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Smooth 2D manifold extraction from 3D image
stack
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Three-dimensional fluorescence microscopy followed by image processing is routinely used

to study biological objects at various scales such as cells and tissue. However, maximum

intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of

voxels, obliviously creating important artifacts and possibly misleading interpretation. Here

we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D

extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate

the usefulness of our approach by applying it to various biological applications using confocal

and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin

that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy.
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C
ell biologists routinely use fluorescence microscopy to
observe spatial organization of organelles, co-localization
of vesicles or to study the impact of gene expression or

small compounds on cell morphology1–4. Furthermore, it is
common nowadays to image the same preparation repetitively at
various depths to obtain a three-dimensional (3D) image under
the form of a stack of two-dimensional (2D) images. Unlike a
single 2D image, which can be rendered and interpreted
straightforwardly on a screen, a 3D stack needs to be processed
to be displayed.

An image stack can be employed to image a full 3D object. In
this case, a single projection cannot be satisfactory and an
interactive rendering tool must be used to obtain successive
projections of the data in arbitrary directions using transparency
filters. Optionally, a detection step can be introduced before the
projection to focus on the reconstruction of layers of interest5.
A variety of software programme as Voxx6, NIH’s Fiji/ImageJ7 or
VTK8 propose such options with an interactive visualization.

Image stacks are also useful to image flattish or so-called 2.5D
objects such as an epithelium, a monolayered cell culture,
a membrane within an in vivo tissue sample or a flat biological
structure such as cultured neurons. This is because at high
resolution, those objects cannot hold within the depth of field of a
microscope and therefore a single 2D image acquisition often
suffers from being only partially in focus. In contrast, a 3D stack
contains all pieces of information needed to reconstruct a focused
2D image. In this case, a projection in the z direction is often
preferred. First, because it contains the highest amount of
information. Second, because resolution is always lower in z than
in x/y in fluorescence microscopes. Finally, because it produces
a single 2D image with no need of an interactive interface.

In practice, more than 80% of the biology community who
acquire 3D volumes use maximum intensity projection (MIP),
one of the simplest Z projection methods, to reduce a 3D stack
into a single 2D image as reflected in a survey (see ‘Methods’
section). MIP consists in retrieving the level of maximum
intensity along the z axis for each x,y position. The image of
levels is called the index map while the image made of intensity
values corresponding to that index map is called the composite
image or the projection. There were good reasons for MIP to be
widely adopted: it is parameter free, fast and straightforward to
use as it is implemented in NIH Fiji/ImageJ7 and in many other
programmes.

Despite its widespread adoption, MIP presents a major
drawback: it produces a highly discontinuous index map. It
means that two consecutive pixels in the resulting image can
belong, respectively, to the first and the last images of the stack,
thus far apart in the original data set. Therefore, MIP produces an
artificial 2D image that does not match any existing structure in
the original volume. The effect is especially strong on the
background or in the vicinity of the foreground producing
important loss of contrast. Consequently, while MIP can be useful
to obtain a global overview of the content of a stack, any image
made daily this way by numerous end users are at best imprecise
or not contrasted and at worst can lead to wrong interpretation or
biased quantification.

While not used in practice, other Z projection methods, mostly
inspired by digital photography, were proposed as alternatives to
MIP. However, they also suffer from drawbacks as shown in our
evaluations (see ‘Methods’ section). First, while the discontinuity
issue was identified by some authors, the proposed solutions
mainly consisted in smoothing the index map without distinction
between the foreground and the background. The last tends to
degrade the foreground and does not properly solve the issue for
the background. Second, colour channels are loosely taken into
account in practice, and channels are systematically processed

independently. In consequence, a colour pixel in the resulting
image can be made of colour components from different voxels
far apart in different channels possibly leading to false
interpretation in the co-localization of differently labelled objects.
Third, in opposition to MIP, most of the other methods require
parameters which imply making a subjective choice. Finally,
whatever the methodological drawbacks, there seems to also be an
accessibility issue as, to our knowledge, the only tool made easily
available to end users is the extended depth of field (EDF) method
by Aguet et al.9,10 implemented as a plugin in the popular
software programme NIH Fiji/ImageJ7. However, this tool was
specifically designed for brightfield microscopy images and still
suffers from the aforementioned issues.

Here we propose a method, smooth manifold extraction
(SME), that focuses on what is currently missing in the available
toolkits: maintaining spatial consistency in the projection both
within one channel and also between channels. Obtaining a
spatial consistency between channels is straightforward and just a
matter of implementation: it consists in choosing a single
reference channel for extracting the index map to apply to all
channels. Therefore, our approach mostly focuses on enforcing
the spatial consistency of an index map obtained from a single
channel. The intuitive idea is to fit a ‘smooth’, parameter-free,
2D manifold onto the foreground signal while ‘ignoring’ the
background, thus propagating the index map found in the
foreground to the local background. To this aim, the fitting is
constrained at each pixel by minimizing together the distance
from the index map to the most focused z level (ensuring its
foreground proximity) and the local variance of the index map
(ensuring its smoothness). We compare results obtained with our
method and others on synthetic and real data sets covering a
variety of biological objects morphology for a variety of
applications.

Results
SME improves spatial consistency. Fig. 1 describes the motiva-
tions of our approach, which is schematized in Fig. 2. In Figs 3
and 4, examples show that existing methods produce artificial
spatial relationships between organelles due to the
discontinuity of the index map. In contrast, SME clearly discards
objects that are not nearby in the original 3D volume by
retrieving a continuous layer of voxels. We also compare our
approach to accessible and/or state of the art methods by
computing objective criteria on synthetic data sets (see Fig. 5 and
Supplementary Figs 7 and 8). The results show that SME
outperforms existing methods in term of spatial consistency and
especially MIP, which is the most used in practice.

SME preserves image resolution. A consequence of improving
spatial consistency is an increased contrast and the unveiling of
objects that were not visible using MIP due to the aggregation
of the signal from irrelevant layers (see Fig. 1). The advantage
is made obvious with epifluorescence wide-field images
(see Figs 1a,c and 3) but also while imaging large tissue sample
with a confocal microscope as shown by Fig. 1b,d as it would be
virtually impossible to obtain a planar acquisition that contains
only a single layer of cells along a large epithelium sample. Several
other critical examples are presented in Fig. 4 and in
Supplementary Figs 9 and 10.

SME works on wide-field and confocal image stacks. The SME
algorithm is similar for both imaging modalities apart from the
generation of the initial index map used as a data attachment
term in the cost function. Wide-field epi-fluorescence microscopy
is fast and efficient to image thin specimen. However, image
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stacks obtained using that modality always contain significant
blur due to the convolution of the emitted fluorescence with the
point spread function (PSF) of the microscope, which is wider
than for confocal microscopes. Therefore, wide-field image stacks
require an adapted focus measure (sum of modified Laplacian)
that is based on the second derivatives of the signal rather than on
the signal itself (see the results in Figs 1c and 3). While slightly
slower in terms of acquisition, confocal microscopes have a
drastically reduced PSF blur and therefore are more frequently
used to image thicker objects. For that second modality, the focus
measure is directly based on the intensity of the signal (see results
in Figs 1d and 4 and Supplementary Figs 9 and 10).

SME preserves consistency between multiple channels. SME
applied on a single channel produces a spatially consistent 2D
image. To preserve spatial consistency between multiple channels,
one of them must be selected as a reference to compute a unique
index map, which will be applied to all channels including the
reference one. This procedure ensures that a pixel in the resulting
2D image is made of the exact same colour components as the

corresponding voxel in the 3D stack preserving consistency
between channels. Figure 4 presents several examples where this
advantage is emphasized.

SME is parameter free. The SME cost function parameters are all
estimated from the data and the parameters of the optimization
process were studied and fixed such as to guarantee convergence
for most data sets in a reasonable time (see the ‘Methods’ section
and the Supplementary Methods for further details).

Discussion
Projecting an object from a 3D volume to a 2D plane always
results in information loss. The proposed method provides a 2D
representation with minimal distortion for objects lying on or
close to a 2D manifold embedded in the 3D-observed volume.
That is, it assumes the foreground of interest is 2.5D. However,
if this hypothesis is not met and the foreground is scattered in the
3D volume or is a full 3D object such as a relatively large spherical
cell in suspension, most projection methods would result in
severe morphological distortions. While MIP could help getting
an overview of the full 3D content, it should be disregarded for
any further investigation because, by mixing all layers together,
it essentially prevents any reliable geometric interpretation.
Similarly, even if the result of SME would not be spatially
distorted, it would not be of great interest either as the
2D manifold extracted would represent an incomplete fraction
of the surface of the full 3D object or a crossing section of it.
Overall, in the case of a full 3D content, a single 2D extraction
cannot be satisfactory and an interactive interface that makes
possible a 3D exploration should definitely be preferred.

In some applications, one could be interested in ‘looking
around’ the actual 2D manifold obtained by SME in the 3D space
at the price of distorting slightly the spatial consistency. This is
the case for instance when vesicles visualized as spots lies on and
around an epithelium. In this case, it can be interesting to collect
not only a single layer of voxels corresponding to the smooth
index map, but a thicker piece of signal made of more layers
around the manifold and aggregated together locally by
maximum of intensity. In short, in some case, a local MIP
applied in the vicinity of the manifold extracted using SME can be
of potential interest. As in practice we ended up using this option
for some of our own applications, we made it available in the NIH
ImageJ/Fiji plugin.

Selecting a reference channel to compute a unique index map
for all channels might be regarded at first as a parameter.
However, it is not, it should be a rational choice related to the
biological question being tested with a given data set. Indeed, if
such a method is used for extraction, it implies that the
3D volume necessarily contains a 2.5D foreground, which in
turn implies that the channel of this 2.5D foreground of interest
must be specified. For example, in Fig. 1b,d, the surface of interest
is the apical layer of ependymal cells, not the incomplete blood
vessel network located below. Additional examples illustrating the
choice of a rational reference channel are provided in Fig. 4.

In cell biology, the use of 3D stacks has become common
practice to image 2.5D objects. We identify that a large
proportion of users render stacks by performing a MIP using
NIH Fiji/ImageJ. We show that this can lead to wrong
interpretation and we propose an easy-to-use solution to obtain
a spatially consistent projection within and between image
channels. We demonstrate, using synthetic data, that SME
outperforms existing methods in term of spatial consistency.
Furthermore, we illustrate the impact of this feature on the
relevance and the quality of the extraction by applying SME on
various biological applications using confocal and wide-field
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Figure 1 | Motivation to preserve spatial consistency within one channel

and between channels. (a,c) An image stack of the immuno-stained tubulin

network in a single cell from a study on the formation of tyrosinated tubulin.

The stack was imaged by a conventional wide-field microscope and

rendered with (a) MIP and with (c) SME. By selecting a continuous layer of

voxels, SME discards the aggregation of irrelevant signal located nearby in

the x/y direction albeit far apart in the z direction. A consequence of this

selection is an important increase of contrast that enabled distinguishing

clearly individual tubulin filaments when compared to the popular MIP

approach. Scale bar, 10mm. (b,d) Whole-mounted view of a tile scan of

ependymal cells from the lateral ventricular surface of a P1 Centrin2gfp

transgenic mouse (GFP, green), double immuno-stained with a cell junction

marker (bCatenin, blue) and a marker for nascent centriole (Sas6, red).

For this developmental study of the apical surface, the tissue sample is

imaged as multiple stacks stitched together to form a 3D image of

3,929� 9,307� 58 voxels. The apical surface being not planar, it was

impossible to avoid imaging (in red channel) the blood vessels targeted by

the same antibody used for staining nascent centrioles. Consequently,

(b) MIP, by extracting high-intensity voxels, captures a mix of blood vessels

located below the apical surface and of nascent centrioles, which makes any

further analysis or even visual inspection difficult. (d) SME, by using the cell

junction marker channel (blue) as reference, clearly discards the blood

vessels that were located below the apical layer, which allow nascent

centrioles to be clearly distinguished. Scale bar, 100mm. A crop of this large

slide is presented with more details in Fig. 4d,e. Each data set is further

described in Supplementary Table 1.
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microscopy image stacks. The algorithm is parameter free and is
implemented as an NIH ImageJ/Fiji plugin for ease of use. It is
also available as open source MATLAB code.

Methods
Survey. We conducted an anonymous online survey of microscope users to review
common practices with 3D image volumes in the bio-imaging community.
The survey shows that a significant fraction of users frequently use 2D projection
for the purpose of visualizing 3D data sets and an overwhelming majority (84.3%)
of them use the freely available and easy-to-use Fiji Plugin for pixel wise
intensity-based Z projection (see Supplementary Figs 1 and 2 for further details).

Algorithm. The method we propose fit a ‘smooth’, parameter-free, 2D manifold Z
onto the foreground signal of a chosen reference channel while ‘ignoring’ the
background, thus propagating the index map found in the foreground to the local
background. This is because, in principle, the foreground is deliberately stained
while the background is mostly made of noise and therefore shows random levels
of estimated focus. To this aim, the fitting is constrained at each pixel by
minimizing together the distance from the map Z to the maximum focus map Zmax

(ensuring data attachment) and the local variance of Z (ensuring its smoothness).
A crucial point in the definition of the cost function to minimize is that, in order
for the foreground level of Z to propagate to the background, the first term is
weighted spatially by the pixel class such that if a pixel belongs to the background
this data attachment term is not used, and if the pixel belongs to the foreground or
is not clearly defined then a weighting strategy that we described further below is
adopted. All together, the method aims at finding the optimal map
Z� : W�H � N2-D � R by solving:

Z�¼ argmin
Z

X
ðx;yÞ

Cðx; yÞ Zmaxðx; yÞ�Zðx; yÞj j þ sZðx; yÞ ð1Þ

where the maximum focus map Zmax, the weighted class map C and the local
spatial s.d. sZ are defined further in sections below.

Maximum focus map Zmax. The input image stack is defined as a function that
maps positions ðx; y; zÞ 2W�H�D � N3 to values Iðx; y; zÞ 2 N. The maximum

focus map is then defined as:

Zmaxðx; yÞ¼ argmax
z

Fðx; y; zÞ ð2Þ

that is, we search the level z that maximizes independently at each given (x,y)
co-ordinate the focus measure defined as

Fðx; y; zÞ¼ Iðx; y; zÞ For confocal images
SMLðG�Iðx; y; zÞÞ For widefield images

�
ð3Þ

where I is the input image and SML stands for sum of modified Laplacian11. SML is
computed in 2D independently at each level z to avoid merging signal from
consecutive layers, as resolution in z is always worse than in x/y (ref. 12). Note that
original images are convolved by a Gaussian filter G prior computing SML. We
describe in Supplementary Fig. 3 and in Supplementary Methods the strategy we
used to set the s.d. of G automatically.

Weighted class map C(x,y). A z-profile is defined as the vector of all z values at a
given (x,y) location. In the following, the set of all z-profiles of a given volume Z is
noted FZ(x,y), where each profile is indexed by its (x,y) location. In our context
where the foreground of interest lies on a 2D manifold embedded in a 3D volume,
we identify roughly three types of z-profiles. First, the z-profiles that belong to the
foreground contain a relatively low-frequency peak centred on the level of the
stained object along with some possible background noise. In the opposite, the
z-profiles that belong to the background are rather flat and contain only back-
ground noise. Finally, there is an uncertain class that contains profiles that are not
clearly defined. Those last profiles are either produced by a dim foreground or they
are part of the background but are somehow whitened by the PSF halo of some
foreground fluorescence located nearby. To distinguish those three types of profiles
independently from their actual peak position, they are converted into power
spectra using:

PZðx; yÞ¼ FFTðFZðx; yÞÞj j2 ð4Þ
where FFT denotes the fast Fourier transform. A three classes k-means is then
performed on those spectral density profiles to roughly identify the three classes:
the foreground z-profiles (class with the highest amount of lowest frequency
components), the background z-profiles (class with the lowest amount of lowest
frequency components) and the uncertain z-profiles (class with intermediate
frequency components). This segmentation does not need to be precise as it is not
definitive as such but helps driving the final index map towards the foreground. To
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Figure 2 | SME algorithm steps. (a) Original Image stack. (b) Any (x,y) position corresponds to a profile of focus values in the z direction, which is made of

direct intensity values in case of confocal image or the SML values for wide-field epifluorescence images. (c) Profiles that pass through some foreground

signal contain lower-frequency components. Therefore, the power frequency spectrum of each profile is computed using FFT and (d,e) a three class

k-means is performed to associate each (x,y) position to a label (foreground, background or uncertain). (f) A cost function balancing local smoothness and

proximity to the maximum of focus value is minimized to obtain the final smoothed index map. Note that the index map, highly discontinuous at the

beginning of the optimization process, is smoothed while preserving fine detail on the foreground. (g) Finally, voxels corresponding to this index map are

extracted from the original stack to produce the final 2D image. Scale bar, 2 mm.
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offer a class-specific control on the relative weight between the regularization term
and the data attachment term, a weight C(x,y) is assigned to each z-profile the
following way:

Cðx; yÞ¼
cF; if PZðx;yÞ belongs to the foreground class
cU; if PZðx;yÞ belongs to the uncertain class
0; if PZðx;yÞ belongs to the background class:

0
@ ð5Þ

The weight 0 is affected to the background class such that the z level for all
positions of that class will be determined only by the local curvature and by
extension by the local foreground. In the Supplementary Methods and in
Supplementary Fig. 4, we show how the weights cF and cU can be set auto-
matically. Intuitively, if the local curvature of the foreground is large in average
and the noise level is low, then cF should remain high to preserve the fore-
ground curvature. On the other hand, if the foreground lies on a flattish
manifold and the noise level is high, this term should be lower to ensure
convergence to a smooth z index map. Hence, an optimal value cF exists and
depends both on the curvature of the foreground and the noise level. In the cost
function (equation 1), decreasing the first term by a given Dz for any location
(x,y) translates to an increase of Ds and conversely. To scale those two terms on
the whole image, we seek for a c¼Ds/Dz that would smooth the foreground yet
preserving its highest local curvature (the distribution of such c on all the voxels
of the foreground of an example image is showed in Supplementary Fig. 4b).
Taking the maximum value of c would prevent any smoothing of the fore-
ground and would be equivalent to consider that there is no noise. On the other
hand, taking its average would ensure that the average curvature is maintained,

however some regions of high curvature would be overly smoothed, causing
partial loss of details. To choose the best compromise, we make the assumption
that the noise follows a Bernoulli process, where a pixel of Zmax(x,y) is either the
right z-level value on the foreground, or a wrong random value uniformly
distributed over [0, D] due to the fact a random voxel can be selected as the
maximum intensity instead of the correct foreground level (with a higher
probability when the signal-to-noise ratio is weak). Fortunately, the probability
for the latter to happen can be obtained directly from the misclassification of
the maximum intensity values in the foreground class as shown in
Supplementary Fig. 4a. Following this idea, cF is chosen to be the value of the c
distribution that match the probability of false positive of the maximum
intensity distribution on the foreground profile. This is described in
Supplementary Fig. 4c. Once cF has been computed, the rational is to choose cU

between 0 and cF. Intuitively, if the signal to noise is rather low, then it means
that a larger fraction of uncertain profiles in fact belong to the background and
should be ignored, cU should then be closer to 0. On the opposite, if the signal to
noise is rather high, cU should be close to cF. Thus, the correct ratio to apply can
be obtained from the relative position of the means of the Zmax distributions of
foreground, background and uncertain classes as showed in Supplementary
Fig. 4c.

Local spatial standard deviation rz. To enforce the smoothness of the Z index
map, its local spatial s.d. sz computed over a 3� 3 window around each location
(x,y) is included in the cost function (equation 1) to minimize. Several other local
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Figure 3 | Preserving spatial consistency maintains image resolution. We compare the results obtained by MIP, EDF9 and SME on an image stack of a

Purkinje cell in 8 days old cerebellar mixed culture acquired by wide-field epifluorescence microscopy to quantify dendritic morphogenesis. The index maps

in the first column (a,e,i) show for each pixel (x,y) the levels in the stack (0–8) from which the corresponding intensity values were extracted to obtain the

2D projection in the second column (b,f,j). Scale bar, 10mm. The index of MIP shows that two neighbouring pixels can originate from the top and the

bottom of the stack and therefore can artificially bring together objects far apart in the 3D volume. EDF, by applying the same local smoothing operator on

the index map, reduces this effect but fails to produce a fully continuous index map on the background to preserve foreground details. SME constrains the

background to reach the foreground level locally but smooths the foreground much more slightly to preserves details. Zoomed view in column 3 (c,g,k) and

intensity profiles in column 4 (d,h,l) show that precision is improved to recover fine details. In this example, the three intensity peaks obtained by SME (l)

shows a more accurate dendrite quantification by SME, where d,h could lead to erroneous profiles. This data set named NEURON1 is further described in

Supplementary Table 1.
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(c) 3D reconstruction where centrioles (green), cell junctions (blue) and nascent centrioles (red) were immuno-stained. (d) The MIP fails to distinguish

nascent centrioles from the blood vessels located below due to the non-specific Sas6 antibody. In contrast, SME (e) extracts an image corresponding to

the apical surface (cell junction channel given as a reference), making the nascent centrioles visible but avoiding the blood vessels. Scale bar, 50 mm.

(f,g) Schematic views of a dendrite in a cerebellar mixed culture stained for synapse detection. (h) 3D reconstruction showing presynaptic boutons from

granule cells (green) on Purkinje cell dendritic spines (red). (i) MIP projection fails to render the actual co-localization of objects. In contrast, (j) by

extracting a continuous layer, SME does not bring unrelated boutons artificially close to the dendritic branch as indicated by the white arrows. Scale bar,

5 mm. (k,l) Schematic views of human breast cancer cells from a study of the co-localization of huntingtin phosphorylation at serine 421 (S421-P-HTT) with

E-cadherin cell–cell junction13. (m) 3D reconstruction of stained nuclei (blue) and cell–cell junction (red). (n) MIP prevents to distinguish cell borders.

In contrast, (o) SME used nuclei stained as reference channel to extract distinguishable cell junctions for further quantification. Scale bar, 10mm.

(p,q) Schematic views of Cen2GFP adult brain ependymal cells from a study on the beating direction of their cilia. (r) 3D reconstruction where nuclei

(blue), ZO1 cell–cell junctions (red) and centrioles (green) were stained. (s) MIP fuses nuclei located at different depths. In contrast, (t) Apical cell–cell

junctions stained with ZO1 can be used as reference by SME to extract a manifold passing through the apical layer to allow exclusive identification of

individual nuclei located in it (as shown by the white arrow). Scale bar, 5 mm. It also makes the cell junctions clearly visible (as shown by the green arrow).

All data sets are further described in Supplementary Table 1.
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spatial measure of smoothness, as for instance the morphological gradient, could be
thought of to play that role but the best results we obtained were achieved using the
local spatial s.d.

Optimization process. The goal of the optimization process is to perform the
minimization defined by equation (1) to obtain the final index map Z*. As Z is a
non-parametric function, a dedicated non-parametric optimization scheme was
proposed (see Algorithm 1 in Supplementary Methods). Briefly, starting from
an initial index map Z0¼Zmax, the search consists in computing, for each
location (x,y) of the index map Z, the cost (equation 1) of moving z¼Z(x,y) up,
down or keeping it steady, and hold the value that minimize it. The algorithm
iterates on this simple scheme until a balanced is found between the Z map
smoothness sz and its proximity to the foreground jointly for all pixels. When
computing the cost (equation (1)), the maximum focus map Zmax and the class
map C are predefined constant. However, the local spatial s.d. sz depends on the
smoothness of Z and needs to be updated whenever Z is modified. Therefore,
the local spatial s.d. st� 1

Z for the whole index map Zt� 1 obtained at previous
iteration is computed once at the beginning of each iteration on a 3� 3
widndow. Then, for the sake of computational efficiency, the computation of
sZðx; yÞ for each location (x,y) for each shift (up or down) can be computed
rapidely from sz without the need for rescanning the window (see
Supplementary Methods for the details on how the rolling s.d. formula is
derived and can be used for this). This minimization process gradually increases
the smoothness of the index map while keeping it near the foreground pixels,
hence forcing the z level of background pixels to shift towards the z level of the
local foreground. Finally, as the intensity is only known for discrete values of Z,
at the end of the optimization process the composite image is constructed by
extracting the intensity values that are the closest to the Z index map on the z
axis. No interpolation is performed to preserve original fluorescence values. The
settings of the two parameters used for this optimization scheme are described
in Supplementary Methods and in Supplementary Figs 5 and 6. Also, to
intuitively understand the minimization process, Supplementary Movies 1–6
illustrate it visually for six data sets of Supplementary Table 1.

Evaluation. The performance of the proposed method and the four other
approaches mentioned in the literature review (see Supplementary Note 1) were
compared quantitatively using synthetic data sets (generated the way described in
Supplementary Fig. 7) and real data sets (described in Supplementary Table 1)
using the following metrics.

� The RMSE – Index map. The root mean square error between the
synthetic index map (ZX) and the reconstructed index map (ZR) is computed
this way:

RMSE ZX;ZRð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx;yÞ

ZXðx; yÞ�ZRðx; yÞð Þ2

W�H

vuut
ð6Þ

where W�H is the dimension of the image. This metric quantifies the quality of
the manifold reconstruction (see Fig. 5a for results).

� The SNR is the signal-to-noise ratio between the s.d. of the reconstructed
intensities s2(IR) and the s.d. of the remaining noise defined as s2(IR� IX) after
reconstruction of the synthetic intensities (IX). It is computed this way:

SNR ¼ s2 IRð Þ
s2 IR � IXð Þ ð7Þ

This metric quantifies the ability of a method to remove the noise from the
observed image volume (see Fig. 5b for results).

� The RMSE – Composite image. The root mean square error between the
synthetic intensities (IX) and the reconstructed intensity (IR) is computed this
way:

RMSE IX; IRð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx;yÞ

IXðx; yÞ� IRðx; yÞð Þ2

W�H

vuut
ð8Þ

where W�H is the dimension of the image. This amount quantifies the quality
of the recovered composite map (see Fig. 5c for results).

� The Distance from ground truth. It is the distribution of the absolute
differences on the z axis between the synthetic index map (ZX) and the
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Figure 5 | Comparison of SME with four existing methods using synthetic data. We used synthetic image stack (see Supplementary Fig. 7) and

compared the results obtained by four different state of the art methods (MIP in light blue, EOG in blue, SML in brown, EDF in purple, see the literature

review in the Supplementary Notes for details on each of those methods) and SME (in green). The metrics used for comparison are described in detail in

the ‘Methods’ section. (a) RMSE on index map quantify the deviation of the extracted manifold from the reference. (b) SNR and (c) RMSE on composite

image measure the quality of the 2D reconstructed image. SME achieves the best combination of high SNR and low RMSE. (d) The box plots illustrate the

absolute error in the z direction (in voxels) between the reference and the reconstructed manifold for a given synthetic data set. A uniformly sub-sampled

set of 1,000 pixels is also displayed for each method. We can observe that the departure from the original manifold is significantly smaller in general for

SME and extreme values are also further apart for existing methods than for SME.
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reconstructed index map (ZR).

errZ ¼ ZX �ZRj j ð9Þ
It is also a way to measure the accuracy of the manifold reconstruction (see
Fig. 5d for results).
All of these metrics were applied on synthetic data with various level of noise

(see Fig. 5). The results show an improvement of SME over the existing methods,
whatever the level.

Software and code. We make the proposed method available as a compiled
ImageJ plugin for direct use with ImageJ/Fiji along with the Java code and the
equivalent MATLAB scripts at the following address: https://github.com/bio-
compibens/SME.

Animals. All animal studies were performed in accordance with the guidelines of
the European Community and French Ministry of Agriculture and were approved
by the Direction départementale de la protection des populations de Paris
(Approval number Ce5/2012/107) and the Comité Régional dEthique en Expéri-
mentation Animale (no. 00057.01) and the veterinary services (C75 05 12).

Data availability. All 3D image data sets needed to reproduce the results are
described in Supplementary Table 1 and available in Harvard Dataverse with the
identifier doi:10.7910/DVN/VBFQK8.
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