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Abstract

Significance: Traumatic brain injury (TBI) and spinal cord injury (SCI) are major causes of death and long-
term disability worldwide. Despite important pathophysiological differences between these disorders, in many
respects, mechanisms of injury are similar. During both TBI and SCI, some cells are directly mechanically
injured, but more die as a result of injury-induced biochemical changes (secondary injury). Autophagy, a
lysosome-dependent cellular degradation pathway with neuroprotective properties, has been implicated both
clinically and experimentally in the delayed response to TBI and SCI. However, until recently, its mechanisms
and function remained unknown, reflecting in part the difficulty of isolating autophagic processes from ongoing
cell death and other cellular events. Recent Advances: Emerging data suggest that depending on the location
and severity of traumatic injury, autophagy flux—defined as the progress of cargo through the autophagy
system and leading to its degradation—may be either increased or decreased after central nervous system
trauma. Critical Issues: While increased autophagy flux may be protective after mild injury, after more severe
trauma inhibition of autophagy flux may contribute to neuronal cell death, indicating disruption of autophagy as
a part of the secondary injury mechanism. Future Directions: Augmentation and/or restoration of autophagy
flux may provide a potential therapeutic target for treatment of TBI and SCI. Development of those treatments
will require thorough characterization of changes in autophagy flux, its mechanisms and function over time after
injury. Antioxid. Redox Signal. 23, 565–577.

Introduction

Central nervous system (CNS) trauma, including
traumatic brain injury (TBI) and spinal cord injury (SCI),

is one of the most important causes of death and long-term
disability among young adults worldwide (22, 69). Since the
patients are often disabled during the most productive periods
of their lives, the injuries have an enormous physical, emo-
tional, and economic burden on both the individuals and the
society. More than 2.5 million new cases of TBI are reported
annually in the United States (1). They can lead to long-term
cognitive, sensorimotor, and psychiatric changes, with the
extent dependent on the severity of injury (69). TBI may also
cause epilepsy and increase the risk of developing neurode-
generative diseases with age.

SCI has an annual incidence of 12,000–20,000 and a
prevalence of nearly half a million in the United States (2). It
can result in sensorimotor deficits, autonomic changes, and
chronic pain (22). Depending on the level and severity of the
injury, SCI may also affect respiratory, urinary, or gastroin-
testinal function. Long-term complications of SCI may ad-
ditionally include cognitive impairments, depression, and
anxiety (21, 33).

Over the years, many animal models have been developed
to study the mechanisms and the functional consequences of
TBI and SCI [recently reviewed in more detail in (14, 18,
46)]. Although no single model can recapitulate the com-
plexities of human TBI, considered among the most hetero-
geneous of neurological disorders, they are essential for
elucidating pathological mechanisms of injury and
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evaluating potential therapeutic interventions (14, 39). An
example is the commonly used rodent controlled cortical
impact model, where craniotomy is performed to remove a
part of the skull, followed by a localized contusive impact
delivered directly to the exposed dura (25). Additional
models have been developed to allow studies of specific types
or aspects of injury, such as concussion, blast injury, or re-
mote degeneration, in distant brain regions functionally
connected to the lesion area.

Similarly, many animal models have been developed that
reflect different components of SCI. Clinically, approxima-
tely half of SCI cases result from contusion injuries (45). In
rodent models, spinal contusion injuries commonly involve
laminectomy to allow direct access to the spinal cord, fol-
lowed by a localized contusive impact. Additional special-
ized models include spinal cord transection, chronic
compression, and models of neuropathic pain, such as spinal
root ligation (18).

Mechanisms of Traumatic Injury to the CNS

There are currently no well-established neuroprotective
treatments for either TBI or SCI. This is at least in part due to
the complex nature of the injury mechanisms. Trauma causes
both direct mechanical tissue damage (primary injury) and
biochemical changes that cause more delayed or progressive
cell loss (secondary injury) (5, 69). The primary mechanical
damage results in cellular strain and plasma membrane rup-
ture or damage, leading, among others, to ionic imbalance,
excitatory amino-acid release, and oxidative species forma-
tion in the area of injury (3). These events initiate complex
secondary changes that collectively spread the injury to the
intact neighboring cells. In addition, the initial physical
damage to the blood–brain barrier or the blood–spinal cord
barrier allows infiltration of macrophages and other immune
cells (76). The resulting inflammatory changes involve both
infiltrating macrophages and activated resident microglia and
contribute to secondary cell damage and loss. Recent studies
also demonstrate a potential second peak of inflammation till
2 months after injury as well as chronic neuroinflammatory
changes (6, 71). Additional damage can occur at a distance
over days and months after injury via Wallerian degeneration
and/or demyelination, reflecting CNS connectivity (54, 65).

Thus, the secondary injury can occur over hours, days, and
months after initial impact, further intensifying and spreading
tissue damage and functional deficits (Fig. 1). Since primary
injury is almost instantaneous and cell damage in the directly
impacted area is often severe and irreversible, it cannot be
treated. However, the secondary injury takes time and in-
volves changes in specific biochemical, cellular, and mo-
lecular pathways, thus presenting a therapeutic opportunity.

Cell damage and death resulting from secondary injury are
followed and often overlap with a restorative phase during
which the brain or the spinal cord remodels itself in an at-
tempt to compensate for the tissue damage (54). These repair
mechanisms include proliferation and differentiation of en-
dogenous neural precursors as well as stimulation of neurite
outgrowth and re-myelination. In addition, increased an-
giogenesis has been observed after CNS injury and is be-
lieved to promote neuroregeneration (29). Together, these
processes counter neurodegeneration and contribute to the
partial recovery of function commonly observed after both

TBI and SCI. Enhancement of these endogenous restorative
processes represents another therapeutic target for treatment
of TBI and SCI.

The mechanisms of cell death after TBI and SCI include
initial necrosis of irreversibly damaged cells in the impact
area, followed by delayed secondary cell death in the
neighboring penumbral regions (3, 54). Although most
studies focus on neuronal cell death induced by CNS trauma,
glial and endothelial cell changes are also important deter-
minants of posttraumatic tissue damage. The mechanisms of
cell death after CNS trauma are diverse, and experimental
data suggest that multiple cell death pathways are involved
(54, 58). Markers of classical apoptosis, including pro-
apoptotic BCL-2 family proteins and activated caspases that
are specific for both intrinsic and extrinsic pathways, are
strongly upregulated after neurotrauma. In addition, release
of caspase-independent pro-death molecules, such as the
apoptosis-inducing factor (AIF)/AIFM1, has been noted after
both TBI and SCI (58). The regulated necrosis pathway,
necroptosis, may also contribute to cell death during sec-
ondary injury (67, 74). Simultaneous involvement of multiple
cell death pathways is supported by studies using knockout
mice and inhibitors of specific death mechanisms (54, 58).
These manipulations are often able to suppress cell death
after injury; however, these improvements are only partial
and sometimes temporary. This has lead to more recent
proposals for therapeutic use of multiple drug cocktail or
multifunctional drugs that target upstream biochemical
changes and cellular events involved in the initiation of
multiple pro-death pathways (58).

FIG. 1. Sequence of events after CNS trauma in rodent
models. The initial mechanical impact (primary injury—red
arrow) disrupts the structure of the brain or spinal cord and
initiates complex secondary changes that collectively spread
the damage to the intact neighboring tissue (secondary
injury—red lines). The secondary injury includes secondary
neuronal cell death as well as long-term inflammatory
changes, which contribute to further damage. Cell damage
and death resulting from secondary injury are followed by a
restorative phase (regeneration—black dotted line) during
which the brain or the spinal cord remodels itself in an
attempt to compensate for the tissue damage. CNS, central
nervous system. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub
.com/ars
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Among posttraumatic secondary biochemical responses,
signs of macroautophagy (hereafter called autophagy) have
also been observed. However, until recently, its mechanisms
and the consequences have remained obscure. In this re-
view, we detail recent advances in the study of autophagy
after CNS trauma, which have begun to clarify how au-
tophagy levels and flux are affected by injury and how their
manipulation may represent a potential novel neuroprotec-
tive target.

Autophagy and Autophagy Flux

Autophagy is a lysosome-dependent essential cellular cat-
abolic pathway that serves to degrade cytoplasmic proteins,
protein aggregates, and organelles (42). During autophagy,
double-membrane vesicles (autophagosomes) sequester cyto-
plasmic components, including damaged organelles and toxic
protein aggregates. Autophagosomes fuse with lysosomes to
allow degradation of cargo by lysosomal proteases. The
progress of cargo through the autophagy system and leading
to its delivery and degradation in the lysosomes is termed
autophagy flux (Fig. 2).

Although under certain conditions pathologically in-
creased autophagy has been implicated in cell death (44),
under most circumstances autophagy is considered cytopro-

tective. Basal levels of autophagy are important for homeo-
stasis in all cells but are especially crucial in terminally
differentiated cells such as neurons and oligodendrocytes. Its
importance is underscored by the fact that mice with neural
tissue specific knockout of the essential autophagy genes
Atg5 or Atg7 develop severe neurodegeneration, leading to
abnormal motor function and reflexes. The proposed mech-
anisms contributing to cell injury and death when autophagy
flux is inhibited include accumulation of toxic protein ag-
gregates and defective organelles (11, 44). Accumulated
dysfunctional autophagosomes themselves may also serve a
pathologic function, for example, by serving as sites for
amyloid b generation or platforms for assembly of pro-death
signaling complexes (4). Autophagy is also upregulated, and
often plays a protective function, in response to cell injury
(12, 72). For example, autophagy is activated in response to
and can limit effects of homeostasis perturbation in the en-
doplasmic reticulum (ER) stress. Conversely, defects in au-
tophagy flux can exacerbate ER stress and potentiate ER
stress-induced apoptosis (12).

Impaired autophagy flux has been implicated in neurode-
generative disorders such as Parkinson’s, Alzheimer’s, and
Huntington’s disease and in lysosomal storage disorders (42,
44). In lysosomal storage diseases, defects in autophagy are
secondary to deficiencies in specific lysosomal hydrolases
and consequent impairment of the lysosomal function (56).
Neurodegenerative diseases are associated with autophagy
defects contributing to accumulation of ubiquitin-positive
protein aggregates and to neuronal cell dysfunction and death
(44). Conversely, increasing efficiency of autophagic flux can
improve outcomes in animal models of neurodegenerative
diseases (11) and has been proposed as a potential therapeutic
approach.

Autophagy and Autophagy Flux After CNS Trauma

Increased markers of autophagy have been observed after
both TBI and SCI, but their mechanisms and functions re-
main controversial. It is clear that accumulation of autopha-
gosomes is an early event during secondary injury, which is
initiated within hours after initial impact (28, 31, 37). This
has been observed in both rat and mouse models of TBI and
SCI, as well as in human TBI autopsy samples (51). Many
reports, including those referencing human samples (51), also
noted that markers of autophagy remained elevated for weeks
to months after injury. This long-term upregulation may re-
flect potential function for autophagy not only in the acute
phase of the secondary injury but also more chronically in
association with neurodegenerative and/or restorative pro-
cesses (Fig. 1). Further long-term studies in animal models
will be necessary to elucidate the role of such persistent
changes.

Less certain, at least in TBI, is whether accumulation of
autophagosomes after injury is due to increased autophago-
some biosynthesis and elevation of autophagy flux or to de-
creased autophagosome degradation and inhibition of flux.
Many of the earliest reports described accumulation of au-
tophagosomes based on electron microscope studies and/or
accumulation of the autophagosome marker protein LC3-II
(MAP1LC3B, Fig. 3A); however, they did not address the
issue of flux (19, 20, 23, 37). More recently, autophagy flux
has been assessed in several models of TBI based on the

FIG. 2. Autophagy flux under normal and pathological
conditions. (A) During autophagy, double-membrane vesi-
cles (autophagosomes) sequester cytoplasmic components,
including damaged organelles and toxic protein aggregates,
and then fuse with lysosomes to allow degradation of cargo
by lysosomal proteases. This progress of cargo through the
autophagy system is termed autophagy flux and generally
serves a cytoprotective function. (B) Under pathological
conditions, autophagy flux may be blocked, for example due
to lysosomal defects. This can lead to accumulation of
dysfunctional autophagosomes and contribute to cell dam-
age and death. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub
.com/ars
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levels of the autophagic substrate protein sequestosome 1/p62
(SQSTM1) (30). SQSTM1 is an adaptor protein that directs
ubiquitinated cargo to autophagosomes for degradation. As
SQSTM1 is degraded along with its cargo, when autophagy
flux is increased, its protein levels decrease; conversely, when
autophagy flux is inhibited, SQSTM1 levels increase (Fig. 3B,
C). It is important to note that Sqstm1/SQSTM1 can also be
regulated at the transcriptional level. Therefore, it is necessary
to also assess its mRNA levels to distinguish altered rate of
degradation from synthesis.

Decreased levels of SQSTM1 have been reported to ac-
company LC3-II accumulation in a mouse models of contusive
TBI (weight-drop model) (41). These and other reports also
noted an increase in BECN1 (Beclin 1), a regulatory subunit of
the type III PI3 kinase, which is necessary for autophagosome
formation. Increased autophagy flux was also described in a
mouse model of acute focal cerebellar lesion, where it was
confirmed by in vivo LC3-II flux assay (64). During the flux
assay, usually carried out in vitro, LC3-II protein levels are
compared in the presence or absence of a lysosomal inhibitor
such as chloroquine (CQ, a lysosomotropic compound that
neutralizes lysosomal pH), Bafilomycin A (V-ATPase inhib-
itor), or E-64d/pepstatin A (lysosomal hydrolase inhibitors)
(30). When flux is high, CQ (or any other lysosomal inhibitor)
leads to additional accumulation of LC3-II. When flux is
blocked, CQ cannot further increase LC3-II levels. Molinari
and colleagues (64) performed this assay in vivo by treating
GFP-Lc3 transgenic autophagy reporter mice with CQ via an
intracellebroventricular injection. Accumulation of endoge-
nous LC3-II and numbers of neuronal GFP-LC3 puncta,
corresponding to autophagosomes, were elevated after cere-
bellar lesion and further increased after CQ treatment, indi-
cating that autophagy flux was increased.

In contrast, inhibition of autophagy flux was recently re-
ported after contusion TBI (using pneumatic impactor) in
GFP-Lc3 mice (53). Accumulation of autophagosomes near

the injury site was accompanied by increased levels of
SQSTM1 (Fig. 3C), demonstrated by both Western blot
and immunohistochemistry. This was further confirmed by
ex vivo LC3-II flux experiment where organotypic brain sli-
ces from control and injured animals were incubated in the

FIG. 3. Common methods used to assess autophagy and autophagy flux. (A) When autophagy is induced, cytosolic
LC3-I protein is covalently conjugated to PE to form LC3-II, which translocates to the autophagosomal membrane.
Accumulation of LC3-II can be measured as a marker of autophagosome formation. (B, C) Comparison of LC3-II and
SQSTM1 levels under conditions when autophagy flux is increased or inhibited. (B) When flux is induced, numbers of
autophagosomes and levels of LC3-II increase but levels of autophagy substrates such as SQSTM1 decrease. When
autophagy flux is blocked, both numbers of autophagosomes (LC3-II) and autophagy substrates (SQSTM1) increase. (C)
Comparison of levels of LC3 (GFP-LC3 fluorescence—green) and SQSTM1 (immunohistochemistry—red) in the cortex of
GFP-Lc3 transgenic autophagy reporter mice under conditions when autophagy flux is induced (in vivo Rapamycin
treatment for 48 h) versus when autophagy flux is inhibited (24 h after controlled cortical impact injury). Data adapted from
Sarkar et al. (53) with permission of authors. PE, phosphatidylethanolamine.

FIG. 4. Changes in autophagy flux after mild versus
severe CNS trauma. In some models, TBI can lead to an
increase in autophagy flux (green line), which likely serves
a protective function. In other models, TBI or SCI can in-
hibit autophagy flux (red line), contributing to secondary
injury. At later time points (dashed lines), autophagy flux
may be increased in all models as compared with uninjured
animals, suggesting a potential beneficial function. SCI,
spinal cord injury; TBI, traumatic brain injury. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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presence or absence of CQ. CQ increased LC3-II levels in
control, but not in injured brains, confirming inhibition of
autophagy flux. In this model, inhibition of flux was tempo-
rary as in vivo levels of SQSTM1 returned to baseline 1 week
after injury.

The reasons for the differences in autophagy flux across
these studies are not clear. It is possible that different injury
models or injury severity may differentially affect autophagy
activation, as well as the ability of autophagy flux to proceed
to completion. For example, a relatively mild injury could
lead to upstream activation of autophagy flux as a protective
mechanism (Fig. 4). This may be the case especially in the
cerebellar lesion model (64), which examined autophagy
levels not in the direct lesion area but rather in distant sites
functionally connected to the cerebellum. In this model, ac-
tivation of autophagy flux was also shown to be neuropro-
tective, as levels of cell death were increased and functional
outcomes were worsened in injured autophagy-deficient
Becn1 + / - mice as compared with wild-type controls. On the
other hand, more severe injury could alter the ability of cells
near the injury area to correctly deliver and degrade autop-
hagosomal cargo, leading to inhibition of flux. This per-
spective is supported by a recent investigation of human TBI
brain autopsy samples (51), where elevated levels of
SQSTM1 were found in the majority of samples, with ac-
cumulation being the most pronounced in those with shortest
survival times, implying more severe TBI.

Increased markers of autophagy have also been observed
in SCI models (27, 28, 55, 60). Most reports describe con-
comitant accumulation of both LC3-II and SQSTM1 after
injury, suggesting more uniform inhibition of autophagy flux.
This includes diverse injury models such as acute contusion
SCI in rat (38) and mouse (Lipinski and Wu, unpublished),
chronic spinal cord compression in mouse and rat (17, 60),
and a mouse spinal nerve ligation model of neuropathic pain
(8). The fact that autophagy flux was inhibited even in the
latter mild injury model may suggest that spinal cord neurons
may be more sensitive to autophagy flux perturbations on
injury than cortical or hippocampal neurons examined in
most TBI models. However, studies directly comparing
sensitivity of different subtypes of spinal and brain neurons
will be needed to test this hypothesis.

Cell Type Specificity of Autophagy After CNS Trauma

Neurons are the cell type most commonly reported to ac-
cumulate autophagosomes after both TBI and SCI. An in-
crease in autophagy in neurons occurs early, initiated within
24 h after injury. In brain injury, this includes both cortical
and hippocampal neurons in the hemisphere ipsilateral to the
injury (19, 37, 53). After SCI, most reports either do not
specify the type or location of investigated neurons or focus
exclusively on the ventral horn motor neurons. However, a
recent paper (38) noted more pronounced accumulation of
both LC3 and SQSTM1 in the ventral horn motor neurons as
compared with the dorsal horn sensory neurons, despite
greater proximity of the latter to the impact area. This sug-
gests that motor neurons may be particularly vulnerable to
disruption of autophagy flux. The dorsal sensory neurons can,
however, also be affected. For example, spinal nerve ligation
in a model of neuropathic pain led to disruption of autophagy
flux in the dorsal horn (8, 77). In addition to neuronal cell

bodies, autophagosome accumulation has been reported to
occur in axons after both TBI and SCI (19, 49).

Increased autophagy has been also reported for other cell
types in the CNS. Glial fibrillary acid protein positive as-
trocytes have been reported to accumulate autophagosomes
(20, 23, 28, 60), and increased levels of autophagy have been
documented in oligodendrocytes after both TBI and SCI (28,
38, 53, 60). Recent reports also noted increased LC3 levels in
microglia after TBI and SCI (38, 53, 60). Only the most
activated, CD68-expressing microglia with amoeboid mor-
phology were affected in TBI (53), suggesting potential
involvement of autophagy in regulation of microglial acti-
vation or function after injury. In all glial sub-types, the ex-
tent of autophagosome accumulation generally correlated
with the proximity to the injury site. In addition, accumula-
tion of autophagosomes in glial cells was observed later than
neurons (starting around day 3 after injury in most reports),
suggesting that these cells may have differential sensitivity to
perturbation of autophagy or that different mechanisms may
be involved than in neurons.

Mechanisms of Autophagy After CNS Trauma

Depending on whether induction or inhibition of autop-
hagy flux was observed, authors have proposed different
mechanisms of how autophagy may be regulated after CNS
injury. However, in general, evidence for the involvement of
specific signaling pathways is limited and mostly circum-
stantial. This is, in part, due to the fact that there are no
accurate in vitro model systems of CNS trauma (43).
Therefore, much more work, including in vivo manipulation
of specific pro- and anti-autophagy molecules and pathways,
will be necessary before its mechanisms and consequences
can be more fully understood.

The most commonly invoked mechanisms for upregula-
tion of autophagy flux after TBI include increased BECN1
protein levels and decreased BECN1/BCL2 complexes (20,
28, 64), which should increase the type III PI3 kinase activity
and autophagosome biogenesis. The requirement for the ac-
tivity of this kinase in injury models leading to increase in
autophagy flux is supported by the finding that accumulation
of autophagosomes and degradation of SQSTM1 are atten-
uated after focal cerebellar lesion in Becn1 + / - mice (64).

It remains unknown how levels of BECN1 may be upre-
gulated after CNS trauma. One potential mechanism was
proposed by Keane and colleagues (9), who noted that in the
brains of sham rats some BECN1 protein was localized to
membrane rafts, where it formed complexes with the N-
methyl-d-aspartate receptor 2B (NR2B). TBI caused disso-
ciation of BECN1/NR2B complexes and release of BECN1,
which may have contributed to the induction of autophagy.
Another potential mechanism could involve the gap junction
protein connexin 43/CX43 (GJA1), which was recently
shown to directly interact with the BECN1 complex and
regulate autophagosome biogenesis (7). Levels and activity
of CX43 are affected after TBI and may contribute to regu-
lation of autophagy (59). Other proposed pathways include
mTOR, GSK3b, JNK, and BNIP3 (9, 35, 75); however, their
involvement will need to be confirmed by further studies.

Decreased levels and activity of the lysosomal protein
cathepsin D (CTSD) and in numbers of CTSD-positive ly-
sosomes was recently reported to accompany inhibition of
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autophagy flux in both TBI and SCI (38, 53). This suggests
the possibility that SCI trauma may lead to lysosomal damage
and dysfunction, which could cause defects in autophagy
flux. Both studies also noted a decrease in proportion of
LC3 + /CTSD + autolysosomes as compared with total au-
tophagosomes, consistent with deficiencies in autophago-
some processing (Fig. 5). It remains to be determined whether
this may be due to a specific defect in autophagosome-
lysosome fusion or to a general decline in lysosomal function,
leading to accumulation of unprocessed autophagosomes.

It is also not clear how lysosomes may be damaged after
CNS trauma. The simplest explanation would be mechanical
trauma leading to loss of lysosomal membrane integrity.
However, no gross leakage of soluble lysosomal enzymes
into the cytosol was observed, at least after TBI (53). This
does not exclude the possibility of more subtle lysosomal
membrane damage. Such limited lysosomal membrane per-
meabilization (LMP) has been linked to neuronal damage in
ischemia and neurodegenerative diseases (10, 73), but its
mechanisms are only now being elucidated. Potential medi-
ators include channel formation by pro-apoptotic Bcl-2
family proteins such as BAX (10), and calpain-mediated
cleavage and inhibition of the chaperone heat shock protein
HSP70, leading to lysosomal membrane destabilization (73).
Both BAX and HSP70 have been shown to be involved after
CNS trauma (50, 79), but their potential contribution to LMP
in this context has yet to be investigated. Importantly, lyso-
somal defects can lead to cytotoxicity in both an autophagy-
dependent and -independent manner, further underscoring
the need to understand their mechanisms and effects after
CNS trauma.

Another factor that could contribute to altered autophagy
flux after CNS trauma is reactive oxygen species (ROS). ROS
have been shown to both positively and negatively regulate
autophagy, depending on the levels and context (24, 36). The
positive effects of ROS on autophagy flux can be exerted
directly via redox-sensitive mediators such as ATG4, or in-
directly via upstream regulatory pathways such as the aden-
osine 5¢-monophosphate-activated protein kinase (AMPK)
(80). On the other hand, excessive ROS as well as reactive
nitrogen species (RNS) can inhibit autophagy, for example,
by means of S-nitrosylation of the components of JNK and
mTOR pathways (52). HSP70 can also be carbonylated under
oxidative conditions, making it a better substrate for calpain-
mediated cleavage. This has been shown to contribute to
LMP during brain ischemia (73) and could play a similar
function after TBI and SCI. Alternatively, lysosomal mem-
branes could be directly subject to oxidative damage.
Therefore, depending on the level and mechanism of injury,
ROS and RNS could contribute to both activation and inhi-
bition of autophagy flux.

Function of Autophagy in Neurons After CNS Trauma

The function of autophagy in the secondary neurode-
generation after TBI and SCI has long been a source of
controversy, with both beneficial (23, 26, 55, 61) and det-
rimental roles proposed (31, 41). This may reflect the fact
that either induction or inhibition of autophagy flux may
occur after CNS injury. The function of autophagy can
change drastically depending on flux, with unobstructed flux
usually contributing to cytoprotection and flux inhibition
promoting cell death. In addition, since autophagy is often
induced as a response to cell stress (12, 72), care must be
taken to distinguish between association and causation of
cell death.

The early TBI and SCI studies noted co-localization of
autophagy markers in brain and spinal cord regions showing
high levels of neuronal cell death, leading to conclusions that
autophagy may be contributing to neurodegeneration (20,
28). This view was supported by reports demonstrating de-
creased levels of autophagy markers after neuroprotective
drug treatments (19, 31). However, most of the treatments
used were not specific inhibitors of autophagy and without
knowing whether autophagy flux was increased or decreased
after injury, it is difficult to interpret these results. For ex-
ample, signs of autophagy could be decreased because neu-
roprotective treatment increased autophagy flux and thus
clearance of accumulated autophagosomes. Alternatively,
the treatment could act independently of autophagy by
making cells healthier. Thus, if autophagy flux was increased
as a protective response by injured cells, healthier cells may
no longer upregulate it.

More recent data support the idea that in models where
autophagy flux is increased after injury, it likely serves a
protective function. The best evidence comes from the focal
cerebellar lesion model, where induction of autophagy flux
was decreased and functional outcomes were worsened in
autophagy-deficient Becn1 + / - mice as compared with wild-
type controls (64). This was associated with decreased neu-
ronal survival, indicating that increased autophagy flux was
neuroprotective. This must, however, be confirmed in other
injury models, including SCI and contusive TBI.

FIG. 5. Potential mechanisms and consequences of in-
hibition of autophagy flux after CNS trauma. SCI or se-
vere TBI lead to accumulation of ROS, increased levels of
pro-apoptotic BCL2 family proteins, and a decrease in
HSP70 chaperone. This can cause lysosomal damage and
consequent inhibition of autophagy flux, leading to neuronal
and oligodendrocyte cell death and increasing functional
deficits after injury. ROS, reactive oxygen species. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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The mechanisms by which increased autophagy flux con-
tributes to neuroprotection after injury have yet to be inves-
tigated. CNS trauma can lead to generation of damaged
cellular components such as mitochondria, lysosomes, and
peroxisomes, which are both vulnerable to and a source of
oxidative stress. Increased autophagy flux could help elimi-
nate these injured organelles to protect the cells from further
damage. Consistent with this possibility, accumulation of
autophagosomes, including damaged mitochondria and in-
creased BNIP3, both of which suggest induction of mito-
phagy, have been noted after SCI (75). However, its function
and mechanisms remain to be further investigated. Autop-
hagy may also serve to remove toxic ubiquitin-positive pro-
tein aggregates generated after injury (40), and it provides
necessary building blocks as well as energy required for the
initiation of restorative processes after trauma.

In models where CNS injury leads to inhibition of autop-
hagy flux, it likely contributes to neuronal cell death. This is
supported by recent reports indicating specific accumulation of
SQSTM1 in dying neuronal cells after both TBI and SCI (38,
53). The cell death markers included those specific for both
apoptotic and non-apoptotic mechanisms, suggesting that in-
hibition of autophagy flux after CNS injury may contribute to
the induction and/or amplification of multiple cell death
pathways. However, a causative role for inhibited autophagy
flux has yet to be directly confirmed in those models.

In both TBI and SCI, a specific connection was noted be-
tween inhibition of autophagy flux and ER stress in neurons
(38, 53). ER stress has been implicated as a part of the sec-
ondary injury after CNS trauma (32, 47), but its mechanisms
remain unknown. As autophagy is commonly increased and
can serve as a protective mechanism in response to ER stress
(12), its inhibition after injury could exacerbate ER stress,
contributing to the induction of apoptosis.

Inhibition of autophagy flux could also contribute to non-
apoptotic neuronal cell death after CNS trauma. For example,
TBI neurons with signs of inhibited autophagy also accu-
mulated AIF (AIFM1) (53). During caspase-independent cell
death, AIF translocates from the mitochondrial inner mem-
brane to the cytosol. As damaged mitochondria can be tar-
geted by autophagy/mitophagy, this suggests the possibility
that impaired autophagic clearance could contribute to ac-
cumulation of damaged mitochondria after TBI. Another cell
death pathway that could be affected by autophagy is ne-
croptosis, an RIPK1/RIPK3-dependent regulated necrosis
(62). Inhibition of necroptosis can improve functional out-
comes after both TBI and SCI, demonstrating involvement of
this pathway in the secondary injury (67, 74). Recent data
suggest that autophagosomes can serve as platforms for the
assembly of necroptosis-inducing complexes (necrosomes),
including RIPK1, RIPK3, and ATG5 (4). Therefore, accu-
mulation of autophagosomes after CNS trauma could also
potentially contribute to necroptosis.

Defects in autophagy flux have been noted in multiple
neurodegenerative and lysosomal diseases, where they con-
tribute to neuronal cell death. In lysosomal storage diseases,
defects in specific lysosomal hydrolases lead to lysosomal
dysfunction and, as a consequence, inhibition of autophagy
flux (56). Lysosomal function abnormalities have been also
reported in some neurodegenerative diseases and proposed to
contribute to pathological accumulation of autophagosomes
and to neuronal dysfunction and death (63). It appears that a

similar situation may occur after CNS trauma, with impair-
ment of lysosomal function contributing to defects in au-
tophagic clearance and neuronal cell death. This suggests
lysosomal and autophagy flux defects as a potential common
mechanism contributing to neuronal cell death due to chronic
(neurodegenerative and lysosomal storage diseases) and
acute (CNS trauma) insults.

It is also important to note that in models where autophagy
flux is inhibited after trauma, this effect may be only transient
(38, 53). Therefore, early after SCI or severe TBI, the accu-
mulation of autophagosomes may contribute to neuronal cell
death, whereas at later time points when autophagic flux is
restored, autophagy may play a neuroprotective role (Fig. 4).
While it is not clear how autophagy flux may be restored after
CNS trauma, the timing correlates with increased lysosomal
biogenesis (53, 78), which could compensate for the initial
damage to these organelles. Alternatively, increased flux
could reflect death of the affected cells.

Function of Autophagy in Other Cell Types

In addition to neurons, markers of autophagy are increased
in other cell types after CNS trauma, including all major glial
sub-types (astrocytes, oligodendrocytes, and microglia).
However, much less is known about either the mechanisms or
the function of autophagy in these cells. Oligodendrocyte cell
death is prevalent after CNS injury and is a major component
of secondary injury (5). Similar to the situation observed in
neurons, depending on whether autophagy flux is activated or
inhibited, it could contribute to either survival or death of
oligodendrocytes. In addition, after TBI, increased markers
of autophagy have been observed not only in mature oligo-
dendrocytes but also in neural/glial antigen 2 (NG2/CSPG4)-
positive oligodendrocyte progenitors (53). Autophagy can
promote oligodendrocyte precursor survival and myelin de-
velopment in a myelin mutant rat model (57), and it is pos-
sible that it may play a similar function after CNS trauma.

FIG. 6. Potential mechanisms and consequences of re-
storing or increasing autophagy flux after CNS trauma.
Inhibition of mTOR can increase initiation of autophagy by
stimulating activity of the type III PI3 kinase that is nec-
essary for initiation of autophagosome biogenesis. Inhibition
of mTOR can also lead to activation of transcription of
lysosomal genes by TFEB and increased lysosomal bio-
genesis. This could restore and/or increase autophagy flux
after CNS trauma, leading to neuroprotection and functional
improvements. TFEB, transcription factor EB. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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Recent data indicate that autophagy can regulate inflam-
matory responses via the NFjB pathway (70). For example,
in cancer-associated macrophages, autophagy can selectively
degrade NFjB RELA/p65, thereby reducing production of
pro-inflammatory cytokines (15). SQSTM1 can also stimu-
late the NFjB pathway through its interaction with TRAF6. It
is possible that autophagy may similarly contribute to regu-
lation of inflammatory responses in microglia and/or infil-
trating macrophages after CNS injury. However, further
work is needed to determine how autophagy may affect glial
cell survival and function after CNS trauma.

Autophagy-Lysosomal Pathway as a New Therapeutic
Target Against CNS Trauma

Treatments that increase autophagy flux have been shown
to offer neuroprotection in both TBI and SCI. The most
commonly used agent is the mTOR inhibitor Rapamycin.
Even a single administration of Rapamycin early (till 4 h)
after injury decreased neuronal cell death and inflammation
and improved functional recovery till a month later in mul-
tiple models of CNS trauma (16, 23, 55, 61, 64, 68). Several
of these studies demonstrated increased autophagy flux after
Rapamycin treatment, suggesting the neuroprotective po-
tential of increasing autophagy after CNS injury. However,
Rapamycin is known to affect other cellular pathways and
functions in addition to autophagy. This includes a well-
documented anti-inflammatory function, which may help at-
tenuate neuroinflammation after SCI (16).

The best evidence for the involvement of autophagy in
Rapamycin-induced neuroprotection comes from the acute
focal cerebellar lesion model (64), where both induction of
autophagy flux and the beneficial effects of Rapamycin on
neuronal cell survival and functional recovery were attenuated
in autophagy hypomorph Becn1 + / - mice. Therefore, the
neuroprotective role of Rapamycin appears to depend on its
ability to induce autophagy in this system. Similar results were
obtained in a neonatal hypoxia-ischemia injury model, where
protective effects of Rapamycin were attenuated in animals
treated with the type III PI3 kinase inhibitor 3-methyladenine
(3MA), which inhibits autophagosome formation (13). In the
latter model, Rapamycin-induced neuroprotection was also
attenuated by AKT1 inhibition, suggesting that both autop-
hagy and AKT1 signaling may be involved downstream of
mTOR. However, since mechanisms of hypoxia-ischemia-in-
duced neuronal damage differ in many ways from those after
CNS trauma, involvement of this pathway remains to be
confirmed in TBI and SCI.

It will also be important to confirm that Rapamycin or other
pro-autophagy treatments are able to restore flux in CNS
trauma models where it is inhibited. This is an important
consideration, as under conditions where autophagic degra-
dation cannot proceed to completion, increasing input into the
system may be deleterious rather than beneficial (36). In fact,
at least one report has noted the beneficial effects of upstream
inhibition of autophagy flux with 3MA after TBI (41), al-
though this has not been confirmed in other models (13, 61).

Based on our preliminary data (Lipinski and Wu, unpub-
lished), treatment with Rapamycin leads to restoration of flux
after SCI. This could be mediated through enhanced activity
of the master regulator of lysosomal biosynthesis, the tran-
scription factor EB, which is negatively regulated by mTOR

(48) (Fig. 6). Increasing lysosomal biogenesis can augment
autophagy flux and improve outcomes in animal models of
neurodegenerative diseases (11). This supports the idea that
enhancing lysosomal biogenesis and autophagy-lysosomal
function may also represent a potential treatment strategy
after CNS trauma. Such interventions may directly decrease
the extent of neuronal and oligodendrocyte cell death as well
as attenuate neuroinflammation and promote re-myelination
that is necessary for long-term recovery. However, mTOR
activity has been recently shown to play a vital function in
processes that are necessary for recovery after neurotrauma,
such as oligodendrocyte differentiation and myelination (66)
and axonal sprouting (34). Therefore, drugs that are capable
of promoting lysosomal biogenesis and autophagy flux in an
mTOR-independent manner may be necessary for achieving
the best therapeutic benefit.

Conclusions

Recently, there has been considerable progress in char-
acterizing autophagy and its potential involvement in CNS
trauma. However, much work remains to be done. More
detailed delineation of changes in autophagy flux over time
after TBI and SCI is needed. Such temporal resolution is
essential, as recent studies indicate that the rate of autop-
hagy flux may change over time after injury (38, 53), sug-
gesting potentially important changes in function and
mechanisms. Functional studies in transgenic animals with
defects in autophagy, such as the Becn1 + / - mice, should
also be performed. In addition, investigation of selective
types of autophagy such as mitophagy (75) after CNS
trauma is only now beginning. Finally, the major focus thus
far has been on the function and mechanisms of autophagy
in neurons. As markers of autophagy may be also altered in
astrocytes, microglia, and oligodendrocytes, it will be im-
portant to determine its function and mechanisms in these
cell types.

Emerging data suggest that depending on the location and
severity of the injury, autophagy flux may be either increased or
decreased after CNS trauma. Therefore, autophagy may play
either beneficial or detrimental functional roles after injury.
However, it appears that in all cases restoration and/or augmen-
tation of autophagy flux can increase cell survival and improve
functional recovery after injury, suggesting the autophagy path-
way as a potential therapeutic target for TBI and SCI. Because of
the unique importance of oligodendrocyte differentiation and
axonal sprouting for recovery after injury, this may require the
development of novel drugs that are able to increase lysosomal
biogenesis and autophagy flux without mTOR inhibition.
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