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Abstract

Although the identification of B cell subsets with negative regulatory functions and the definition 

of their mechanisms of action are recent events, the important negative regulatory roles of B cells 

in immune responses are now broadly recognized. There is an emerging appreciation for the 

pivotal role played by B cells in several areas of human diseases including autoimmune diseases 

and non-autoimmune diseases such as parasite infections and cancer. The recent research 

advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of 

research on the bridging of innate and adaptive immune system. Current study and our continued 

research may provide better understanding of the mechanisms that promote regulatory B10 cell 

function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune 

conditions. This review is focused on the current knowledge of BREG functions studied in animal 

models of autoimmune and non-autoimmune diseases.

Keywords

Bregs; Animal Models; IL-10; Autoimmune Disease; Immune Regulation

1. Introduction

Historically, B cells have been characterized as positive regulators of humoral immune 

responses and are distinguished by their ability to terminally differentiate into antibody 

(Ab)-secreting plasma cells [1] [2] or serve as antigen (Ag)-presenting cells (APCs), for 

optimal Ag-specific CD4+ T-cell expansion, memory formation, cytokine production [3]–[5] 

and positively regulate CD8+ T-cell responses by expression of co-stimulatory molecules 

[6]–[8].

Evidence for B-cell negative regulatory function has accumulated over the past 30 years. 

The hypothesis that suppressor or regulatory B (Bregs) cells orchestrate the immune system 

was originally proposed in the 1970s and maintains that the suppressive function of B cells 

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/
licenses/by/4.0/
*Corresponding authors. wzuomin@gmail.com, xhan@forsyth.org. 

HHS Public Access
Author manuscript
Open J Immunol. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Open J Immunol. 2015 March ; 5(1): 9–17. doi:10.4236/oji.2015.51002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


was mainly restricted to their ability to produce “inhibitory” antibodies [9]. These initial 

findings were later followed by a flurry of seminal papers supporting a “suppressive 

framework” for B cells and a link with T-cell tolerance [10]–[13]. Later studies showed that 

a B-cell-restricted IL-10 deficiency had a similar exacerbating effect on EAE [14] [15] and 

rheumatoid arthritis [16], suggesting that activated B cells exerted regulatory activity that 

resolved the inflammation. From this, this term “regulatory B cell” was coined.

More recently, a relatively rare negative regulatory B-cell subset was identified that was 

predominantly contained within a phenotypically unique CD1dhiCD5+CD19hi subset in the 

spleens of naive wild-type mice [17]. This regulatory B-cell subset is Ag-specific and 

significantly influences T-cell activation and inflammatory responses through IL-10 

production [17] [18]. Given that multiple regulatory B cell subsets are likely to exist, as now 

recognized for T cells, it has been specifically labeled this IL-10 competent 

CD1dhiCD5+CD19hi regulatory subset as B10 cells because they are responsible for most 

IL-10 production by B cells and they appear to only produce IL-10 [19].

Recently, many studies have used animal models of human diseases to demonstrate that B 

cells have regulatory functions in vivo, and most of them use B-cell-deficient μMT mice or 

the adoptive transfer of bulk B cells. In addition, multiple groups have identified IL-10-

producing regulatory B cells of varying phenotypes in different disease models following 

diverse stimulation and culture protocols [14]–[16] [20]–[27].

2. Bregs in Autoimmune Diseases

2.1. Experimental Autoimmune Encephalomyelitis

B cells play a dual role in experimental autoimmune encephalomyelitis (EAE), which is the 

animal model of the human autoimmune disease multiple sclerosis (MS). The first one is 

contributing to the pathogenesis of EAE through the production of anti-myelin antibodies 

that contribute to demyelination. The other one is playing an essential role in the 

spontaneous recovery from EAE.

In 1996, Wolf found that B cells were not required for the onset of EAE, revealed that μMT 

mice failed to spontaneously recover from EAE [28]. This was the first indication in animal 

autoimmune models that B cells play a regulatory role in down-regulating inflammation. 

While in the later study, C57BL/6μMT mice were either not able to recover from EAE when 

an EAE induction protocol that allowed for recovery from EAE was used, which indicating 

that B cell production of IL-10 and expression of CD40 were requirements for their 

regulatory activity [14].

In regards to TLR signaling TLR2/4 ligands are present in the CFA adjuvant not only used 

to induce EAE but also induce the production of IL-10 by B cells [29]. Thereby, IL-10-

producing regulatory B cells, most likely B10 cells, are important for controlling EAE 

severity and resolution. More specifically, Myd88 expression by B cells was required for 

recovery from EAE in MOG-peptide EAE [29].

The Tedder laboratory studied that both genetic disruption of CD19 and the transfer of 

CD19−/− B cells from MOG peptide-primed mice exacerbated EAE which demonstrated that 
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signaling was important for regulatory B cell functions [30]. They analysed CD19−/− and 

human CD19 transgenic (hCD19tg) mice, with the later harboring hyperactive B cells, 

indicating that CD19−/− mice exhibit enhanced T cell-mediated inflammation (contact 

hypersensitivity (CHS)), and inflammation in hCD19tg mice was reduced [17].

The B cell regulatory effects were recently shown not to be IL-10 dependent [31]. On the 

contrary, the Tedder laboratory showed that the adoptive transfer of CD1dhiCD5+B cells 

from CD19−/− mice or from MOG-sensitized animals prior to EAE induction by MOG 

peptide attenuated EAE disease severity. Meanwhile, B cells from IL-10−/− mice did not 

reduce disease severity, indicating an IL-10-dependent mechanism [1]. B cell depletion 

therapy in early MS clinical trials with anti-CD20 showed remarkable efficacy in preventing 

disease progression [32] [33]. However, much still needs to be learned regarding how each 

B cell function can harnessed to either prevent or induce the recovery from MS.

2.2. Type 1 Diabetes

Studies on B10 cells and mouse models of diabetes are limited to the nonobese diabetic 

(NOD) mouse, a spontaneous model of type 1 diabetes in which autoimmune destruction of 

the insulin-producing pancreatic β cells is primarily T cell mediated [34].

Although B cells play the pathogenic role in T1D initiation [35], B cells activated in vitro 

can maintain tolerance and transfer protection from T1D in NOD mice, both delay the onset 

and reduces the incidence of T1D. Protection from T1D is IL-10 dependent since the 

transfusion of activated NOD-IL-10−/− B cells does not confer protection from T1D or the 

severe insulitis observed in NOD recipients [36] [37]. In another study, LPS-activated B 

cells were transferred into prediabetic NOD mice and found that Fas ligand and secreted 

transforming growth factor-β were upregulated, which were considered to contribute to 

inhibit autoimmunity [37].

Although the animal studies in TID have shed some light on the limitation of the rarity of 

circulating B10 cells, the possibility of therapeutic transfusion of autologous, IL-10-

producing, BCR-activated B cells or B10 cells in order to protect human subjects at risk for 

T1D remains elusive.

2.3. Arthritis

CIA is a model for human rheumatoid arthritis that develops in susceptible mouse strains 

immunized with heterologous type II collagen emulsified in complete Freund’s adjuvant 

[38] [39], which shares in common with rheumatoid arthritis having an association with a 

limited number of MHC-II haplotypes that determine disease susceptibility [40] [41].

B cells are important for initiating inflammation and arthritis [42]. By contrast, IL-10-

producing B-cell sub-sets regulate inflammation during CIA. Activation of arthritogenic 

splenocytes with Ag and agonistic anti-CD40 mAb induces a B cell population that produces 

high levels of IL-10 and low levels of IFNγ [16]. Specifically, multiple studies have tested 

whether the adoptive transfer of activated B cells could inhibit CIA. Mauri’s lab injected 

CD40 mAb and collagen-activated B cells from the spleens of arthritogenic mice into 

recipient mice, observed that arthritis incidence (>50% reduction), disease severity (>90%), 
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and Th1 cell differentiation are inhibited. Moreover, adoptive transfer of B cells also 

partially inhibits arthritis incidence and severity, even after disease initiation. However, the 

adoptive transfer of IL-10−/− B cells does not prevent arthritis in this model system [16]. 

Evans has tested the adoptive transfer of B cells into mice immunized with bovine collagen 

(type II collagen) inhibits TH1 responses, prevents arthritis development, and is effective in 

ameliorating established disease, while the adoptive transfer of CD21hiCD23+IgM+ B cells 

from DBA/1 mice in the remission phase could prevents CIA and reduces disease severity 

through IL-10 secretion [22]; Gu also found a substantial reduction in the number of TH17 

cells [43]. Other studies administered apoptotic thymocytes to mice up to 1 month before the 

clinical onset of CIA is also protective for severe joint inflammation and bone destruction 

[23].

Collectively, activated spleen B cells responded directly to apoptotic cell treatment, 

increasing secretion of IL-10, which is important for inducing T-cell-derived IL-10. 

Moreover, the passive transfer of B cells from apoptotic cell-treated mice provided 

significant protection from arthritis.

2.4. Systemic Lupus Erythematosus

Studies in the NZB/W spontaneous lupus model therefore suggest that B10 cells have 

protective and potentially therapeutic effects. In wild type NZB/W mice, the 

CD1dhiCD5+B220+ B cell subset, which is enriched in B10 cells, is increased 2.5-fold 

during the disease course, whereas CD19−/− NZB/W mice lack this CD1dhiCD5+ regulatory 

B cell subset [44]. Mature B cell depletion initiated in NZB/W F1 mice, hastens disease 

onset, which parallels depletion of B10 cells, suggesting that B cell-negative regulatory 

effects are important in NZB/W mice [45]. Moreover, the potential therapeutic effect of B10 

cells in lupus is highlighted by the prolonged survival of CD19−/− NZB/W recipients 

following the adoptive transfer of splenic CD1dhiCD5+ B cells from wildtype NZB/W mice 

[44]. However, in the MRL.Fas(lpr) mouse lupus model, B cell-derived IL-10 does not 

regulate spontaneous autoimmunity [46]. The study suggests fundamental differences in the 

pathogenesis and immune dysregulation in the NZB/W lupus model compared with the 

MRL.Fas(lpr) model.

2.5. Inflammatory Bowel Disease

Early studies showed that B cells and their autoantibody products suppress colitis in T cell 

receptor alpha chain-deficient mice that spontaneously develop chronic colitis, while B cells 

are not required for disease initiation [47].

Mizoguchi’s group has subsequently demonstrated that B cells are the regulatory mediators 

and were the first to identify a B-cell subset with up regulated CD1d expression that is 

induced in the gut-associated lymphoid tissues of mice with intestinal inflammation, and 

they also suggested IL-10-producing B-cell subsets with varying phenotypes and origins 

regulate intestinal inflammation during inflammatory bowel disease [15] [48].

Dextran sulfate sodium-induced intestinal injury is more severe in CD19−/− mice where B10 

cells are absent than in wild type mice [49], suggesting these inflammatory responses are 

negatively regulated by CD1dhiCD5+ B cells producing IL-10. Moreover the other study 
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observed the adoptive transfer of mesenteric lymph node B cells also suppresses 

inflammatory bowel disease through a mechanism that correlates with an increase in 

regulatory T-cell subsets [50]. Thus, cytokine-producing B cells can regulate immune-

mediated gut inflammation. B10 cells therefore emerge during chronic inflammation in 

mouse models of inflammatory bowel disease, where they suppress the progression of 

inflammatory responses and ameliorate disease manifestations.

3. Bregs in Parasitic Infection

The first clue for an anti-inflammatory role of Bregs in infections with parasites came from a 

study demonstrating a regulatory role of B cells during Schistosoma mansoni worm plus egg 

infection. Infection of μMT mice led to an enlargement of hepatic granuloma and a 

decreased lifespan [51] [52]. Recently, it has been demonstrated that B cells induced by 

Schistosoma mansoni worms is in an IL-10-dependent manner, which are responsible for 

protecting mice against fatal, experimentally induced anaphylaxis [53]. Breg cell function 

during different stages of natural S. mansoni infections and showed the existence of active 

regulatory mechanisms during chronic, but not acute infection [54]. A similar liver 

pathology was observed in schistosome-infected, Fcg-chain receptor knockout mice [52], 

suggesting that B-cell regulation is mediated either by the production of antibodies 

neutralizing egg-derived inflammatory molecules or by triggering the production of anti-

inflammatory mediators from FcR+ cells.

The concept that helminth-induced B cells can protect against allergic inflammation has 

been extended to other helminth infections that are natural for mice: in H polygyrus-infected 

mice, adoptive transfer of mesenteric lymph node B cells suppressed both DerP1-specific 

airway inflammation and EAE [55]. Interestingly, Breg cell development can also be seen 

during the infections caused by Leishmania major [56]; IL-10-producing B cells were 

critical for the development of unprotective TH2 responses and susceptibility to infection. In 

addition, murine cytomegalovirus has been shown to induce IL-10-producing Breg cells, 

resulting in decreased virus-specific CD81 T-cell responses and plasma cell expansion [57]. 

Other studies investigated the role that B cells play in infection with the nematode Brugia 

pahangi. Adoptively transferred peritoneal B cells, isolated from wild-type mice that had 

been immunized with B. pahangi, have been shown to protect athymic recipient mice 

against infection by B. pahangi infection [58].

In another study, the depletion of B cells from splenocytes of infected mice resulted in a 

reduced level of antigen-specific CD4+ T-cell proliferation paralleled by a reduced level of 

CD80 and CD86. Similar results were obtained if IL-10 was neutralized at the time of 

infection, suggesting that B cells producing IL-10 might modulate immune response in 

filarial-infected mice, via the suppression of CD80 and CD86 expression on Bregs [59]. 

Taken together, these studies show that helminths can induce Breg cells that can protect 

against allergic diseases via the release of IL-10 and that this process is particularly active 

during the chronic stage of infection. Furthermore, it can be concluded that the suppressive 

ability of Breg cells is not restricted to TH1 immune responses associated with 

autoimmunity, and the effect that the humoral immune response and FcR interactions might 

play a major role in controlling.

Lin et al. Page 5

Open J Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Bregs in Cancer

Given that Bregs have been shown to suppress autoimmunity via the inhibition of 

autoreactive T cells, it might be anticipated that Bregs could also downregulate the 

protective cytotoxic T lymphocyte responses directed against tumor cells. Terabe found that 

enhanced antitumor immunity can be seen in B-cell-deficient mice and is associated with an 

increased activity of T and NK cells, both of which are important for the promotion of 

natural tumor surveillance [60]. Increased CD4+ and CD8+ T-cell responses to TS/A tumors 

are observed in μMT mice [61]. In B16 melanoma, mature B-cell depletion using CD20 

mAb dramatically exacerbates tumor progression and metastasis, arguing that B cells 

primarily support antitumor immune responses in this model [1]. Thus, these results suggest 

that B cells can also negatively regulate tumor immunity.

Scott and colleagues have shown that the interaction between CD40L expressed on tumors 

and CD40 on B cells induces IL-10 production by B cells, indicating that the release of 

IL-10 is probably responsible for the diminished IFNγ production by CD8+ T and NK cells 

and the decreased CD8+ T-cell memory development. However, there is some evidence to 

suggest that IL-10 can suppress angiogenesis and, thus, encourage tumor regression [62] 

[63]. Furthermore, the ubiquitous expression of CD40 in vivo will probably lead to a more 

complex cascade of anti- and pro-inflammatory cytokines, which might overcome the 

inhibitory effect of Bregs. But it remains to be formally proven whether or not 

administration of anti-CD40 can generate Bregs in vivo. Another study demonstrated an 

excessively zealous Breg population may promote tumor cell growth, as one of the 

mechanisms used by tumor cells to escape from the immune response consists in activation 

of Bregs that produce TGF-beta [64].

A role for B cells in the development of tumor immunity has been assessed using μMT mice 

given Friend murine leukemia virus gag-expressing mouse EL-4, D5 melanoma, or 

MCA304 sarcoma cells. Inoue and colleagues have tested wild-type mice were unable to 

control tumor progression, whereas EL-4 gag and D5 tumors (but not MCA304) were 

eliminated in μMT mice, which developed tumor-specific cytotoxic T lymphocytes after 

tumor challenge. Similar study suggested the growth of EL4 thymoma, MC38 colon 

carcinoma, and B16 melanoma was prevented or slowed in μMT mice in contrast to control 

mice [62] [65].

By contrast, B-cell depletion using CD20 mAb in a syngeneic lymphoma model 

dramatically enhances tumor clearance through B10-cell elimination. Thus, as in 

autoimmunity, B10 cells are likely to be involved in regulating antitumor immunity. 

However, this regulation will be significantly influenced by the immunogenicity of the 

tumor and the nature of the antitumor immune response [66].

5. Summary

Despite the extensive efforts on the characterization of BREG subtypes and their mechanism 

of action in different animal models, questions still exist to unravel the mechanisms 

underlying Bregs biology and function. The precise phenotype and characteristic markers of 

Bregs are still the subject of debate. It remains unclear whether Bregs require self-reactive 
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BCRs for function. Are Breg cells a developmentally distinct B-cell subset? Do Breg cells 

display a specific transcriptional signature such as FoxP3 for regulatory T cells? 

Understanding these questions may open novel avenues for the treatment of inflammatory 

diseases such as allergy and autoimmunity.
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