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Abstract: During the past several years, the frequency of discovery of new molecular entities based
on γ- or δ-lactam scaffolds has increased continuously. Most of them are characterized by the
presence of at least one chiral center. Herein, we present the preparation, isolation and the absolute
configuration assignment of enantiomeric 2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic
acid (trans-1). For the preparation of racemic trans-1, the Castagnoli-Cushman reaction was employed.
(Semi)-preparative enantioselective HPLC allowed to obtain enantiomerically pure trans-1 whose
absolute configuration was assigned by X-ray diffractometry. Compound (+)-(2R,3R)-1 represents a
reference compound for the configurational study of structurally related lactams.

Keywords: lactam scaffold; enantioselective HPLC; chiral resolution; X-ray diffraction; absolute
configuration assignment

1. Introduction

Drug discovery is a complex process aimed at identifying new biologically active compounds
with a high degree of structural novelty [1]. It can be driven by the exploration of the chemical space
around a drug or a selected scaffold, the core structure of the molecular framework. Scaffolds are used
as starting points for compound synthesis or diversification and, therefore, their study represents an
effective and promising approach for finding new potent drugs [2–5].

In recent years, substituted lactams have emerged as an important pharmacophore for several drug
classes, with a large spectrum of biological outcomes and various therapeutic applications [6–8]. From a
structural standpoint, they can be four-, five-, six- and seven-membered rings, calledβ-lactams,γ-lactam,
δ-lactam and ε-lactam, respectively. Several drugs with a lactam structure have already reached the
market, and a few representative examples are reported in Figure 1. These include antibiotics with
a β-lactam structure (i.e., penicillins, cephalosporins, monobactams, carbapenems) [9], the γ-lactam
Lenalidomide (a derivative of Thalidomide endowed with immunomodulatory and antiangiogenic
activity) [10,11], the δ-lactam Dolutegravir (a HIV-1 integrase inhibitor) [12] and benzodiazepines based
on the ε-lactam scaffold (i.e., Prazepam), well known allosteric modulators of the receptor GABA A. [13].
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immunomodulatory and antiangiogenic activity) [10,11], the δ-lactam Dolutegravir (a HIV-1 integrase 
inhibitor) [12] and benzodiazepines based on the ε-lactam scaffold (i.e., Prazepam), well known 
allosteric modulators of the receptor GABA A. [13]. 

 
Figure 1. Examples of marketed drugs based on the lactam scaffold. 

In the last few years, the interest of MedChem researchers towards lactams as chemical scaffolds 
has grown, as evidenced by the increasing number of publications (Figure 2), due to their high 
potential for discovering drug candidates. In fact, lactams possess attractive features such as 
versatility and easy derivatization, and, additionally, they are conformationally restricted scaffolds 
with peptidomimetic features. Thus, they can be used to improve the potency, selectivity, and 
metabolic stability of peptide-based drugs [7]. 

Several MedChem groups have focused on the synthesis of new molecular entities based on γ- 
or δ-lactam scaffolds as highly versatile key intermediates, leading to the discovery of new 
anti-trypanosomal, anti-biofilm and anti-inflammation agents [14–18]. For instance, Delong et al. 
studied novel α-methylene-γ-lactams, α-arylidene-γ and δ-lactams, with novel antifungal properties 
against Colletotrichum orbiculare [19], whereas Davoren et al. prepared a series of molecules with 
lactam scaffolds and identified a number of γ- and δ-lactams able to function as positive allosteric 
modulators (PAMs) of muscarinic receptors (M1) [20]. Lastly, by applying a combined molecular 
modelling-STD NMR approach, our group recently identified a promising ligand with a δ-lactam 
scaffold able to bind the RNA-binding protein HuR [21–23], which interacts with target mRNAs, 
leading to the formation of HuR–mRNA complexes involved in several physio-pathological 
conditions [24–26]. 
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Figure 1. Examples of marketed drugs based on the lactam scaffold.

In the last few years, the interest of MedChem researchers towards lactams as chemical scaffolds
has grown, as evidenced by the increasing number of publications (Figure 2), due to their high potential
for discovering drug candidates. In fact, lactams possess attractive features such as versatility and easy
derivatization, and, additionally, they are conformationally restricted scaffolds with peptidomimetic
features. Thus, they can be used to improve the potency, selectivity, and metabolic stability of
peptide-based drugs [7].
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Figure 2. Papers published per year. Source Scopus (31 October 2020), key words “lactams” and
“medicinal chemistry”.

Several MedChem groups have focused on the synthesis of new molecular entities based on
γ- or δ-lactam scaffolds as highly versatile key intermediates, leading to the discovery of new
anti-trypanosomal, anti-biofilm and anti-inflammation agents [14–18]. For instance, Delong et al.
studied novel α-methylene-γ-lactams, α-arylidene-γ and δ-lactams, with novel antifungal properties
against Colletotrichum orbiculare [19], whereas Davoren et al. prepared a series of molecules with lactam
scaffolds and identified a number of γ- and δ-lactams able to function as positive allosteric modulators
(PAMs) of muscarinic receptors (M1) [20]. Lastly, by applying a combined molecular modelling-STD
NMR approach, our group recently identified a promising ligand with a δ-lactam scaffold able to bind
the RNA-binding protein HuR [21–23], which interacts with target mRNAs, leading to the formation
of HuR–mRNA complexes involved in several physio-pathological conditions [24–26].
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Given the high interest in lactams, extensive efforts have been directed towards the identification
of versatile synthetic strategies for obtaining lactams. Among the different methodologies exploited so
far, it is worth mentioning the Beckmann rearrangement, the Staudinger procedure and the Schmidt
reaction as well as cascade, tandem and multi-component reactions [27,28]. From the perspective of
efficiency, medicinal chemistry projects can advance faster with simple reactions that can use easily
available reagents (e.g., amines, aldehydes and carboxylic acids) and that require low optimization
procedures. Such reactions can be successfully used for preparing compound libraries with a high
degree of molecular diversity, thus speeding up the drug discovery process. From this perspective,
the Castagnoli-Cushman reaction (CCR) seems to be a robust procedure suitable for affording γ- or
δ-lactams with two points of structural variability, plus one additional carboxylic portion offering a site
for derivatization in one or more steps, and two stereogenic centers (Scheme 1). The CCR generally
proceeds with a high degree of diastereoselectivity, yielding predominantly the trans-configured
racemic mixture [29–33]. Recently, Ryabukhin et al. successfully applied the CCR for preparing a
potential lead-oriented library based on a lactam scaffold. Specifically, starting from two different
anhydrides, 44 aldehydes and 44 amines, and applying a one-pot parallel synthesis procedure,
they prepared a series of 132 lactams with high yields [34].
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The stereoselectivity of the CCR is a particularly appealing feature, considering that the lactams
so far proposed as drug templates, or more generally drugs with a lactam structure, are mainly
characterized by the presence of at least one chiral center [8,35,36]. This is not surprising, since it
is well recognized that chiral small molecules play a relevant role in different areas of the study of
biological systems (for example, drug discovery and chemical biology). Most processes in nature are
inherently shaped by chirality and therefore, in the drug discovery process, chirality is often exploited
to modulate the interaction between small and macromolecules [37–40]. Despite its significant role in
the interaction with the target, small-molecule chirality has not always been investigated along the
entire process of drug design and development.

Specifically, in the case of CCR-derived lactams, there has been poor interest on the enantiomeric
resolution of these compounds via liquid chromatography. To the best of our knowledge, only Kronn
et al. reported on the separation of a δ-lactam via supercritical fluid chromatography (SFC) [41].

In this context, and in line with our ongoing studies, in the present work, we describe
the synthesis, isolation and assignment of the absolute configuration (AC) of the enantiomers of
trans-2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic acid (trans-1) (Figure 3). This molecule
can be considered the model compound of a wide range of aryl-carboxyl-substituted δ-lactams.
Such structures are exceptionally important in Medicinal Chemistry, both as final products and
as key intermediates for further modifications. Specifically, to provide a valuable method for the
direct and complete resolution of trans-1, we exploited enantioselective High Performance Liquid
Chromatography (HPLC). Moreover, to gain information on the enantiomer elution order, we used
a HPLC-UV-ECD system (Electronic Circular Dichroism—ECD). A set of four different coated and
immobilized cellulose- and amylose-based chiral stationary phases (CSPs) was investigated utilizing
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normal-phase and polar organic elution conditions. The effect of the mobile phase composition on
enantioselectivity and retention was carefully evaluated. The best separation conditions were then
properly scaled up to a (semi)preparative scale, thus obtaining enantiopure trans-1, which underwent
X-ray diffraction analysis for the AC assignment. Actually, for chiral lactams, the assignment of the
AC still represents a challenging issue. In fact, these intermediates are generally used as racemates
for further derivatization and no robust and straightforward methodologies have been developed
so far for their configurational study [42,43]. To this aim, thanks to the results of the present work,
we provide a fully characterized δ-lactam, which represents an extremely useful reference compound
for the AC assignment of structurally related lactams.
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Figure 3. Structure of trans-2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic acid (trans-1).

2. Results

2.1. Synthesis

δ-lactam 1 was synthesized via the CCR following the protocol already described by our team with
suitable modifications (Scheme 2) [23]. Briefly, 4-bromobenzaldehyde and isobutylamine were reacted
in toluene to generate imine-intermediate 4 in situ. The 4-bromobenzaldehyde group was chosen to
facilitate the AC assignment by the X-ray diffraction analysis. To remove water and favor the formation
of imine 4, molecular sieves (4 Å, MS) were added [33]. Then, the carboxylic resin IRC50 was added
to scavenge the unreacted isobutylamine, thus preventing the formation of side-products. Finally,
the mixture was filtered and the solvent was evaporated. Intermediate 4 was then reacted with glutaric
anhydride in p-xylene and the mixture was refluxed to form the desired δ-lactam. After liquid/liquid
extraction, followed by flash chromatography, the final compound trans-1 was successfully isolated
with high purity (95%, cis/trans ratio: 10/90) and a satisfactory yield (38%).
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2.2. Chiral Resolution

All the analyses have been performed using a HPLC-UV system coupled with a CD detector,
thus obtaining on-line information on the elution order of the analytes. Four different CSPs were
screened: two amylose-based CSPs, whose chiral selector are tris-(5-chloro-2-methylphenylcarbamate)
coated on silica gel (Lux Amylose-2) and tris-(3,5-dimethylphenylcarbamate) immobilized on silica
gel (Chiralpak IA), and two cellulose-based CSPs, containing tris-(3,5-dimethylphenylcarbamate)
coated on silica gel (Chiralcel OD-H) and tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel
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(Chiralpak IC) as chiral selectors. The elution has been performed using n-Hexane (n-Hex) combined
with different concentrations of polar modifiers 2-propanol (IPA) or ethanol (EtOH) or using only
alcohol. The mobile phases were added with trifluoroacetic acid (TFA, 0.3%) for both the coated CSPs
and Chiralpak IC, or with a mixture of diethylamine (DEA, 0.1%) and TFA (0.3%) for Chiralpak IA.
A standard screening protocol (see Supplementary Material, Table S2) was applied first, and then the
elution conditions were properly modified to achieve a baseline separation of the analytes [44–46].

The conventional coated Lux Amylose-2 and Chiralcel OD-H CSPs allowed for poor or no peak
separation, whereas good results in terms of peak separation, peak shape and enantioselectivity were
obtained on immobilized Chiralpak IA and Chiralpak IC columns. Results are reported in Table 1 as
retention factors (k1 and k2), separation factors (α) and resolution factors (Rs).

Table 1. a Eluent composition: A, n-Hex/IPA (90:10 v/v); B, n-Hex/IPA (85:15 v/v); C, n-Hex/IPA (80:20
v/v); D, n-Hex/IPA (75:25 v/v); E, n-Hex/IPA (70:30 v/v); F, n-Hex/IPA (50:50 v/v); G, IPA (100); H,
EtOH (100); I, n-Hex/EtOH (80:20 v/v); L, n-Hex/EtOH (85:15 v/v); M, n-Hex/EtOH (90:10 v/v); b Mobile
phase was added with 0.1% DEA; c Mobile phase was added with 0.3% TFA; Flow rate: 1.0 mL/min;
d Flow rate: 0.5 mL/min; Concentration: 1 mg/mL; Injection volume: 10 µL; UV detection at 220 nm.

CSPs

Chiralpak IA b,c Chiralpak IC c

Eluent a k1 k2 α RS k1 k2 α RS
A 1.39 2.17 1.56 4.28 4.15 5.47 1.32 3.91
B 0.74 1.15 1.56 3.19 0.94 1.37 1.45 2.99
C 0.49 0.75 1.53 2.20 1.44 1.87 1.30 2.33
D 0.53 0.80 1.51 1.59 1.16 1.54 1.33 1.75
E 0.32 0.47 1.44 1.01 0.93 1.22 1.31 1.48
F 0.19 0.28 1.46 0.81 0.36 0.49 1.35 -

G d 0.24 - - - 0.47 - - -
H d 0.24 - - - 0.48 - - -

I 0.65 0.99 1.53 2.01 0.68 0.78 1.14 -
L 0.86 1.36 1.57 2.67 0.94 1.08 1.15 -
M 1.43 2.16 1.51 3.38 1.93 2.20 1.14 0.99

More in detail, good enantioresolution on Chiralpak IA was achieved by eluting with mixtures of
alkane and polar cosolvent, while no peak separation was obtained in polar organic elution conditions.
Specifically, baseline resolution was observed with n-Hex and a percentage of IPA or EtOH between 10
and 20% (for IPA, mobile phases A-C: α and Rs ranging from 1.53–1.56 and 2.20–4.28, respectively;
for EtOH, mobile phases I-M: α and Rs ranging from 1.51–1.57 and 2.01–3.38, respectively, Table 1).
Similarly, baseline separation of trans-1 enantiomers was obtained on Chiralpak IC eluting with n-Hex
and IPA, with an alcohol percentage between 10 and 30% (mobile phases A-E: α and Rs ranging
from 1.30–1.45 and 1.48–3.91, respectively, Table 1). Marginal or null enantioseparation was observed
eluting with n-Hex and EtOH in all the mobile phase compositions experimented on. Again, no peak
separation was obtained eluting with pure alcohol.

A good enantioselectivity (α = 1.51; RS = 3.38; Table 1) was observed in short retention
times (tr1 = 7.7 min; tr2 = 9.7 min) (Figure 4), using the Chiralpak IA column and eluting with
n-Hex/EtOH/DEA/TFA (90:10:0.1:0.3, v/v/v/v). Moreover, the first eluted enantiomer showed a positive
peak, whereas the second eluted enantiomer had a negative peak of the same intensity. The broad peak
at tr = 6.4 min of the UV Chromatogram corresponds to two peaks with opposite Cotton effects in the
ECD trace, suggesting that the analyte is an almost unresolved racemic mixture. The peak area is about
10%, which is consistent with the amount of cis isomers typically obtained as byproduct during the CCR.
Considering the good performance of this chromatographic method, these experimental conditions
were properly scaled-up to the (semi)-preparative scale. Resolution of trans-1 in (semi)-preparative
scale was accomplished using a Chiralpak IA column according to conditions summarized in Table 2.
Fractions collected (see Supplementary Material, Figure S3) were analyzed using the previously
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identified analytical method (Chiralpak IA, mobile phase M, Table 1). Actually, 50 mg of trans-1 were
processed. After 17 cycles, 18.1 mg of the first eluted enantiomer ([[α]20

D = +4.8, c � 0.5%, CHCl3)
and 21.2 mg of the second eluted enantiomer (([α]20

D = −4.8 c � 0.5%, CHCl3) were isolated with
e.e. higher than 99% (Figure 5), together with 8.5 mg of an intermediate fraction as a mixture of the
two enantiomers.
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Table 2. (Semi)-preparative HPLC parameters for separating the enantiomers of trans-1.

(2R,3R/2S,3S)-1

CSP Eluent (v/v/v/v) Flow Rate Injection Volume Concentration

Chiralpak IA (1 cm × 25 cm, 5 µm) n-Hex/EtOH/TFA/DEA
90:10:0.1:0.3 2.5 mL/min 1 mL 3 mg/mL

2.3. Single Crystal X-ray Diffraction Study

To obtain single crystals suitable for the X-ray diffraction, several attempts were performed
on both (+)-trans-1 and (−)-trans-1 varying solvents and crystallization conditions. The first eluted
enantiomer, (+)-trans-1, was successfully crystallized at room temperature from IPA in a water vapor
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saturated environment, and the crystal obtained underwent the X-ray diffraction analysis (crystal data
are reported in the Supplementary Material, Table S3.).
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The molecular structure revealed by the X-ray diffraction study is reported in Figure 6. The first
eluted, (+)-trans-1, exhibits a slightly distorted half-chair conformation of the six-membered ring
defining the δ-lactam, with five atoms almost coplanar (maximum deviation of 0.058 (5) Å from
their best plane) and the bridgehead C atom carrying the carboxyl out of this plane by 0.680 (9) Å.
The two chiral C atoms bind the carboxyl and aromatic substituents according to a trans configuration.
The absolute configuration R for both chiral centers of the six membered ring was assessed on the basis
of the analysis of the anomalous scattering effects for the measured reflections. The final calculated
Flack x parameters of −0.03 (1) confirms that the absolute structure was correctly assigned and that
only the enantiomer shown in Figure 6 occurs in the crystal.

At the solid state, adjacent molecules are linked together by means of O-H···O hydrogen bonds,
where the OH of the carboxylic group acts as H-donor and the O atom of the carbonyl group is the
H-acceptor. The geometrical features of the O-H···O interaction are: O(3) ···O(1)’ 2.613(7) Å, H(3O) ···O(1)’
1.74(3) Å, O(3)-H(3O)···O(1)’ 163(8)◦ (symmetry code: (‘) = 1/2 + x, 1/2 − y, 1 − z), and these interactions
originate a supramolecular double chain of (+)-(2R,3R)-1 molecules extending along the direction of
the a crystallographic axis (Figure 7). The supramolecular synthon [47] originating from this H-bond
motif can be described with the graph set notation C(8) [48]. Inspection of the available structural data
in the literature [49] shows that such a synthon occurs in different crystal structures of several δ-lactam
derivatives having the carboxylic group at the 3-position of the ring [32,50–52]. To sum up, the absolute
configuration of the first eluted (+)-trans-1 was elucidated through X-ray diffraction experiments and
both chiral C centers resulted R-configured.
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3. Discussion

δ-lactam 1 was synthesized via the CCR following procedure outlined in Scheme 2. Consistent with
literature data, the reaction proceeded with high diastereoselectivity, predominantly yielding the trans
isomer 1 (cis/trans ratio of 10/90, NMR analysis, see Supplementary Material Figure S1 and Table S1),
as confirmed by NOE experiments (see Supplementary Material Figure S2) [29,30]. The observed
stereoselectivity is due to the fact that the reaction is performed under thermodynamic control (p-xylene,
reflux, 140 ◦C, 10 h) and, therefore, the main product will be the most thermodynamically stable.
Since the trans product has less steric collision between the aromatic group and the carboxylic acid, it is
formed mainly under reversible conditions. As outlined in Scheme 3, the position of the stereocenter
attached to the carboxyl group is enolizable and this explains the cis/trans equilibrium in which the
trans product predominates. Furthermore, the obtained cis/trans ratio is in accordance with the analysis
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reported in Figure 4, in which the UV chromatogram shows a broad peak at tr = 6.4 min with 10% of
peak area attributable to racemic cis-1 (two peaks with opposite sign are present in the ECD trace).
Overall, the synthetic protocol afforded quick, easy and efficient access to the desired product.
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To isolate the enantiomers of trans-1, we exploited enantioselective HPLC resolution on
polysaccharide-based CSPs, as a valuable strategy for obtaining both enantiomers with high
enantiomeric purity and yield [53–55]. Because such CSPs exhibit enantioselectivity in several
mobile phase types, we applied the screening protocol reported in the Supplementary Material,
Table S2 [44,45]. Specifically, we exploited amylose- and cellulose-based CSPs both in a normal-phase
mode (NPM), eluting with a mixtures of n-hexane (nonpolar hydrocarbon solvent) and in alcohol of
a low molecular weight (IPA and EtOH), and in a polar-organic mode. Pure EtOH was used as an
intermediate solvent in between the normal-phase mode and the polar organic mode. Only when the
results of the screening were encouraging, but not fully successful, did we modify the mobile phase to
achieve a compound baseline separation. An ECD spectrometer coupled with HPLC-UV was used
as a chiroptical detector, since it can allow the determination of the elution order of enantiomers in a
racemic mixture at the analytical stage.

Enantioseparation of trans-1 was obtained on immobilized Chiralpak IA and Chiralpak IC,
in NPM elution conditions. The first eluted enantiomer shows positive peak in the ECD trace,
whereas the second eluted isomer shows a negative peak in both the columns, eluting with mobile
phases characterized by a high percentage of n-hexane and a low percentage of alcohol (IPA or EtOH
for Chiralpak IA and IPA for Chiralpak IC). Thus, despite the different polysaccharide nature of the
CSPs, amylose and cellulose-based, in both immobilized columns, the enantiomers preserve the same
elution order.

The results obtained on an analytical scale were fully considered in the perspective of scaling-up
the enantioseparation to a (semi)-preparative level to isolate enantiomeric trans-1 in multi-milligram
quantities. To reach an economic and efficient preparative enantiomer separation, many important
requirements must be satisfied, such as the shortest retention times, high solubility of racemate and
enantiomers in the eluent/injection solvent and the use of a mobile phase consisting of a pure low-cost
solvent to facilitate workup and re-use of the mobile phase [56]. Thus, after solubility studies employing
different mixtures of n-Hex and alcohol, elution condition M (Table 1) was chosen for (semi)-preparative
scales. Chiralpak IA, eluting with n-Hex 90/EtOH 10 added with TFA and DEA, was selected for
scaling-up purposes, showing a similar enantioresolution and equal baseline separation to the other
best conditions reported here before. A 25 cm column was used at a flow rate of 2.5 mL/min with
3 mg injected at each cycle. Racemic trans-1 (50 mg) was processed and enantiomers delivered with an
enantiomeric excess higher than 99% and a yield of 74% and 82%, for the first and the second eluted
enantiomers, respectively.
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To determine the absolute configuration for individual enantiomers of trans-1, we performed a
single-crystal X-ray diffraction analysis. In fact, the presence of heavy atoms such as bromine allows
to improve the resonant scattering properties, thus facilitating the determination of the AC by X-ray
diffraction [57]. The single crystals for X-ray experiments were grown from samples by vapor diffusion,
using IPA as solvent and water as precipitant. The enantiomer (+)-trans-1 yielded a single crystal
suitable for X-ray diffraction. The analysis of the ORTEP diagram and the Flack x parameters [58]
of −0.03(1), which also indicates that the whole crystal is homochiral, and revealed that the AC of
(+)-trans-1 is 2R,3R.

The assignment of AC of trans-1 provides a viable reference compound for determining the
AC of other structurally related lactams, since compounds with a similar chemical environment
close to the stereocenter will display comparable profiles of both ECD and VCD spectra.
Specifically, enantiomeric trans-1 may be considered the model compound of a wide range of
aryl-carboxyl-substituted δ-lactams.

4. Materials and Methods

4.1. General

Solvent evaporation was carried out under reduced pressure by a Heidolph Laborota 4000
instrument (Heidolph Instruments GmbH & Co., Schwabach, Germany). Analytical thin-layer
chromatography (TLC) was performed on silica gel precoated with aluminium-backed plates
(Fluka Kieselgel 60 F254, Merck, Darmstadt, Germany). An UV light (λ = 254 nm) was used
for the detection. Flash chromatography was performed with silica gel 60 (particle size 230–400 mesh)
purchased from Nova Chimica (Cinisello Balsamo, Italy). All the reactants and deuterated solvent
were supplied by Sigma Aldrich (Milan, Italy). HPLC grade-solvents were purchased from Honeywell
(Seelze, Germany), and analytical grade-solvents from PanReac (Darmstadt, Germany).

Optical rotation values were measured on the Jasco photoelectric polarimeter DIP 1000 (Tokyo,
Japan) with a 0.5 dm quartz cell at the sodium D line (λ = 589 nm); the compound was dissolved in
chloroform in a concentration of 0.5% (w/v).

NMR experiments were carried out at 298 K on a Bruker Avance III 400 MHz spectrometer (Milan,
Italy). The NMR experiments were in 500 µL of CDCl3.

The purity of the final compound was assessed via HPLC analysis on a Jasco system (Jasco,
Tokyo, Japan) consisting of a PU-1580 pump, 851-AS, autosampler, MD-1510 Photo Diode Array (PDA)
detector using a Phenomenex Synergi 4u Hydro-RP 80A (50 × 2 mm, 4 µm) under the following
conditions: flux: 1 mL/min, detection at λ = 254 nm, eluent: from H2O:ACN 90:10 + 0.1% of HCOONH4

to H2O:ACN 10:90 + 0.1% of HCOONH4 over 9 min.

4.2. Synthesis of 2-(4-Bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic Acid (trans-1)

In a round-bottom flask, 4-bromobenzaldehyde (100 mg, 0.54 mmol) and isobuthylamine (53.7 µL,
0.54 mmol) were dissolved in toluene (2 mL). To remove water from the reaction environment,
4 Å molecular sieves (MS) (65 mg) were added and the reaction mixture was stirred at room temperature
for 4 h. MS were then removed by filtration and the amberlyst carboxylic resin IRC50 (54 mg, 10 meq/g)
was added. The mixture was kept under mechanical stirring for 20 min and then, after IRC50 filtration,
the solvent was evaporated under reduced pressure. The yellowish oil obtained was dissolved in
p-xylene (2 mL) and glutaric anhydride (61.6 mg, 0.54 mol) was added. The reaction mixture was
stirred at 140 ◦C for 10 h and subsequently the yellow solution was evaporated in vacuo. The residue
was dissolved in ethyl acetate (10 mL) and extracted with 5% NaHCO3 (20 mL). The water phase was
added with 10% HCl (pH ≈ 3.0) and extracted with dichloromethane (DCM) (30 mL). The combined
organic layers were dried over Na2SO4 and evaporated in vacuo, furnishing the crude product as a
yellow oil. The crude was finally purified by flash chromatography eluting with DCM/MeOH (9:1, v/v),
yielding racemic trans-1 as a yellow oil (72.7 mg, 38%).
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1H-NMR (400 MHz, CDCl3, δ): 7.51 (m, Ar 2H), 7.08 (m, Ar 2H), 5.10 (m, 1H), 3.96–2.17 (m, 2H;
CH2), 2.84 (m, 1H), 2.71–2.55(m, 2H; CH2), 2.09–1.90 (m, 2H; CH2), 2.01 (m, 1H), 0.87 (s, 6H, CH3).

13C-NMR (100 MHz, CDCl3, δ): 132.2 (Ar 2C), 128.4 (Ar 2C), 61.4, 52.6 (2C), 46.2, 29.5 (2C), 26.4,
18.9 (2C), 14.2 (2C, CH3).

4.3. Chiral Chromatographic Resolution of Trans-1

The HPLC runs were performed on a Jasco system (Japan) consisting of a PU-1580 pump, 851-AS,
autosampler, MD-1510 Photo Diode Array (PDA) detector and Electronic Circular Dichroism (ECD)
2095 Plus detector.

For the analytical screening, ChiralpakTM IC (0.46 cm diameter × 25 cm length, 5 µm),
ChiralcelTM OD-H (0.46 cm diameter × 15 cm length, 5 µm), ChiralpakTM IA (0.46 cm diameter
× 25 cm length, 5 µm) (all produced by Daicel Industries Ltd., Tokyo, Japan) and Lux 5u Amylose-2TM

(0.46 cm diameter × 15 cm length, 5 µm) (produced by Phenomenex, Torrance, CA, USA) were used as
CSPs. Different compositions of n-Hex-alcohol (IPA or EtOH) mixture or pure alcohol were used as
mobile phase and DEA (0.1%) and TFA (0.3%) were added to mobile phase for analysis on immobilized
ChiralpakTM IA column, while only TFA (0.3%) was added for analysis on coated ChiralcelTM OD-H
and Lux 5u Amylose-2TM columns as well as for analysis on ChiralpakTM IC. trans-1 was dissolved in
IPA and analyzed at room temperature under the following conditions: flow rate 1 mL/min (unless
otherwise specified), UV detection at 220, ECD detection at 240 nm and injection volume 10 µL.

Chromatogram acquisitions and elaborations were carried out by the ChromNAV software.
It directly furnished the resolution factor, while retention factors (k1 and k2) of the two enantiomers
and selectivity (α) were calculated according to Equation (1) and Equation (2), respectively.

k =
tr − t0

t0
(1)

with tr = retention time, and t0 = solvent front

α =
k2

k1
(2)

For the (semi)-preparative runs, the ChiralpakTM IA column (1 cm × 25 cm length, 5 µm) was
used eluting with n-Hex/EtOH/DEA/TFA acid (90:10:0.1:0.3, v/v/v/v) at a flow rate of 2.5 mL/min,
UV detection was at 220 nm. trans-1 was dissolved in the mobile phase (c � 3mg/mL) and the injection
volume was 1 mL.

4.4. X-ray Analysis

A concentrated solution of each pure enantiomer of 1 in IPA was prepared in a small vial. The vials
containing the enantiomers were put into a larger vessel containing the anti-solvent, i.e., distilled water.
The larger vial was sealed to allow the crystal growth.

Diffraction data for a colorless crystal of the (+)-trans-1 were collected at ambient temperature by
means of a Bruker-AXS three circle diffractometer (Bruker AXS Inc., Madison, WI, USA) working with
graphite monochromated Mo-Kα X-radiation (λ = 0.7107 Å) and equipped with the SMART-APEX
bidimensional CCD detector.

Data reduction (including intensity integration, background, Lorentz and polarization corrections)
was performed with the SAINT software [59]. Absorption effects were empirically evaluated by the
SADABS software and absorption correction was applied to the data [60].

Crystal structure was solved by direct methods (SIR 97) [61] and refined by full-matrix least-square
procedures on F2 using all reflections (SHELXL-2018) [62]. Anisotropic displacement parameters
were refined for all non-hydrogen atoms. Hydrogens bonded to C atoms were placed at calculated
positions with the appropriate AFIX instructions and refined using a riding model; hydrogen bonded
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to an O atom was located in the final ∆F maps; its position was successively refined during the final
least-square procedures restraining the O-H distance to be 0.90 ± 0.01 Å. CCDC 2,031,039 contains the
supplementary crystallographic data for the studied compound. These data can be obtained free of
charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

5. Conclusions

In the last few years, the research on γ- and δ-lactam scaffolds for the discovery of new biologically
active molecules has grown consistently. Considering that most of those molecules show at least
one chiral center, and keeping in mind that the enantiomers of a chiral compound may interact
differently with biological systems, a key step in the drug discovery process is the investigation
of the role of chirality in the biological activity of lactam-based molecules. Since no robust and
straightforward methodologies for the configurational study of chiral lactams have been developed so
far, the assignment of the absolute configuration of the molecules still represents a challenging task.
To develop a fast and efficient methodology for the configurational study of molecules characterized
by a chiral lactam scaffold, in the present work, we prepared enantiopure trans-1 via chiral HPLC,
and assigned the absolute configuration to the enantiomers by an X-ray diffraction method using
the Flack parameter. The absolute structure of (+)-trans-1 crystal and, consequently, the absolute
configuration of its chiral constituents, (+)-(2R,3R)-1 molecules, was established by us on this basis.
This compound represents a valuable reference compound for the configurational study of structurally
related lactams.

Supplementary Materials: The following are available online at, Figure S1: 1H-NMR spectra of trans-1, Figure S2:
NOE bidimensional spectra of trans-1, Figure S3: (Semi)-preparative enantiomer separation of trans-1 on Chiralpak
IATM, Table S1: 1H-NMR and 13C-NMR signals of trans-1, Table S2: Mobile phase composition of the standard
screening protocol applied in analytical scale, Table S3: Crystal data of (+)-trans-1.
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