGAATG

AGAATGTAAAGGGGGCAACC

m-Lc3 TGGGACCAGAAACTTGGTCT

GACCAGCACCCCAGTAAGAT

m-p62 AGAATGTGGGGGAGAGTGTG

TCTGGGGTAGTGGGTGTCAG

m-GLS CTACAGGATTGCGAACATCTGAT

ACACCATCTGACGTTGTCTGA

m-GDH GGCCGATTGACCTTCAAATA

TCCTGTCCTGGAACTCTGCT

m-GS CATTGACAAACTGAGCAAGAGG

AAGTCGTTGATGTTGGAGGTT

m-EAAT2 GGCAATCCCAAACTCAAGAA

GTGCTATTGGCCTCCTCAGA

m-ASCT2 CAACCAAAGAGGTGCTGGAT

CCTCCACCTCACAGAGAAGC

m-G6pd2 CTGAATGAACGCAAAGCTGA

CAATCTTGTGCAGCAGTGGT

m-Eno1 GCCTCCTGCTCAAAGTCAAC

AACGATGAGACACCATGACG

m-Ldha TGGAAGACAAACTCAAGGGCGAGA

TGACCAGCTTGGAGTTCGCAGTTA

m-Mdh GGTGCAGCCTTAGATAAATACGC

AGTCAAGCAACTGAAGTTCTCC

m-Sdha AACACTGGAGGAAGCACACC

AGTAGGAGCGGATAGCAGGA

m-Idh2 AACCGTGACCAGACTGATGAC

ATGGTGGCACACTTGACAGC

m-Got2 GATCCGTCCCCTGTATTCCA

CACCTCTTGCAACCATTGCTT

h-GLS2 TCTCTTCCGAAAGTGTGTGAGC

CCGTGAACTCCTCAAAATCAGG

h-GLUD1 TATCCGGTACAGCACTGACG

GCTCCATGGTGAATCTTCGT

h-GS CCTGCTTGTATGCTGGAGTC

Table 1 continued on next page
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24 hr, Seahorse assay was performed. For glycolysis stress test, cells were serum starved for 1 hr in 
glucose-free media containing treatments, and measurement of ECAR and OCR was performed prior 
to and after sequential addition of glucose, oligomycin, and 2-DG with measurements performed 
every 5 min. For MitoStress test, cells were incubated in glucose-containing media for 1 hr containing 
treatments, and measurements were performed every 5 min prior to and after sequential addition of 
oligomycin, FCCP, and rotenone/antimycin A. Media for Seahorse assays was devoid of glutamine. 
Data was analyzed using Wave software.

Measurement of intracellular ATP
Primary chondrocytes were plated in 96-well plates at 5×104 and treated with IL-1β for 24 hr. Lysates 
were collected and processed according to luminescence-based ATP assay kit (Cat#K255, Biovision, 
Milpitas, CA, USA; ADP/ATP ratio Assay kit). Assay was performed in 96-well plate. Luminescence was 
measured using luminescent plate reader after 15 min. Data was collected and processed using Gen5 
software.

Measurement of ROS
Primary chondrocytes were treated for 24 hr in DMEM media. Cells were washed two times with 
phenol red-free PBS, followed by incubation with 10 μM DCFDA (Cat#D6883, Sigma, St. Louis, MO, 
USA) in PBS for 30 min, followed by two more washes with PBS. Cells were incubated in 37°C incu-
bator for 1 hr in PBS, followed by fluorescence measurement using microplate reader using Ex/Em 
495/525 for DCFDA.

Measurement of metabolite concentrations
The cell suspensions (2×106 cells/mL) were prepared by vortexing cell pellets with water. The amino 
acids and metabolites listed above were extracted from 50 µL of cell suspension with 200 µL of meth-
anol after addition of internal standards (Glu-d3 [1.6 µg], Asp-d3 [1.6 µg], Asn-d3,15N2 [1.6 µg], Gln-
13C5 [1.6  µg], alpha-ketoglutarate-d2 [0.4  µg], 2-hydroxyglutarate-d3 [0.2  µg], oxaloacetate-13C3 
[0.2 µg], pyruvate-13C3 [2 µg], and malate-d3 [0.2 µg]). The sample aliquots for alpha-ketoglutarate, 
oxaloacetate, and pyruvate were derivatized with o-phenylenediamine to improve mass spectro-
metric sensitivity. Quality control (QC) samples were prepared by pooling aliquots of study samples to 
monitor instrument performances throughout these analyses.

The analysis of Gln, Glu, Asp, and Asn was performed on a Shimadzu 20AD HPLC system and a SIL-
20AC autosampler coupled to 4000Qtrap mass spectrometer (Applied Biosystems) operated in posi-
tive multiple reaction monitoring (MRM) mode. The analysis of 2-hydroxyglutarate and malate was 
performed on a Shimadzu 20AD HPLC system and a SIL-20AC autosampler coupled to 4000Qtrap 
mass spectrometer (Applied Biosystems) operated in negative MRM mode. The analysis of alpha-
ketoglutarate, oxaloacetate, and pyruvate was performed in positive ion MRM mode on API4000 
mass spectrometer (Applied Biosystems) coupled to a Shimadzu 20AD HPLC system and a SIL-20AC 

Primer Sequence (5’→3’)

GATCTCCCATGCTGATTCCT

h-GOT2 GTTTGCCTCTGCCAATCATATG

GAGGGTTGGAATACATGGGAC

h-NFKBIZ CCGTTTCCCTGAACACAGTT

AGAAAAGACCTGCCCTCCAT

h-MMP3 CTGGACTCCGACACTCTGGA

CAGGAAAGGTTCTGAACTGACC

h-ATF4 TCTCCAGCGACAAGGCTAA

CAATCTGTCCCGGAGAAGG

Table 1 continued
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autosampler. The QC samples were injected every five study samples. Data processing was conducted 
with Analyst 1.6.3 (Applied Biosystems).

Measurement of viability
Cells were treated under appropriate conditions. MTT (3-[4,5-dimethylthiazol-2-yl]–2,5-diphenyltetraz
olium bromide) was dissolved in PBS at 10 mg/mL. MTT was added to wells to a final concentration of 
0.5 mg/mL. Cells were incubated at 37° for 6 hr. Media was removed, and 50 uL of DMSO was added 
to each well. Plate was placed on a plate shaker, and measurement was made at 580 nm on microplate 
reader. Data was collected and processed using Gen5 software.

Measurement of intracellular glutamate
Intracellular glutamate was measured in chondrocytes in 96-well plate format utilizing Glutamate-Glo 
assay kit (J7021, Promega, Madison, WI, USA). Luminescence was measured on microplate reader. 
Data was collected and processed using Gen5 software.

NF-κB luciferase assay
Chondrocytes were isolated from sterna of newborn NF-κB-luciferase reporter mice as described 
earlier. Cells were cultured and treated appropriately in 96-well plate tissue culture plate. Cells were 
washed twice with 1× PBS and lysed using 1× luciferase lysis buffer (L-740, GoldBio, St. Louis, MO, 
USA). Plates were freeze-thawed in –80 freezer. 20 µL of lysates were transferred to white bottom, 
round well microplates. Detection was performed after addition of 50 µL of detection reagent (I-930, 
GoldBio, St. Louis, MO, USA). Luminescence was measured by microplate reader. Data was collected 
and processed using Gen5 software.

Statistical analysis
All experiments represent biological replicates and were repeated at least three times, unless other-
wise stated. Technical replicates are considered to be repeat tests of the same value, i.e., testing same 
samples in triplicate for qPCR. Biological replicates are considered to be samples derived from sepa-
rate sources, such as different mice or on different dates. Statistical analyses were performed using 
appropriate statistical test using GraphPad Prism. All graphs were generated using Prism as well. 
Multiple treatments were analyzed by one-way ANOVA followed by Tukey’s test multiple comparisons 
test for greater than two groups. Student’s T test was used for comparing two groups. Student’s T 
test was performed for comparing same biological samples subject to different treatments. p-Values 
are indicated where applicable. *p<0.05, **p<0.01, ***p<0.0005, and ****p<.0001. Histology and 
immunostaining data were scored by investigators blinded to the experimental conditions. Male and 
female mice were used at equal ratios for cell culture to avoid sex bias. Sample size determination 
was not required.
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