
ORIGINAL RESEARCH
published: 18 July 2022

doi: 10.3389/fnagi.2022.925468

Frontiers in Aging Neuroscience | www.frontiersin.org 1 July 2022 | Volume 14 | Article 925468

Edited by:

Shuo Hu,

Central South University, China

Reviewed by:

Kai Ma,

Nanjing University of Aeronautics and

Astronautics, China

Li Zhang,

Nanjing Forestry University, China

*Correspondence:

Le Gao

le.gao@nscc-gz.cn

Xin Gao

george.ssmu@163.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Neurocognitive Aging and Behavior,

a section of the journal

Frontiers in Aging Neuroscience

Received: 21 April 2022

Accepted: 23 June 2022

Published: 18 July 2022

Citation:

Feng Q, Huang Y, Long Y, Gao L and

Gao X (2022) A Deep Spatiotemporal

Attention Network for Mild Cognitive

Impairment Identification.

Front. Aging Neurosci. 14:925468.

doi: 10.3389/fnagi.2022.925468

A Deep Spatiotemporal Attention
Network for Mild Cognitive
Impairment Identification
Quan Feng 1†, Yongjie Huang 2†, Yun Long 3†, Le Gao 2* and Xin Gao 4*

1 State Key Laboratory of Public Big Data, GuiZhou University, Guizhou, China, 2 Faculty of Intelligent Manufacturing, Wuyi

University, Jiangmen, China, 3Nanjing Huayin Medical Laboratory Co., Ltd., Nanjing, China, 4Department of PET/MR,

Universal Medical Imaging Diagnostic Center, Shanghai, China

Mild cognitive impairment (MCI) is a nervous system disease, and its clinical status can

be used as an early warning of Alzheimer’s disease (AD). Subtle and slow changes

in brain structure between patients with MCI and normal controls (NCs) deprive them

of effective diagnostic methods. Therefore, the identification of MCI is a challenging

task. The current functional brain network (FBN) analysis to predict human brain tissue

structure is a new method emerging in recent years, which provides sensitive and

effective medical biomarkers for the diagnosis of neurological diseases. Therefore, to

address this challenge, we propose a novel Deep Spatiotemporal Attention Network

(DSTAN) framework for MCI recognition based on brain functional networks. Specifically,

we first extract spatiotemporal features between brain functional signals and FBNs

by designing a spatiotemporal convolution strategy (ST-CONV). Then, on this basis,

we introduce a learned attention mechanism to further capture brain nodes strongly

correlated with MCI. Finally, we fuse spatiotemporal features for MCI recognition. The

entire network is trained in an end-to-end fashion. Extensive experiments show that

our proposed method significantly outperforms current baselines and state-of-the-art

methods, with a classification accuracy of 84.21%.

Keywords: functional brain network (FBN), mild cognitive impairment (MCI), graph convolution, attention,

spatiotemporal features

1. INTRODUCTION

Alzheimer’s disease (AD) is an irreversible degenerative brain disease, and it is also one of the most
common forms of dementia (Raju et al., 2020). AD usually occurs in the later years of human life.
According to previous statistics released by the Global Health Organization, the global prevalence
of AD reached a staggering 26.6 million in 2006, and this statistic will double every 20 years
(Brookmeyer et al., 2007). In the future in 2046, 1.2% of the global population will be at risk of
developing AD. Recent studies have shown that the prediction of mild cognitive impairment (MCI)
is helpful for the early diagnosis of AD (Morris et al., 2001; Association, 2019). Because MCI is a
clinical state between the normal population and patients with AD, it has a high probability of
developing AD (Kang et al., 2020). In addition, individuals with features of MCI almost always
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have neuropathological features of AD (Morris et al., 2001).
In medicine, MCI is a nervous system disease with the
main symptoms being mild memory impairment and mild
executive function impairment with additional visuospatial
deficits (Gauthier et al., 2006). These symptoms are usually not
life-threatening and can be detected by the patient or his or her
family members. Current research suggests that MCI may not be
a simple disease, but an early manifestation of AD disease (Ithapu
et al., 2015). Therefore, MCI can often be regarded as an ideal
clinical test subject for predicting AD disease. With the in-depth
study of MCI, people can anticipate their risk for AD earlier and
take preventive and therapeutic measures, such as taking oral
medications to improve cognition (Roberson and Mucke, 2006)
and changing their daily routine (Zubatiy et al., 2021). Since the
variation between MCI and normal population is very subtle
and slow (Association, 2019). Therefore, the prediction of MCI
is a challenging task. After years of research, a large number of
machine learning-based diagnostic methods have been developed
for MCI identification (Li et al., 2017, 2019), which can be briefly
classified into the following two types:

1) Based on traditional machine learning methods, which
mainly use traditional machine learning techniques to model
MCI data into a binary classification problem. For example,
in Zhang et al. (2011), the authors capture and combine
biomedical pattern features from different modalities with the
help of multi-kernel support vector machines for predicting
patients with MCI. In Liu et al. (2013b), authors adjusted
the distribution of MCI-specific classes for MCI identification
by a graph partitioning algorithm. In Liu et al. (2013a),
the authors embedded high-dimensional neuro-imaging data
into a low-dimensional space and exploited local sparse code
gradients to test the data to further enhance the classification
of MCI. Due to their strong reliance on prior-knowledge,
these methods have strict dataset requirements, making it
difficult to generalize in practical applications.

2) Deep learning based methods, mainly use the deep
convolutional neural network (CNN) features to extract
hidden features in neuroimaging data for MCI identification.
For example, in Amoroso et al. (2017), authors designed
a multiplexed neural network to model structural brain
connectivity atrophy for the classification of MCI and normal
controls (NC). In Yue et al. (2018), authors designed a
2DCNN framework to capture the most useful features in
the gray matter of sMRI for MCI identification. In Puranik
et al. (2018), the authors designed a deep 2DCNN framework
and utilized the transfer method for AD, MCI, and NC
classification. However, since these methods seldom consider
the temporality of the existence of relevant data sets, their
classification accuracy may be suboptimal.

Despite the success of these methods, the identification of
MCI is still a difficult problem. Excitingly, the functional brain
network (FBN) has become an important method for modeling
brain neural time courses, which provides an effective imaging
biomarker for the diagnosis of MCI (Bray et al., 2021). A
large number of medical experiments have found that the
functional connections between brain regions, voxels and ROIs
in FBN are highly correlated with some diseases such as nerves

or MCI (Greicius, 2008; McKhann et al., 2011). Therefore,
learning FBN based on time series correlation can provide more
accurate and stable test results for MCI identification (Li et al.,
2020b, 2021). In this article, FBN defines the nodes as brain
regions, and the edge between these regions is determined by
the relationship between their blood-oxygen-level dependent
(BOLD) time series recorded by fMRI. In recent years, with
the rise of deep graph convolutional networks, state-of-the-art
performance has been achieved in their applications in different
fields, such as social networks (Dowlagar and Mamidi, 2021;
Liu et al., 2022), computer vision (Han et al., 2021; Zou and
Tang, 2021), and gene prediction (Yu et al., 2021; Peng et al.,
2022). Meanwhile, deep graph convolutional networks have also
achieved satisfactory success in disease prediction tasks (Tang
et al., 2021; Yu et al., 2021). Specifically, as shown in Figure 1,
we first design a space-time convolution strategy (ST-CONV)
to extract time-series features and structural features between
brain functional signals and brain nodes. Then, we introduce
an attention mechanism to further capture brain nodes that are
more correlated with MCI. Finally, we fuse time series features
and structural features (i.e., spatiotemporal features) for MCI
identification. The whole network is trained in an end-to-end
manner. Extensive experiments demonstrate that our proposed
method is significantly competitive compared with the current
baselines and the state-of-the-art methods. We summarize our
main contributions as follows:

• A deep learning framework forMCI identification is proposed,
which provides a new way for MCI identification.

• A new fusion mechanism is designed, which extracts the
spatiotemporal features of brain functional signals and FBN,
and applies its fusion to MCI identification.

• We used our DSTAN to distinguish MCI from NC and
achieved a classification accuracy of 84.21%, which is superior
to baseline and the most advanced methods.

The rest of this article is organized as follows: In Section 2, we
introduce materials. In Section 3, we infer the DSTAN network.
Section 4 reports the experimental results, and Section 5 discusses
and looks forward to the full text.

2. DATASET

2.1. Data Acquisition
In this article, we use the same data set as Qiao et al. (2016). The
data set consisted of 45 patients with MCI and 46 NC subjects,
and these data were static Functional Magnetic Resonance
Imaging (fMRI) images. At the same time, the data set can
be obtained from the MCI database (https://www.nitrc.org/
projects/modularbrain/), in which Table 1 is a summary of the
demographic information of the subjects.

2.2. Data Pre-Processing
In this section, we use fMRI images obtained by the standard
echo planar imaging sequence function in the 3T scanner (TRIO,
Siemens). During fMRI imaging, the parameters are set as
follows: the voxel thickness is 2.97×2.97×3mm3, the number of
slices is 45, acquisition matrix size is 74 × 74, and TR

TE = 3,000
30 ms

with 180 volumes. In addition, we use Statistical Parametric
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FIGURE 1 | Deep Spatiotemporal Attention Network (DSTAN) structure illustration. Spatiotemporal convolution strategy (ST-CONV) represents spatiotemporal

convolution, Node-ATT Module represents Attention module of brain functional Node, Attention represents brain node attention map and FC represents full

connection layer. n represents the number of brain nodes, and T, T′ represents the number of time points of functional brain signals. c′ is the number of channels.

TABLE 1 | Demographic information of subjects.

MCI NC

Gender (M/F) 25/20 14/32

Age (Mean ± SD) 74.13 ± 6.68 73.5 ± 3.50

MMSE (Mean ± SD) 27.71 ± 1.73 28.10 ± 1.35

Mapping (SPM)2 and DPARSFA (version 2.2) for image pre-
processing (Yan and Zang, 2010). In the pre-processing process,
we discard the first 10 fMRI images of the subjects uniformly in
order to prevent signal jitter. Then, we process the remaining
fMRI images in the following steps: In step 1, we adopt a
correction strategy for slice acquisition timing and head motion.
In step 2, we remove the low and high-frequency artifacts in the
corrected image and further regress out nuisance signals based
on Friston et al. (1996). In step 3, we discard the time points
with frame-wise displacement >0.5 to reduce the influence of
micro-headmovements on functional connectivity. On this basis,
we divide the preprocessed BOLD time series signals into 90
ROIs according to the standard of automatic anatomical labeling
(AAL) atlas. In step 3, we store these time series data of length 80
into a matrix of size X ∈ R

80×90.

3. METHOD

In this section, we design a DSTAN network, which captures
spatiotemporal features by fusing temporal and spatial features
of functional brain signals, and uses an attention mechanism
to capture brain nodes related to MCI. Specifically, Section
3.1 formalizes the problem definition. Section 3.2 describes

how to extract temporary and structural features in functional
brain signals and functional brain networks. In Section 3.3, the
attention mechanism is used to capture MCI related brain nodes.
In Section 3.4, spatiotemporal features are fused. The objective
function of DSTAN is defined in Section 3.5.

3.1. Problem Definition
Suppose the data set is D =

{
f (x, t)h, yh

}N
h=1

, N denotes the
number of samples, f (x, t)h denotes the feature vector of the h-
th sample, where th ∈ {t1, t2, . . . , tT}, xh ∈ {x1, x2, . . . , xn}, and
yh ∈ {0, 1} is the corresponding label, and 0 and 1 represent
“normal” and “MCI,” respectively. We assume that the FBN has
n brain nodes corresponding to brain regions, G = {V ,E},
where V denotes brain region and edge E denotes the functional
connectivity between two brain regions. DSTAN networks have
L convolution layers. The number of input and output channels
in the l-th convolution layer is c1 and c2, respectively. For the

l-th convolution layer, fl =
{
f li (x, t)

}c1
i=1

∈ R
n×T×c1 is the

input of convolution, f̂
l+1

=
{
f̂ l+1
j (x, t)

}c2
j=1

∈ R
n× T−w+1

s ×c2

is the input of the brain node attention module, T denotes the
number of time points of functional brain signals, w denotes
the size of the convolution kernel, and s denotes the size of
average pooling. The purpose of the DSTAN network design
is to capture spatiotemporal features by fusing the spatial and
temporal features of functional brain signals and to use the
attention mechanism to focus on brain nodes related to MCI.

3.2. Spatiotemporal Convolution Strategy
The transmission of functional brain signals is based on
the underlying functional connections between brain regions
(Huang et al., 2018), and they contain rich temporal information.
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Therefore, we extract node features (i.e., spatial features) and
temporal features of functional signals from functional networks
and time series, respectively. To this end, we design an ST-CONV
strategy, as shown in Figure 2. We first perform convolution
operation on the time series of input functional signals to extract
its temporal features f li (x, t) as follows:

f l+1
j

(
x,

T− w+ 1

s

)
= tpool

(
σ

(
c1∑

i=1

kj(t, i) ∗ f
l
i (x, t)

))
(1)

where f l+1
j denotes the output, tpool (·) denotes temporal average

pooling with a window size of (1, s), σ (·) denotes the activation
function, and kj(t, i) denotes the convolution kernel with the size
of (1,w) in the i-th channel. Then, we capture the spatial features
of functional signals in the functional network through the graph
convolution operation:

f̂ l+1
j (x, t) = σ

(
c1∑

i=1

(
D̂

1
2 ÂD̂

1
2 f l+1
j (x, t)W

))
(2)

where f̂ l+1
j , j = 1, 2, . . . , c2 denotes the output of graph

convolution, Â = I + V , D̂ denotes D̂nn =
∑

m Ânm, the rest
elements are 0, I denotes identity matrix, W is the parameter

corresponding to f l+1
j (x, t), and fl+1 =

{
f l+1
j (x, t)

}c2
i=1

∈

R
n× T−w+1

s ×c2 denotes the input.

3.3. Brain Node Attention Module
There are a large number of brain nodes in the functional brain
network, and the brain regions corresponding to different brain
nodes reflect different diseases (Ries et al., 2008). In order to

capture the features of brain nodes related to MCI, we introduce
an attention mechanism, as shown in Figure 3. We first integrate
the channel and time information of each brain node into a scalar,
and solve the brain nodes related to MCI as follows:

Mj = σ

(
ht ∗ f̂

l+1
j (x, t)

)
(3)

where M =
{
Mj

}c2
j=1

∈ R
n×1×c2 denotes the output of

the j-th channel after convolution operation, ht denotes the

convolution kernel set with the size of
(
1, T−w+1

s

)
, and f̂

l+1
=

{
f̂ l+1
j (x, t)

}c2
j=1

∈ R
n× T−w+1

s ×c2 denotes the input of the brain

node attention module.
Then, we maintain the feature invariance in the functional

signal through the average down-sampling based on the channel
dimension, and suppress the noise generated when collecting the
functional signal to make it better for training, which can be
expressed as:

CavgM =

∑c2
j=1Mj

c2
∈ R

n×1×1 (4)

where CavgM denotes the output.
In order to further capture the MCI-related brain nodes, we

project the brain node features of CavgM into the MCI-related
feature space. We design the K-layer base layer in the attention
module and perform the following operations: 1) Perform down-
sampling on the k-th base layer:

F
k = relu

(
fc
(
CavgM,

n

r

))
(5)

FIGURE 2 | Spatiotemporal convolution strategy structure illustration. Temporal-Conv represents temporal convolution operation, Temporal-AvgPool represents

temporal average pooling, Grap-Conv represents graph convolution operation, Node-Att Module represents the brain node attention module, and Attention

represents the brain node attention map.
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FIGURE 3 | Illustration of attention mechanism. Temporal-Conv represents temporal convolution operation, Channel-AvgPool represents channel average pooling

operation, and r represents the down-sampling rate.

where F
k denotes the output of the k-th base layer, n

r denotes
the down-sampling rate, relu (·) denotes the activation function,
and fc(·) is the same as the fully connected operation. 2) Perform
up-sampling on the k+ 1-th base layer:

F
k+1 = relu

(
fc
(
F

k,
n

r

))
(6)

where Fk+1 denotes the output of the (k+ 1)-th base layer, and n
denotes the up-sampling rate. In this way, we can further get the
attention map of brain nodes as follows:

Z(x) = Sigmoid
(
F

k+1
)

(7)

where Z(x) ∈ R
n×1×1 denotes the brain node attention map. In

the detailed process, the k-th base layer performs down-sampling
from n brain nodes to n

r brain nodes; the (k + 1)-th base layer
performs up-sampling from n

r brain nodes to n brain nodes.
We use this nonlinear transformation to capture the dependency
between brain nodes and MCI.

Finally, in order to further focus on the brain nodes with
strong correlation, we multiply the brain node attention map
with the functional signal:

f̃
l+1

= Z(x)× f̂
l+1

(8)

where f̃
l+1

denotes the output.
As discussed above, different brain regions have different

effects on MCI. Therefore, we separate brain nodes with different
correlations by maximizing the variance of the brain node
attention map. At the same time, the high value of highly
correlated brain regions in the brain node attention map will lead
to excessive attention loss. In this regard, we control attention loss
by minimizing their mean values as follows:

Latt =

n∑

x=1

mean(Z(x))− var(Z(x)) (9)

where Latt denotes the attention loss, mean (·) denotes the mean
operation, and var (·) denotes the variance operation.

3.4. Spatiotemporal Feature Fusion
In order to further explore the impact of temporal and
spatial features of functional signals on MCI identification, we
fuse spatial and temporal features. Specifically, we realize the

spatiotemporal feature fusion by summing temporal features f l+1
j

and spatial features f̂ l+1
j :

h
l+1
j = f l+1

j + f̂ l+1
j (10)

where hl+1
j ∈ R

n× T−w+1
s ×c2 denotes the output of spatiotemporal

features fusion.
Finally, in the L-th convolutional layer, we further extract

spatiotemporal features by convolution operations and compress
them into a scalar as the input of the fully connected layer as
follows:

S = u
L
j ∗ h

L
j (11)

where S ∈ R
1×1×c2 denotes the output of the convolution

operation, uLj denotes the convolution kernel set corresponding

to hLj .

3.5. Objective Function
In DSTAN, the features of functional signals are mapped to the
corresponding label space through fully connected layers. In the
training process, the objective function of the DSTAN network is
designed:

Ltotal =

N∑

h=1

Lce

(
f (x, t)h, yh

)
+ Latth (x) (12)

whereLce(·) denotes the cross-entropy loss, andLatth denotes the
attention loss of the h-th sample.

4. EXPERIMENTS

In the MCI identification experiments, we utilize fMRI data to
train a deep neural network framework for MCI identification.
Since the framework needs to use functional connections
between brain nodes to extract the spatial features of functional
brain signals. Therefore, we use the Pearson correlation
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coefficient method to construct functional brain networks to
obtain functional connectivity matrix related to brain nodes.

4.1. Experimental Setting
In this section, our experimental setup is divided into the
following steps:

Step 1: In order to obtain the connection matrix of brain
nodes, we first use the Pearson coefficient to measure the
correlation between brain nodes, so as to obtain a functional
connectivity matrix P. Then, we sparse the connectivity matrix,
where λ=0.1,0.2,...,1 denotes sparsity. Finally, the spatial features
of a functional signals are extracted by using graph convolution
operation of auxiliary of the connectivity matrix.

Step 2: We set the following settings for each module in
DSTAN: 1) In the ST-CONVmodule, we use convolution kernels
to extract time series features, and at the same time, we perform
an average pooling operation on the time series. The number of
output channels is set to (8,16,32). 2) In the Node-ATT module,
we perform operational down-sampling on the base layers and
set the sampling rate to 1/16.

4.2. Implementation
All experiments are programmed and implemented as follows:
PyTorch 1.9 framework, Python version 3.8, and trained with
one GeForce RTX 3090 GPU. We use SGD as the optimizer for
training, with the momentum of 0.1, weight attenuation of 1e-
4, 90 iterations, the initial learning rate of 0.1, attenuation of
50% every 30 times, and batch size of 32. Note that we randomly
divided the preprocessed fMRI data obtained in Section 2.2 into
a training set and a test set in a ratio of 8:2 for the following
experiments.

4.3. Evaluation Standard
We use the following indicators for quantitative measurements,
which include accuracy, sensitivity, and specificity. All methods
are tested with these metrics, which are as follows:

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative

(13)

Sensitivity =
TruePositive

TruePositive + FalseNegative
(14)

Specificity =
TrueNegative

TrueNegative + FalsePositive
(15)

where TruePositive represents the number of correctly classified
positive patients with MCI, and TrueNegative, FalsePositive, and
FalseNegative represent the corresponding number of subjects,
respectively.

4.4. Experimental Results and Analysis
4.4.1. Visualization of Brain Node Functional

Connectivity Matrix
In this section, we report the influence of sparsity λ and
functional connectivity between brain nodes on MCI
identification. We sparse the functional connectivity matrix
P to different degrees. From Figure 4, we can observe that: 1) in
the first row of images, when λ = 0.1, the connectivity matrix P

retains more brain node connections with weaker correlations,
which makes it difficult to extract effective spatial features from
functional signals, thus negatively affecting MCI identification.
2) In the middle row of images, when λ = 0.5, the connectivity
matrix P removes the connections of weakly correlated brain
nodes and retains certain correlated brain nodes, which reduces
the adverse factors for identifying MCI. 3) In the last row of
images, when λ = 0.9, the connectivity matrix P retains the highly
correlated brain node connections so that the graph convolution
operation can extract more effective spatial features, which can
further promote the accuracy of model recognition MCI. The
above experimental results show that the choice of sparsity λ has
a significant dependence on the functional connections between
brain nodes, and a higher sparsity has a beneficial impact on
spatial feature extraction and MCI identification.

4.4.2. Classification Performance of Different Sparsity
In order to further explore the influence of sparsity λ on MCI
identification, we conducted experiments in different sparsity
ranges. Figure 5 shows the sparsity λ classification accuracy
histogram in the range of 0.1–0.9. From this figure, we obtain the
following observations: 1) When λ = 0.9, DSTAN classification
accuracy is significantly better than other sparse classification
experiments. 2) The functional connections of brain nodes affect
the classification performance of MCI, which leads to great
differences in the classification results of connection matrices
with different sparsity. 3) With the increase of sparsity, the
interference of weakly correlated brain nodes gradually decreases,
and the classification accuracy improves. Therefore, removing
weak functional connections between brain nodes in DSTAN
can improve MCI identification performance. Finally, the above
experimental results prove again that higher sparsity can promote
graph convolution to capture more spatial features and further
improve MCI classification accuracy.

4.4.3. MCI Identification
We performed MCI vs. NC experiments on the MCI dataset.
We compare the following methods, including traditional
machine learning methods: Support Vector Machine (Song
et al., 2017), RandomForest (Fredo et al., 2018), and Deep
learning methods: Multi-Layer Perception (Shanmuganathan,
2016; Almuqhim and Saeed, 2021; Gao et al., 2021; Yin et al.,
2021). Table 2 reports the test accuracy of all methods on the
MCI dataset. The following observations are made: 1) In MCI
identification, deep learning methods are significantly better
than traditional machine learning methods. 2) The DSTAN
method significantly outperformed other methods in accuracy,
sensitivity, and specificity. In addition, this method is effective
for MCI identification based on FBN. In conclusion, DSTAN
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FIGURE 4 | Visual illustration of brain node connections.
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FIGURE 5 | Classification accuracy of different sparsity λ.

TABLE 2 | Performance of all methods on MCI identification.

Method Accuracy Sensitivity Specificity

SVM 63.15 75.00 54.54

RF 68.42 54.54 75.00

MLP 68.42 75.00 63.63

Gao 78.94 72.72 87.50

Almuqhim 63.15 63.63 87.50

YIN 73.68 81.81 62.50

DSTAN 84.21 81.81 87.50

The optimal performances are bolded.

can well identify patients with MCI, and the probability of
misdiagnosis of patients with NC is low.

4.4.4. Visualization of Brain Node Attention Map
Figure 6 shows the brain node visualization obtained from the
attention map in Section 3.3. Specifically, the abscissa values
correspond to the brain regions of different brain nodes, and
the ordinate values represent the correlation intensity. The
higher the value of the ordinate, the stronger the correlation
between the corresponding brain region and MCI. The colors of

corresponding values in all brain regions are randomly generated.
From this figure, we can find: 1) The corresponding values of
most brain regions are 0, i.e., Inferior frontal gyrus, triangular
part (IFGtriang), and Gyrus rectus Middle (REC) occipital gyrus
(MOG). This result indicates that this part of the brain region
has nothing to do with MCI identification, which is consistent
with the conclusion of Wee et al. (2012) on the relationship
between brain regions and MCI. 2) This figure shows a total
of 34 brain regions that have a strong correlation with MCI,
thus affecting MCI identification. 3) This figure shows that brain
regions such as the middle temporal gyrus (MTG), Superior
frontal gyrus medial orbital (ORBsupmed), inferior parietal
(IPL), Supramarginal gyrus (SMG), and Precuneus (PCUN) have
a strong correlation with MCI identification which is consistent
with previous MCI imaging biomarker reports and pathological
studies (Greicius, 2008; Albert et al., 2011).

4.5. Ablation Studies
To verify the effectiveness of each component in DSTAN
proposed in this article, we perform ablation studies. Table 3
reports the performance comparison between DSTAN and the
removal of the attention mechanism (No-Att for short). From
this table, we observe that: 1) In the No-Att method, the gap
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FIGURE 6 | Visualization of brain node attention map.

between DSTAN and No-Att accuracy is small. But the sensitivity
and specificity are much lower than DSTAN. This finding
may suggest that we are more likely to misdiagnose patients
with MCI and patients with misdiagnosed NC. 2) DSTAN is
superior to the No-Att method in all evaluation indicators.
The above results demonstrate that the attention mechanism in
the DSTAN framework is used to eliminate the interference of
redundant brain nodes on MCI identification, so as to improve
the performance of MCI classification.

5. DISCUSSION

In this study, a reliable functional brain network (FBN)
is constructed from functional magnetic resonance imaging
(fMRI) data to assist in the identification of mild cognitive
impairment. Different from previous studies, we propose a
novel DSATN framework, which fuses functional brain signals
and spatiotemporal features of FBN for MCI identification.
Specifically, we first capture spatiotemporal features through
ST-CONV strategy and graph convolution. Then, we capture
the brain node features associated with MCI through an
attention mechanism. Finally, we fuse these features for DSATN

network training. Our detailed experimental results are listed
as follows: 1) We facilitate graph convolution to obtain more
effective spatial features in functional brain signals through
a higher sparse functional connectivity matrix. 2) We use
the attention mechanism to effectively improve the MCI
identification performance and capture 34 brain regions with
strong correlations with MCI. 3) We obtain an encouraging
classification accuracy of 84.21% on MIC identification.

5.1. Spatiotemporal Feature Fusion in MCI
Identification
Functional magnetic resonance imaging (fMRI) is a widely used
neuroimaging modality. This modality performs imaging by
measuring the blood oxygen level dependence (BOLD) of each
brain region in the brain (Khosla et al., 2019). fMRI data are
rich in temporal and spatial features (Ma et al., 2016). Previous
study has studied the spatial features of fMRI, e.g., using matrix
decomposition (Du and Zhang, 2021), Pearson correlation sparse
(Smith et al., 2013), and sparse representation (Lee et al., 2011)
to construct FBN, and extract its structural features; At the
same time, there are also studies on the temporal features of
fMRI, e.g., using Rnn (Dvornek et al., 2018), LSTM (Yan et al.,
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TABLE 3 | Comparing the classification performance of the DSTAN and the

No-Att methods.

Method Accuracy Sensitivity Specificity

No-Att 81.81 62.50 73.68

DSTAN 84.21 81.81 87.50

Performance of all methods on MCI identification. The optimal performances are bolded.

2018) to extract temporal features in the time series of fMRI
data. Some recent studies have investigated the spatiotemporal
features of fMRI data, e.g., in Gadgil et al. (2020), the authors
divided the fMRI data into multiple short sequences according
to the length of the time series, then quantified the connectivity
between brain regions in the short sequences, and used graph
convolution to extract spatial features of short sequences. In
Li et al. (2020a), authors used convolution operation to extract
spatial features in fMRI data, and taked the resulting features as
the input of LSTM network to capture the temporal information
contained in the data. The above methods utilize spatiotemporal
features in fMRI data, but do not deeply consider the relationship
between temporal and spatial features. In DSTAN, considering
that both temporal and spatial features of fMRI data have positive
effects on MCI identification, we further fuse temporal and
spatial features. Specifically, we use convolution operation to
extract temporal features and graph convolution operation to
extract spatial features. Then, we achieve spatiotemporal feature
fusion by element-wise summation. Extensive experimental
results are compared with current state-of-the-art methods to
verify the effectiveness of spatiotemporal feature fusion. We
speculate as follows: 1) Each brain region corresponds to a
set of time series and contains temporal information. 2) The
corresponding temporal features of the brain regions related
to MCI have a positive role in promoting MCI identification,
and their corresponding spatial features have a key role in
MCI identification. Therefore, the accumulation of these two
positive-acting features can improve the performance of MCI
identification.

5.2. Brain Node Attention Mechanism in
MCI Identification
In the brain node attentionmodule, we set upmultiple base layers
to capture the brain regions related to MCI. The experiments
in this article found that 34 brain regions in all brain regions
are closely related to MCI, including the middle temporal gyrus
controls semantic cognition (Davey et al., 2016); the Superior
frontal gyrus medial orbitally affects schizophrenia and delusions
(Gao et al., 2015); Inferior parietal affects sensory memory
function Chen et al. (2021); Supramarginal gyrus affects auditory
memory function (DES, 2014); and Precuneus affects cognitive
function (Nagano-Saito et al., 2021). These brain nodes are
correlated with MCI and are consistent with the experimental
results of previous studies (Greicius, 2008; Albert et al., 2011).
At present, many studies have shown that FBN can show
more structures or attributes, such as classification, hierarchy,
centrality, synchronization, and scale-free topological results.

Therefore, we will further explore the relationship between brain
regions and MCI, and use correlation knowledge sharing in
multi-task learning for MCI identification and interpretability
research, providing a new method for the prevention and
treatment of MCI.

5.3. Limitations and Future Directions
We build an MCI identification mechanism based on
spatiotemporal feature fusion and attention mechanism
and achieve excellent experimental results. However, there
are still several limitations that need to be considered further.
First, the training and validating model is inseparable from a
large number of data samples and data from different sources.
In future study, we need to further validate the robustness of
our proposed method with large samples and heterogeneous
data from multiple sources. Second, less research on the
interpretability of MCI identification is involved. We need an
interpretable analysis combined with clinical knowledge. Third,
MCI is an early stage of AD, and MCI should be analyzed
together with other related nervous system diseases. At present,
many studies have shown that FBN can show more structures
or attributes, such as classification, hierarchy, centrality,
synchronization, and scale-free topological results. Therefore,
we will further explore the relationship between brain regions
and MCI, and use correlation knowledge sharing in multi-task
learning for MCI identification and interpretability research,
providing a new method for the prevention and treatment of
MCI.

6. CONCLUSION

In the present study, we propose a DSTAN network, which
uses spatiotemporal feature fusion and attention mechanism
for MCI identification, and obtains excellent classification
performance (Accuracy = 84.21%). In addition, spatiotemporal
feature fusion increases the diversity of effective training
samples by accumulating temporal and spatial features. The
brain node attention mechanism strengthens the model’s
attention to brain regions related to MCI. Our findings
demonstrate that the combined use of spatiotemporal feature
fusion and attention mechanism can better distinguish MCI
from NC. Combining FBN and graph convolution for better
MCI identification is helpful for early clinical diagnosis of
AD.
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