
molecules

Article

Volatile Organic Compounds, Bacterial Airway Microbiome,
Spirometry and Exercise Performance of Patients after Surgical
Repair of Congenital Diaphragmatic Hernia

Gert Warncke 1 , Georg Singer 1,* , Jana Windhaber 1, Lukas Schabl 1, Elena Friehs 1, Wolfram Miekisch 2 ,
Peter Gierschner 2 , Ingeborg Klymiuk 3, Ernst Eber 4, Katarina Zeder 4, Andreas Pfleger 4, Beate Obermüller 1,
Holger Till 1 and Christoph Castellani 1

����������
�������

Citation: Warncke, G.; Singer, G.;

Windhaber, J.; Schabl, L.; Friehs, E.;

Miekisch, W.; Gierschner, P.; Klymiuk,

I.; Eber, E.; Zeder, K.; et al. Volatile

Organic Compounds, Bacterial

Airway Microbiome, Spirometry and

Exercise Performance of Patients after

Surgical Repair of Congenital

Diaphragmatic Hernia. Molecules

2021, 26, 645. https://doi.org/

10.3390/molecules26030645

Academic Editors: Natalia Drabińska
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Abstract: The aim of this study was to analyze the exhaled volatile organic compounds (VOCs)
profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic
hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients
(median age 9 years, range 6–13 years) treated for CDH were included. Exhaled VOCs were measured
by GC–MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene
sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry.
The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower
levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant
differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly
lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly
reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to
report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane
observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH
patients had no signs of impaired physical performance capacity, fueling controversial reports in
the literature.

Keywords: CDH; microbiome; VOCs; spiroergometry; outcome

1. Introduction

Congenital diaphragmatic hernia (CDH) is a rare disease occurring with an incidence
of 1:2000–1:5000 live births [1]. CDH is caused by disturbances in the formation of the
diaphragm in the eighth week of gestation, leaving a defect with persistent communication
between the abdominal and thoracic cavity [2]. Typically, this defect is located in the dorsal
aspect of the diaphragm (Bochdalek hernia, 95% of cases, mostly located on the left side).
Ventral hernias (Morgagni hernia) are rarer and typically located on the right side [3].

In fetuses with CDH, abdominal organs herniate into the thorax, subsequently re-
stricting pulmonary development on the affected but also on the contralateral side. Conse-
quently, patients with CDH suffer from pulmonary hypoplasia and vascular malformation
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with thickened muscle layers causing pulmonary hypertension with right ventricular dys-
function and left ventricular hypoplasia, reduced mobility of the diaphragm and impaired
alveolar growth [4,5].

Even after surgical repair, 30–50% of CDH patients show—amongst others—persistent
respiratory morbidity with impaired lung function [6–8] and/or recurrent respiratory
infections [9]. While reduced lung function may be attributed to the congenital defect
with lung hypoplasia and alveolar growth disturbances, the underlying reason for the
recurrent infections may only partly be explained by impaired lung function. However,
alterations of bacterial colonization can be speculated. Over recent decades, scientists
have postulated sterility of the respiratory tract. However, with the advent of DNA based
sequencing methods, microbial colonization of the healthy respiratory tract has been
demonstrated in the last years [10]. This has led to the term “pulmonary microbiome”
describing the collective genome of bacteria, archaea, fungi and viruses inhabiting the
respiratory tract. Overall, there are still very limited data focusing on the pulmonary
microbiome in pediatrics. While there is some evidence of alterations of the pulmonary
microbiome in cases of asthma and cystic fibrosis [11,12], there are currently no data
published concerning CDH patients.

While some studies describe reduced exercise tolerance in addition to impaired lung
function in patients after CDH repair [5,13,14], others report normal values compared
to healthy peers [7,15]. All of these studies rely on exercise performance testing, but do
not look in the depth of the patients’ metabolism. The emerging field of volatile organic
compounds (VOCs) analysis in patients may offer novel insights. Additionally to oxygen,
nitrogen and carbon dioxide, human breath contains several hundred different VOCs [16].
Among others, the VOC profile contains carbohydrates, ketones, aldehydes, cyclic compo-
nents and sulphur- or nitrogen containing compounds [16]. Some of these substances have
been attributed to the metabolic and inflammatory processes of the host [17], others may
also be related to the (pulmonary) microbiome.

Although the analysis of body odors, for instance the fruity smell of ketones in the
breath of diabetic patients, goes back many thousand years in medical history, only re-
cent technical developments have allowed a detailed VOC analysis. For instance, the
concentration of exhaled VOC profiles differs between type I diabetes patients and healthy
children [18], and metabolic adaptation through postprandial hyperglycemia and related
oxidative stress is immediately reflected in exhaled breath VOC concentrations [19]. Breath
VOC profiles may help to understand basic mechanisms and metabolic adaptation accom-
panying progression of chronic kidney disease in pediatric patients at an early stage [20].
Investigations of children with cystic fibrosis have revealed increased levels of pentane
correlating to nutritional status and lung function [21]. While the pulmonary long-term
sequelae of CDH have been described in several reports, examinations of exhaled VOC
profiles of patients after surgical repair of CDH as potential noninvasive disease markers
have not yet been published. Thus, it was the aim of this study to analyze the breath VOC
profile, airway microbiome, lung function and exercise performance of patients after CDH
repair compared to healthy age and sex-matched controls in order to gain more detailed
information about the pathophysiology of this disease.

2. Results

Nine patients following surgical repair of a CDH were recruited for long-term follow-
up examinations consisting of assessment of the exhaled VOC profile, airway microbiome,
lung function and exercise performance. As a control group, nine age and sex-matched
controls were enrolled. The median age at the examination was 9 years (IQR 5). Within
each group, six patients were male and three were female. The median gestational age
of the CDH patients was 39 weeks (IQR 3.8), median birth weight was 3.4 kg (IQR 0.7).
CDH occurred on the left side in five, the right side in three and bilaterally in one patient.
The liver was partially herniated into the thoracic cavity in two patients. CDH patients
were ventilated conventionally for a median of 7.5 days (IQR 17). One patient required
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high frequency oscillation. Three patients were on inhalative nitric oxide because of
pulmonary hypertension.

Surgical repair was performed on median day of life four (IQR 6). Eight patients
underwent direct closure and one underwent a patch repair. There was no recurrence.
In the post-operative medical history two of the nine CDH patients reported recurrent
respiratory infections. Eight of the nine patients with CDH and all nine control patients
reported feeling fit in daily life.

Not all of the patients were eligible for all examinations. Table 1 gives an overview of
the data available for matched pair analysis.

Table 1. Overview of CDH patients and their age and sex-matched healthy controls.

CDH Control Age Gender Muscle Mass Body Fat VOCs Pulmonary
Microbiome

Spirometry
Before Ex. Spiroergometry Spirometry

After Ex.

CDH-1 CDHK-7 12 m X X X X X X X
CDH-2 CDHK-8 9 m X X X X X 01 01
CDH-3 CDHK-6 8 m X X X 01 X 01 01
CDH-4 CDHK-9 13 m X X X X X X X
CDH-5 CDHK-2 9 f X X X X X X X
CDH-6 CDHK-4 12 f X X X X X X X
CDH-7 CDHK-3 6 m 01 X X X X 01 01
CDH-8 CDHK-1 13 m X X X X X X X
CDH-9 CDHK-5 7 f 02 02 X 02 02 02 02

X: Examination performed and valid; 0: Examination of one or both of the matched pairs missing; Ex: Exercise; Underlined: Patients have
been subjected to passive smoke in their familial surroundings; 1: Patient physically unable to perform test/donate sample; 2: Patient
refused to perform test/donate sample. CDH: congenital diaphragmatic hernia; VOC: volatile organic compound.

2.1. Clinical Examination

There were no significant differences for height, body weight, BMI, muscle mass or
body fat between the groups (Table 2).

Table 2. Anthropometric data of the patients in the CDH and control group. Data presented as
medians (IQRs) and the Mann–Whitney U test was performed for group comparison.

Parameter Control Group CDH Group p-Value

Height (cm) 137.0 (39.5) 142.5 (36.5) 0.673
Body weight (kg) 30.0 (28.4) 36.4 (30.5) 0.673

BMI (kg/m2) 16.0 (5.0) 18.0 (4.7) 0.888
Appendicular muscle mass (kg/m2) 5.6 (3.6) 5.3 (2.8) 0.805

Body fat (%) 5.3 (2.8) 6.0 (15.0) 0.442
BMI: Body Mass Index.

2.2. Breath VOC Profile

In the breath samples a total of 67 different VOCs could be identified. Levels of
35 VOCs were not consistently above the limit of quantification (LOQ) and therefore had
to be excluded for further quantitative analysis.

The remaining 32 substances were further processed and used for group comparison.
Heatmap and dendrogram analysis showed different unspecific clusters. Alterations in the
following 20 substances were significantly affected by room air contamination (levels in
room air >20% of exhaled concentration): 1-methylbenzene, 1-propanol, 2,3-butandione,
2-butanone, 2-phenoxyethanol, 3-methyl-2-butanone, α-pinene, benzene, ethanol, ethylben-
zene, hexanal, n-hexane, isopropylalcohol, nonanal, nonanone, octane, pentan, pentanal,
p-xylene and toluene and were thus excluded as potential biomarkers (Supplementary
Figure S1).

Out of the remaining 12 substances, nine substances did not show significant differ-
ences between the groups (Supplementary Figure S2). Significant differences occurred for
2-methylbutane, acetone and cyclohexane. The VOCs 2-methylbutane (p = 0.038) and ace-
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tone (p = 0.002) were significantly decreased and cyclohexane was significantly increased
(p = 0.004) in CDH patients compared to the healthy group (Figure 1).
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Figure 1. Concentrations of selected VOCs in breath samples of control patients and CDH patients (A).
Concentrations of 2-methylbutane (B), acetone (C) and cyclohexane (D) were significantly different
between the two groups; ARA: ambient room air.

2.3. 16S Based Airway Microbiome

The airway microbiome was measured with 16S based analysis of deep induced
sputum samples. Alpha-diversity of the deep induced sputum samples did not differ
significantly between CDH patients and controls (Shannon Index CDH median 6.94 ± IQR
0.577 vs. controls median 6.86 ± IQR 0.414; p = 0.655). Likewise, LefSe analysis over all
hierarchical levels between the two groups did not result in significant different taxa. Beta-
diversity analysis was not significantly different between the two groups (weighted unifrac
p = 0.97, Bray–Curtis p = 0.88) (Figure 2). Analysis of the relative abundances revealed
no statistically significant differences at the phylum, class and genus level between the
two groups studied. On the order and family level, however, the relative abundances
of Pasteurellales (controls median 0.022 ± IQR 0.01 vs. CDH median 0.016 ± IQR 0.01;
p = 0.038) and Pasteurellaceae (controls median 0.022 ± IQR 0.01 vs. CDH median 0.016 ±
IQR 0.01; p = 0.038) were significantly lower in CDH patients.
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Figure 2. Principial coordinate analysis (PCoA) with weighted UniFrac comparison (A) and Bray–
Curtis dissimilarity (B) tests; 95% confidence ellipses are indicated. The results revealed no obvious
clustering of the14 deep induced sputum samples (CDH patients red dots, controls blue dots).
PERMANOVA revealed no significant differences in both tests. Relative abundances of CDH patients
and age and sex-matched controls at the phylum level (C) and genus level (D). Note that only bacteria
with relative abundances of more than 1% are depicted.

2.4. Spirometry

Conventional spirometry was performed before and after exercise testing. CDH pa-
tients showed no differences in their forced vital capacity (FVC) before and after exercise in
comparison to their healthy peers (Figure 3). The Tiffeneau index was significantly lower
in CDH patients before (p = 0.028), but not after exercise (p = 0.063).
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Figure 3. Forced vital capacity (FVC) (A), Tiffeneau Index (B) and forced expiratory volume in
1 s (FEV1) (C) before and after exercise of control patients and CDH patients; ns: not significant;
* p < 0.05.

2.5. Spiroergometry

Bicycle spiroergometry was performed with a sex and body weight dependent proto-
col. There was no statistically significant difference between patients with CDH and their
healthy peers (Table 3).

Table 3. Results of exercise performance testing (exhausting bicycle spiroergometry). Data displayed
as medians (IQRs).

Parameter Control Group CDH Group p-Value

Relative Performance Capacity (%) 118.0 (27.0) 108.0 (33.0) 0.095
VO2max/kg (mL/kg/min) 46.7 (12.3) 42.3 (9.6) 0.222

Pmax/kg (W/kg) 3.4 (1.0) 3.3 (0.8) 0.310
O2 Pulse (mL) 12.1 (7.3) 10.2 (7.6) 1.0

RER 1.2 (0.2) 1.2 (0.1) 0.841
VO2max/kg: Maximum oxygen uptake per kilogram body weight; Pmax/kg: Maximum performance per
kilogram body weight; RER: Respiratory exchange ratio.

3. Discussion

Our study gives a first insight into both the airway microbiome and volatile organic
compounds in breath samples of patients 6 to 13 years following surgical CDH repair
compared to healthy age and sex-matched peers. As a major result, it revealed no significant
differences in the bacterial airway colonization but differences in the VOC profile.

We were not able to find statistically significant differences regarding anthropometric
parameters such as height, body weight, BMI, body fat and muscle mass between the two
groups. This is concordant with the literature describing no evidence for long-term growth
impairment in patients following CDH repair [15].

Regarding the VOC profiles of exhaled breath samples, CDH patients exhibited
significantly decreased levels of acetone and 2-methylbutane, in addition to significantly
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increased levels of cyclohexane. Acetone is formed by decarboxylation of acetoacetate
generated by beta-oxidation of fatty acids and is thus linked to fat metabolism [22]. Under
exercise, acetone levels have been shown to increase to the lactate threshold at about 45%
of maximum exercise followed by a steady decrease. In this regard the acetone peak marks
the switch between fat and carbohydrate metabolism [22]. Type I diabetes and fasting
are medical conditions with increased ketone concentrations in breath and urine. Both
are associated with predominant lipid metabolism. In type I diabetes, a lack of insulin
prevents dextrose from entering the cells leading to impaired carbohydrate metabolism. In
this condition, the body shifts to lipid oxidation as the energy source, resulting in increased
ketone levels. Similarly, lipid oxidation is activated in response to a lack of carbohydrates
under fasting conditions. In our collective, no patient was known to be diabetic. All patients
fasted for 2 h prior to VOC sampling. Therefore, the conditions were similar in both studied
groups. Since no metabolic parameters were determined in this study, possible unknown
co-morbidities cannot be ruled out as reasons for the different acetone levels, especially
as there are no known influences of CDH on carbohydrate or fat metabolism. There is
currently no scientific information about the role of 2-methylbutane in in vivo experiments.
The exact role of this VOC has to be elucidated in future studies. Cyclohexane is an organic
solvent and part of raw oil. None of our participants reported increased exposure to organic
solvents or gasoline vapors. The distribution of patients exposed to passive smoke did
not differ between the groups (compare Table 1). There are no reports focusing on its
origin in humans at present. However, cyclohexane has been mentioned in two studies
in association with pulmonary diseases. First, Oguma et al. described increased levels
of cyclohexane (and xylene) in patients with lung cancer compared to healthy controls
(after ruling out possible confounders such as age, smoking status, gender and pulmonary
function) [23]. Furthermore, the authors described an increase in cyclohexane (and xylene)
levels in breath samples with progressing disease and a decrease in the healing process [23].
A second study revealed increased cyclohexane levels (among other VOCs) in cell cultures
of human lung tissues infected with E. coli, P. aeruginosa and S. aureus [24]. Similarly, the
authors could demonstrate increased cyclohexane levels in rabbits with pneumonia due
to infection with the same pathogens [24]. While xylene showed no significant alterations
in our study, cyclohexane was significantly increased as a possible sign for pulmonary
impairment in CDH patients.

The airway microbiome analysis showed no significant differences of both α- and β-
diversity between CDH and control patients. Regarding patient history, only two of the nine
CDH patients reported recurrent respiratory infections. This low number makes a statistical
comparison unfeasible. Additionally, the infections occurred before enrollment in this trial
and it was therefore impossible to assess the nature of these infections (viral/bacterial).
Taken together, the role of the airway microbiome and its role in a possible pre-disposition
for respiratory infections remains unclear at present. Currently, there are no other reports
in the literature, making comparisons to other patient groups impossible.

Spirometry revealed no significant differences in FVC between CDH and control
patients. Similarly, Turchetta and coworkers reported no significant differences in lung
function testing in CDH patients [25]. In contrast, however, Zaccara et al. and Marven et al.
both have described a significant FVC reduction in CDH patients compared to healthy
controls [15,26]. Regarding airway obstruction, our data confirm the findings of other
authors who also reported a reduced FEV1 or FEV1/FVC in CDH patients [5,13,26].

While some authors have shown that CDH patients feel less fit than their healthy
peers [15,25], the majority of our patients felt physically fit. The bicycle spiroergometry
results underline this subjective impression showing no significant differences between
CDH and control patients. While Marven and colleagues reported no significant impair-
ment of exercise performance in CDH patients similar to our data [15], other authors have
revealed evidence for reduced exercise performance (lower VO2max, lower O2-pulse or
endurance time) in their CDH groups [5,13,14,26]. A possible reason for the discrepancies
in this regard may be differences in the training status of the patients. Several studies
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could prove that CDH patients who exercised had a better performance in spiroergometry
compared to those who did not [5,25]. Therefore, a different training status between the
CDH and control group may explain some of the differences found in exercise performance
testing. While we did not assess the training habits in our study, our collective showed no
differences in BMI, muscle or fat mass as possible anthropometric signs influencing the
exercise performance between the groups.

Study limitations include that, despite a high effort with repeated attempts to contact
patients, the number of recruited patients is relatively low. This can be explained by the low
prevalence of CDH of 2.6 out of 10,000 total births and a mortality rate of 37.7% [27] and the
single-center setting of this investigation. A further fact decreasing the number of potential
participants is the fact that we only recruited children between 6 and 16 years of age in
order to assess changes of the examined parameters in children and adolescents. Including
older patients might increase the number of confounders (smoking, exhaust, comorbidities,
etc.) for the values investigated. Younger children, on the other side, would not have been
able to sufficiently participate in controlled breath VOCs sampling. In case of low effect
size, relevant group differences which would have been detected in a larger sample size
might have been overlooked due to the low number of participants in this study. Therefore,
our study can be interpreted as an observational pilot study. Nevertheless, we give a
first thorough overview of the airway microbiome and VOC analysis of CDH patients.
Moreover, all but one patient underwent direct closure of the diaphragmatic defect. As
a potential consequence our patient group may present with better exercise performance
and other parameters compared to patients with larger defects and possibly associated
higher grad of pulmonary hypoplasia. Therefore, future multi-center trials including a
larger group of patients will be required to expand this first data set. Another limitation is
that when sampling deep induced sputum, the sample from the deep airways also passes
the main bronchi, trachea, pharynx and mouth resulting in a possible contamination of
the sample at these levels, probably masking potential biological differences in the deep
airways. Therefore, the microbiome sample obtained can only be referred to as an airway
microbiome. Harvesting the pulmonary microbiome is only possible by bronchoscopy
with a broncho-alveolar lavage, which is ethically impossible in our setting. Further,
analyzing the fungal airway microbiome might remain of potential interest. Regarding
VOC measurements, effects of inhaled room air could be addressed by sampling room
air at each measurement. We consistently excluded potential marker candidates with
high room air concentrations in this study. However, there are many factors with possible
influences on the breath VOC profile [28,29]. Despite a careful study design and patient
questioning, influences of other factors (unknown co-morbidities, influences of diet, etc.)
cannot be ruled out completely. In particular, acetone is known to be influenced by patient
metabolism. As we did not expect differences in acetone levels, metabolic markers (urine
ketone levels, blood dextrose levels or HbA1c) were not determined. Therefore, the reason
for the different acetone levels remains unclear at present. Future studies in the CDH
collective will have to include metabolic markers to assess the influence of CDH per se on
this parameter.

4. Materials and Methods

After ethical approval (EK 28-528 ex 15/16) all patients who had undergone surgi-
cal CDH repair at our institution were contacted by letter and telephone and invited to
participate in this investigation. For all patients, age and sex- matched healthy controls
were recruited from families of the medical staff. In all cases written informed consent was
obtained from patients and/or legal guardians. We excluded patients younger than 6 years
due to potential difficulties with controlled breath gas sampling and exercise and lung func-
tion testing. Moreover, patients older than 16 years and children with acute (within 4 weeks
before the examination) and chronic gastro-intestinal disease, acute urinary tract infection,
antibiotic or probiotic treatment within 4 weeks before the examination were excluded.
After inclusion, patients were invited to participate in the following examinations:
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4.1. Clinical Examination

The clinical examination included investigation of the following anthropometric data:
height, body weight (BW) and body mass index (BMI). The body fat in % was determined by
the caliper method, as previously described [30]. Appendicular muscle mass was assessed
by segmental multi-frequency impedance analysis as published before [31].

4.2. Breath VOC Sampling

Patients fasted 2 h before sampling. Alveolar breath gas sampling was performed
by combining mainstream capnometry and needle trap microextraction (NTME) with an
automated sampling device (PAS Technology Deutschland GmbH, Magdala, Germany), as
previously reported [19]. Needle trap devices (NTDs) were pre-conditioned in a heating
device (PAS Technology Deutschland GmbH, Magdala, Germany) at 200 ◦C for 30 min
under permanent N2-flow before each measurement. This device ensured alveolar sam-
pling at a flow rate of 30 mL/min by means of a CO2-triggered, fast responding valve
with a CO2 threshold of 25–30 mmHg. Sampling was repeated twice for every patient.
Additionally, ambient room air was harvested after each patient measurement by auto-
mated NTME sampling. After sampling, NTDs were sealed by a Teflon cap (Shinawa LTD.
Japan/PAS Technology Deutschland GmbH, Magdala, Germany) immediately. Specimens
were measured within 48 h after sampling.

4.3. Breath VOC Analysis

An Agilent 7890A gas chromatograph connected to an Agilent 5975 inert XL mass
selective detector (MSD) was used for GC-MS measurements, as previously described [19].
A total of 67 substances were identified by means of a mass spectral library (NIST 2005,
Gatesburg, PA, USA). The total responses for each substance were recorded. A total of
32 potential marker candidate compounds were verified by pure reference substances.
For that purpose, a mixture of gaseous standards (Gas-MIX, Ionicon Analytik GmbH,
Innsbruck, Austria) and aqueous solutions of pure reference substances (Sigma Aldrich,
Darmstadt, Germany) were evaporated by means of a liquid calibration unit (LCU, Ionicon
Analytik GmbH, Innsbruck, Austria). Concentration levels of the gas standards were
prepared from 1 ppb to 500 ppb by diluting the standards with nitrogen and water with a
matrix adapted humidity of 25 g/m3 as previously described [32,33]. Evaporated standard
gas was pre-concentrated onto NTDs and analyzed by GC-MS.

For the calibration and determination of limit of detection (LOD, signal-to-noise ratio
3:1) and limit of quantification (LOQ, signal-to-noise ratio 10:1), different concentration lev-
els of the reference substances were measured as previously described [34] (Supplementary
Table S1). The signals of selected ions from the reference substances at different concen-
tration levels were used to calculate a calibration curve for each substance. These curves
allowed to derive the concentrations of marker substances in parts per billion per volume
(ppbV). The median VOC concentrations for patients´ and room air derived substances
were compared. If the room air concentration of a candidate substance exceeded 20%
of the patients´ median the observed changes were considered as biased by room air
contamination and therefore excluded as potential marker compounds.

4.4. 16S Based Airway Microbiome

Deep induced sputum samples were harvested as previously described in the lit-
erature [35]. Samples were stored at −80 ◦C until further measurement. Briefly, spu-
tum samples were treated with 100 µg/mL DTT (Sigma), incubated at 37 ◦C for 20 min
and centrifuged at 4000× g for 30 min. Supernatant was removed and the pellet was
resuspended in 500 µL PBS (Roth). A total of 250 µL of the suspension were mixed
with 250 µL bacterial lysis buffer (Roche, Mannheim, Germany) and total DNA was iso-
lated according to manufacturer’s instructions and as published [36] in a MagNA Pure
LC 2.0 (Roche, Mannheim, Germany) with the MagNA Pure LC DNA Isolation Kit III
(Bacteria, Fungi) (Roche, Mannheim, Germany). A total of 5 µL of total DNA was used
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in a 25 µL PCR reaction in triplicates using a Fast Start High Fidelity PCR system (Roche,
Mannheim, Germany) according to Klymiuk et al. [36], with the target specific primers F27-
AGAGTTTGATCCTGGCTCAG and R357-CTGCTGCCTYCCGTA [37]. The 6 pM library
was sequenced on an Illumina MiSeq desktop sequencer (Eindhoven, The Netherlands)
with 20% PhiX control DNA (Illumina, Eindhoven, The Netherlands) and v3 chemistry
for 600 cycles in paired end mode according to manufacturer’s instructions and FastQ
raw reads were used for data analysis. A total of 2,711,449 (per sample minimum 94,894,
maximum 235,181, mean 193,674) raw sequence reads were used for data analysis in an
established Galaxy based workflow (Medical University of Graz, funded by the Austrian
Federal Ministry of Education, Science and Research, Hochschulraum-Strukturmittel 2016
grant as part of BioTechMed Graz). Briefly, raw reads were quality-filtered, de-noised,
de-replicated, merged and checked for chimeras using DADA2 pipeline [38] with standard
settings in QIIME2.0 [39]. For taxonomic assignment SILVA rRNA database Release 132 at
97% identity was used.

4.5. Spirometry

Spirometry was performed before and after exercise testing (Oxycon Pro®, Carl Reiner
GmbH, Vienna, Austria). Forced vital capacity (FVC) was assessed as the maximum
amount of air exhaled after maximum inhalation and expressed as percent predicted
values. Forced expiratory volume in 1 s (FEV1) was determined and used to calculate the
Tiffeneau index (FEV1/FVC).

4.6. Spiroergometry

Bicycle spiroergometry (Excalibur Sport®, Lode B.V., Groningen, The Netherlands
and spirometer Oxycon Pro®, Carl Reiner GmbH, Vienna, Austria) was performed with
a sex and body weight dependent protocol [30]. The spiroergometry was continued to
exhaustion followed by a 3-min recovery phase. The respiratory parameters included
tidal volume, respiratory rate, minute volume (MV) and inspiratory (FiO2) and expiratory
(FeO2) fraction of oxygen. The accuracy for FiO2 and FeO2 is given with ±0.01 vol% by
the manufacturer. Using these values and the minute volume the oxygen uptake was
calculated. For each patient we recorded the maximum performance per kilogram body
weight, the maximum oxygen uptake per kilogram body weight, the relative performance
capacity, the respiratory exchange ratio and the oxygen pulse.

4.7. Statistics

All data were managed with Microsoft Excel 2016® (Microsoft Corporation, Redmond,
WA, USA). For statistical analysis, data were transferred to SPSS 25.0® (IBM Austria,
Vienna, Austria). Metric data are displayed as median (interquartile range, IQR). A Mann–
Whitney U-Test was performed for group comparison. p-values <0.05 were regarded as
statistically significant. Box plots were drawn with Prism 8.3.0® (GraphPad, San Diego,
CA, USA) and heatmaps with R Studio 1.2.1335® (RStudio Inc., Boston, MA, USA) using
the heatmap.2 library.

5. Conclusions

In conclusion, this is the first study to report on the airway microbiome and VOC
profile in CDH. The alterations of the microbiome were minor and the clinical consequence
of reduced Pasteurellaceae remains unclear at present. The elevations in cyclohexane levels
that were observed in the CDH group have also been reported in cases of lung cancer
and pneumonia. CDH patients showed signs of an obstructive pulmonary disease. CDH
patients had no signs of impaired physical performance capacity mirroring controversial
reports in the literature in this regard. Future larger scale multi-center studies will be
required to confirm these first results.
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Supplementary Materials: The following are available online, Figure S1: Exhaled and ambient
room air concentrations (ARA) of VOC candidate substances regarded as affected by room air;
Figure S2: Exhaled and ambient room air concentrations (ARA) of VOC candidate substance without
significant differences between CDH patients and controls; Table S1: Limit of detection (LOD) and
limit of quantification (LOQ) of 32 candidate VOCs detected in breath samples by needle trap micro-
extraction (NTME).
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