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Infectious diseases are a major health challenge for the worldwide population. Since their rapid spread can cause great distress to the
real world, in addition to taking appropriate measures to curb the spread of infectious diseases in the event of an outbreak, proper
prediction and early warning before the outbreak of the threat of infectious diseases can provide an important basis for early and
reasonable response by the government health sector, reduce morbidity and mortality, and greatly reduce national losses. However,
if only traditional medical data is involved, it may be too late or too difficult to implement prediction and early warning of an
infectious outbreak. Recently, medical big data has become a research hotspot and has played an increasingly important role in
public health, precision medicine, and disease prediction. In this paper, we focus on exploring a prediction and early warning
method for influenza with the help of medical big data. It is well known that meteorological conditions have an influence on
influenza outbreaks. So, we try to find a way to determine the early warning threshold value of influenza outbreaks through big
data analysis concerning meteorological factors. Results show that, based on analysis of meteorological conditions combined
with influenza outbreak history data, the early warning threshold of influenza outbreaks could be established with reasonable
high accuracy.

1. Introduction

Infectious diseases are a major health challenge for the
worldwide population. Since their rapid spread can cause
great distress to the real world, in addition to taking appro-
priate measures to curb the spread of infectious diseases in
the event of an outbreak, proper prediction and early warn-
ing before the outbreak of the threat of infectious diseases
can provide an important basis for early and reasonable
response by the government health sector, reduce morbidity
and mortality, and greatly reduce national losses. However, if
only traditional medical data is involved, it may be too late or
too difficult to implement prediction and early warning of an
infectious outbreak.

Influenza, commonly known as the flu, is an acute respi-
ratory illness caused by influenza viruses A and B, which is a

typical infectious disease [1]. It occurs all over the world and
causes considerable morbidity and mortality each year. With
high transmission speed, frequent pathogen variation, and a
wide range of influence, rapid response and prevention of
influenza remain a serious global challenge [2, 3]. WHO esti-
mates that influenza affects 5% to 10% of adults and more
than 20% of children worldwide each year [4]. About
250,000 to 500,000 people are killed each year by influenza.
If we could find a way to scientifically monitor, predict, and
provide early warning of influenza, governments can be pre-
pared to prevent the outbreak and spread of influenza as early
as possible. Thus, influenza early warning has received great
attention from relevant departments.

Recently, medical big data has become a research hotspot
and has played an increasingly important role in public
health, precision medicine, and disease prediction [5–8]. In
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this paper, we focus on exploring a prediction and early
warning method for influenza with the help of medical big
data.

It is well known that influenza disease and transmission
are closely related to seasons, regions, weather and environ-
ment, demographic factors, and human behavior, among
which meteorological factors are the key factors affecting
the onset of influenza in a certain area. Integrating meteoro-
logical data and influenza incidence data in a certain area
through machine learning and data analysis to mine the
influence and effect of meteorological factors on influenza
incidence is the main focus of this paper.

Traditional epidemiological surveillance systems are
likely to have delayed reporting of confirmed cases. There-
fore, in this paper, we will study the relationship between
the number of influenza cases in the current period and the
meteorological factors before a certain period of time, so as
to consider the influence of lag and delay of the epidemic
monitoring system, thus exploring a more accurate correla-
tion between meteorological factors and influenza outbreaks.

Previous research mainly used machine learning or deep
learning algorithms, through correlation analysis and feature
selection work; first screened out important predictors such
as temperature, rainfall, and relative humidity; and then
made a prediction of the number of influenza incidence,
but less research has been done on the establishment of
influenza early warning thresholds based on meteorologi-
cal factors [9, 10].

This paper studies how to determine the early warning
threshold value of meteorological factors on influenza, thus
providing a way to establish prediction and early warning
of an influenza outbreak.

Our contributions are as follows:

(1) Establishing a preprocessing process to integrate
meteorological data and influenza incidence data

(2) Selecting important meteorological indicator features
for prediction and early warning of influenza out-
breaks through correlation analysis and feature
construction

(3) Building a prediction and early warning method for
influenza outbreaks using machine learning and con-
structing an early warning threshold of meteorological
data for influenza outbreaks through data visualization

The following is organized as follows. Related works are
presented in Section 2. Our method is discussed in detail in
Section 3. Experiments and results are presented in Section 4.
The conclusion is given in Section 5.

2. Related Works

With the continuous development of the medical and health
industry and the strengthening of the importance of public
health, more and more attention has been paid to the moni-
toring, prediction, and early warning of infectious diseases
such as influenza in the world, and the methods and technol-
ogies used have been continuously improved.

Choi and Thacker used the ARIMA model (Autoregres-
sive Integrated Moving Average Model) in 1981 to estimate
pneumonia and influenza mortality, one of the earliest stud-
ies on time series [11].

The percentage of deaths associated with pneumonia and
influenza was used as an evaluation index to quantify the
impact of influenza on mortality. The experimental results
showed that the ARIMA model was more specific than the
rule based on the regression model. The model can predict
the expected mortality of pneumonia and influenza more
accurately, but the factors considered in this study are far
too less.

The study of Ugarte et al. [9] in 2010 and the study of
Paul and Held [10] in 2011 all adopted the method of apply-
ing statistical methods to multivariate time series of infec-
tious disease counts. The latter also introduces specific
regions and possibly space-related random effects to explain
different levels of incidence or changes in the spread of path-
ogens across regions.

Conesa et al. used a Bayesian hierarchical Poisson model
with hidden Markov structures in 2015 to detect influenza
epidemics [12]. By automatically monitoring influenza-
related data, they detect epidemics immediately at the out-
break and predict trends in influenza epidemics and out-
breaks to generate sensitive, specific, and timely warning
alerts.

Marquez and Barron have created an intelligent system
to support the diagnosis of influenza using the relevant fac-
tors based on historical data of the Mexican population
[13]. They proposed to support the first clinical diagnosis
with machine learning methods.

Some researchers have also adopted more novel tech-
niques or included other influencing factors to analyze such
problems.

Since there are many uncertain factors affecting avian
influenza outbreaks, [14] has used the classification model
(OOC) to solve the task of avian influenza outbreak
prediction.

Dai et al. [15] presented an unsupervised word
embedding-based clustering method. They try to use Twitter
data to perform surveillance of influenza.

[16] combines CDC statistics, Google Trends web search
data, and King Net national medical diagnosis and consulta-
tion records to propose a linear prediction framework that
demonstrates that a large amount of online social behavior
information can be used to indirectly monitor influenza
activity.

However, due to the limitations of the linear model itself,
the prediction effect is relatively general. There are also many
studies on the effect of meteorological factors on influenza-
like cases.

[17] compared the model error and sample fitting accu-
racy of the common regression model and backpropagation
neural network based on the genetic algorithm and modeled
the high and low flu seasons, respectively.

[18] used artificial neural networks to predict seasonal
influenza epidemics in Tehran. The dataset used contains cli-
matic characteristics such as temperature, humidity, precipi-
tation, wind speed, sea level pressure, and the number of

2 Computational and Mathematical Methods in Medicine



patients (total number of referrals and number of patients
with flu-like diseases). Different loss functions are defined.
The results show that the model provides a satisfactory pre-
diction possibility.

Venna et al. proposed to use long short-term memory-
(LSTM-) based multistage forecasting for influenza forecast-
ing [16]. They try to use the LSTM method to capture the
temporal dynamics of seasonal flu. And they proposed a
technique to capture the influence of external variables that
include geographical proximity and climatic variables such
as humidity, temperature, precipitation, and sun exposure.

Based on the theory of the Generalized Additive Model
(GAM) and the mathematical model based on nonlinear
regression, the influence of meteorological factors on the
change of influenza-like cases in Urumqi is analyzed in
[17]. The results of the single-factor model showed that the
difference of all influencing factors was statistically signifi-
cant, and the monthly sunshine hours, monthly average rel-
ative humidity, and monthly average temperature were the
risk factors that caused the change of influenza-like cases.
The results of the multifactor model show that only the
monthly mean relative humidity and the monthly mean tem-
perature are statistically significant.

Jhuo et al. [18] have used the meteorological and pollu-
tion parameters and acute upper respiratory infection
(AVRI) outpatient number as input to a multilayer percep-
tron (MLP) to predict the patient number of influenza and
the associated pneumonia in the following week. The meteo-
rological parameters they used are temperature and relative
humidity, and air pollution parameters are Particulate Matter
2.5 (PM 2.5) and Carbon Monoxide (CO).

We have summarized all those works in Table 1.

3. Method

3.1. Overview. In this work, we combine the influenza inci-
dence data and meteorological data of a province in China
in the past four years, to explore an effective early warning
method based on machine learning and big data algorithms,

thus providing useful information for influenza prevention in
other regions of China.

The whole framework consists of three main parts:

(1) Data Preprocessing. Including the collection of mete-
orological data from the internet; cleaning and inte-
grating influenza incidence data and meteorological
data; normalization and exploratory analysis of data;
data tagging.

(2) Correlation Analysis and Feature Selection. More
complex features are constructed according to
domain knowledge, the importance of feature calcu-
lation is calculated by the single-factor analysis
method, and the feature selection is carried out by
the Filter and Embedding combination algorithm.

(3) Model Construction. Feed data into the decision tree
model, adjust the model parameters, construct the
prediction model, and optimize the prediction
model.

3.2. Data Preprocessing

3.2.1. Data Collection and Data Cleaning. The meteorological
data is collected from the internet. This work uses Python
Requests library and crawler framework Scrapy to collect
meteorological data from the National Greenhouse Data Sys-
tem. When crawling meteorological data, first determine the
crawling area, then use the urlencode function to send a
HTTP request to get the corresponding station_id of the
weather station in this area, and then use this id as the param-
eter of the getWeatherData request, plus the required date, to
send a HTTP request.

Features of collected meteorological data are shown in
Table 2:

3.2.2. Data Tagging. In order to train the data models, we
need to annotate the original data. The data of influenza inci-
dence and the local meteorological data collected were inte-
grated before tagged.

Table 1: Comparison of different influenza-related works.

Reference Methods Data Goal

[11] ARIMA Influenza data Predict trend

[9] Statistical methods Influenza data Predict trend

[10] Statistical methods Influenza data Predict trend

[12] Bayesian Influenza data Predict trend

[13] Machine learning methods Influenza data Support diagnosis

[14] OOC Influenza data Predict outbreak

[15] Clustering Social media data Monitor influenza

[19] Linear prediction Medical data and search data Monitor influenza

[20] Genetic algorithm Influenza data Predict trend

[21] ANN Climatic data and influenza data Predict trend

[16] LSTM Geographical data and climatic data Predict trend

[17] Nonlinear regression Meteorological data Monitor influenza

[18] MLP Meteorological data Predict trend
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There are two basic ideas for studying the early warning
threshold of meteorological factors. One is to take the daily
number of influenza incidence as the explanatory variable,
that is, dependent variable, to treat and solve the problem
as a regression problem in machine learning, to train the
model and to predict the number of future influenza inci-
dence, and to issue an early warning when the number of pre-
dicted cases is greater than a certain threshold.

The second is to transform the continuous number of
influenza cases into discrete labels of 0 and 1 bymeans of spe-
cific data tagging methods. The data tagging method used
here is to define the threshold of influenza outbreaks and to
measure whether the current incidence represents an influ-
enza outbreak. After the tagging is completed, the problem
can be solved as a classification problem in machine learning,
while when the data is predicted, the dates predicted as 1 are
regarded as the dates that need to be issued an early warning.

Because influenza has typical seasonal characteristics, it is
not so reasonable to compare the predicted continuous
values with a specific threshold according to the first idea.
And if we divide the data by season and train multiple
models, it complicates the problem. Compared with the first
idea, the second one is more understandable and easier to
implement. After comprehensive consideration and compar-
ison, it is decided to choose the second one as the way to solve
the problem in this paper.

According to the specific problem of influenza outbreaks,
this paper proposes three methods of data tagging:

(i) Moving Percentile Method. The moving percentile
method compares the number of cases in the local
current observation cycle with its corresponding his-
torical baseline data in real time. If the number of
cases occurring during the current observation cycle
reaches or exceeds the warning threshold, an influ-
enza outbreak is considered; that is, the data label
is defined as 1. For example, if the number of years
of retrospective history is 3 years, the calculation
period is 7 days, moving by day, and the historical
period rocking back and forth is two reference
periods. Suppose we set an early warning threshold
for influenza outbreaks to P80; set the label to 1 only
if the number of cases within the current observation

period (7 days) is greater than or equal to 80% of the
historical baseline data; otherwise, set to 0.

(ii) Monthly Upquartile Marking. The monthly upquar-
tile marking, by definition, defines the label of the data
corresponding to those dates in which the number of
cases per month exceeds the monthly upquartile as 1.

(iii) Dual Cycle Daily Marking. Through the exploratory
analysis of influenza incidence data, it can be found
that one year can be divided into two different cycles
according to the number of cases per month. The
first cycle is from November to April, which is the
most frequent period of influenza; the second cycle
is from May to October, which is the low stage of
influenza, with an average of about 1/3 of the first
cycle. Because of the large gap of influenza incidence
data in two cycles, it is a reasonable way to define dif-
ferent data tagging methods for different cycles. The
specific definitions are as follows: in the first cycle,
there are more influenza cases, with days as the basic
unit, and the number of cases per day greater than
the upper four quartiles of this cycle is marked as
1; that is, an early warning is required; in the second
cycle, the number of influenza cases is less, with days
as the basic unit. When the number of cases per day
is greater than the 90th percentile of the cycle, mark
the data as 1.

3.3. Correlation Analysis and Feature Selection. As shown in
Table 2, we have collected 10 basic features of meteorological
data. In order to achieve the goal of this study, we need to use
the feature construction method to process the collected
basic meteorological data features to construct more complex
data features, in order to explore the relationship between
meteorological data and influenza outbreaks from a more
comprehensive perspective. Based on the obtained basic
meteorological data, we constructed 48 new meteorological
data features, mainly considering the delayed effect of mete-
orological factors on the onset time of influenza.

The purpose of feature selection is to select relevant fea-
tures that are beneficial for learning algorithms from all fea-
tures while sifting out irrelevant and redundant features to
prevent dimensional disaster problems. Moreover, feature
selection can also reduce the difficulty of learning tasks and
improve the efficiency of the model.

This work uses a combination of Filter and Embedding
for feature selection. We first use Filter for feature selection,
calculate the correlation between each feature and output
value, remove the obviously irrelevant features, reduce the
feature dimension, and then use Embedding to fuse the pro-
cess of feature selection with the process of classifier learning
to select features in the process of learning.

After the feature selection phase, we have selected 26 con-
structed features and 10 basic features to train the models.

3.4. Model Construction

3.4.1. Basic Model Construction. In this work, we want to
build a model that could generate early warning of influenza

Table 2: Features of meteorological data.

Name Meaning Data type Data unit

t_avg Daily average temperature Continuous °C

t_max Daily highest temperature Continuous °C

t_min Daily lowest temperature Continuous °C

precip Cumulative precipitation Continuous mm

winds_avg Average wind speed Continuous m/s

winds_max Maximum wind speed Continuous m/s

rh_avg Average relative humidity Continuous %

rh_min Minimum relative humidity Continuous %

QNE_hPa Average air pressure Continuous hPa

radiation Cumulative daily radiation Continuous MJ/m2
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outbreaks based on a combination of meteorological data
and influenza incidence data through machine learning and
data visualization.

The decision tree algorithm could be used for classifica-
tion or regression. When the relationship between indepen-
dent variables and dependent variables is nonlinear or there
is an interaction between variables, the effect of the linear
model will be poor, and the nonlinear model should be con-
sidered. One of the important characteristics of a decision
tree algorithm compared with the SVM and BP neural net-
work is interpretability, because the process of constructing
a decision tree is equivalent to forming an if-then rule set.
According to the data visualization results of the decision tree
model, the threshold of meteorological conditions for influ-
enza warning is obtained. Therefore, in this work, a decision
tree is used to build the basic model.

The CART decision tree algorithm uses the Gini coeffi-
cient as the evaluation standard and replaces the logarithmic
operation with the quadratic operation. The smaller the Gini
coefficient, the smaller the impurity representing the charac-
teristics, and the decision tree will preferentially select the
characteristics with the smallest Gini coefficient when split-
ting. Compared with the entropy model-based algorithm,
the computational complexity of the CART algorithm is
much lower. CART only produces two branches on each
node, so a binary tree is formed, and each feature can be
reused. And the CART algorithm can be used to deal with
continuity variables.

And as discussed before, we treat the work of generating
early warning of influenza outbreaks as a classification issue;
in this work, we choose the CART classification tree algo-
rithm to build the basic model.

The CART classification tree algorithm uses the Gini
coefficient to perform feature selection, as described by the
following equation:

Gini pð Þ = 〠
K

k=1
pk 1 − pkð Þ = 1 − 〠

K

k=1
p2k, ð1Þ

where K is the number of classes in the sample, while pk is the
probability that a sample belongs to the kth class.

Since we treat the work of generating early warning
of influenza outbreaks as a 0-1 two-classification issue,
Equation (1) could be further simplified as follows:

Gini pð Þ = 2p 1 − pð Þ, ð2Þ

where p is the probability that a sample belongs to class 0.

For the given dataset D, assume the number of classes in
D as K . DefineCkas the number of samples that belongs to
classk. Then, the Gini coefficient of dataset D could be calcu-
lated as follows:

Gini pð Þ = 1 − 〠
K

k=1

Ckj j
D

� �2
: ð3Þ

For dataset D, when the CART tree splits according to
feature A, D would be divided into D1 and D2. Under this sit-
uation, the Gini coefficient of D would be as follows:

Gini D, Að Þ = D1j j
D

Gini D1ð Þ + D2j j
D

Gini D2ð Þ: ð4Þ

The calculation of the Gini coefficient is much simpler
than that of entropy, especially for the two-classification
problem, and the loss of accuracy is also smaller. Further-
more, the decision tree generated by the CART classification
tree algorithm is a binary tree. Compared with the multitree
formed by other decision tree algorithms, the efficiency is
undoubtedly further improved.

The flow of the CART decision tree algorithm consists of
two phases: decision tree generation and decision tree prun-
ing. We have used the Cost Complexity Pruning (CCP) strat-
egy to direct the decision tree pruning phase in our work.

3.4.2. Model Optimization. In order to fully exploit the poten-
tial of the CART algorithm, several parameters of CART
need to be optimized (as illustrated by Table 3).

The max_depth specifies the maximum depth of the tree;
limiting this parameter can ensure that the scale of the early
warning model is not too complex. The min_impurity_
decrease represents the minimum impurity of the node split-
ting (i.e., Gini coefficient). Since the impurity of a node
decreases when the node splits, the node stops splitting
immediately when the value of the impurity is less than the
value of this threshold. These parameters, especially the
max_depth parameter of the tree, are very important to limit
the size of the decision tree after splitting and reduce overfit-
ting to improve the generalization performance of the model.

Because there are far fewer days of influenza outbreaks
and early warning each year than there are no early warning
days, the dataset itself has an uneven sample ratio. The sam-
ple of label = 0 occupies the majority, and the sample of
label = 1 is only a few. For the machine learning model, the
uneven proportion of positive and negative samples will lead
to the deviation of the results; that is, the effect of the model
cannot reach the best, and the accuracy of prediction is not

Table 3: Critical parameters for CART.

Name Meaning Data type Default value

max_depth The maximum tree depth None

min_impurity_decrease The minimum impurity for node splitting 0

min_weight_fraction_leaf The minimum weight of a leaf node 0

class_weight The weight of a class None
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good. For this purpose, it needs to be adjusted by the param-
eter class_weight. Our algorithm would calculate and give the
appropriate weight to all samples in a class according to the
proportion of each class in the whole sample. The min_
weight_fraction_leaf parameter also plays an important role,
since a different class has a different weight. Because upsam-
pling will introduce a large amount of redundant data, down-
sampling will lose most of the information, so the most
common practice is to assign different weights.

The setting of max_depth, min_impurity_decrease, and
min_weight_fraction_leaf for the CART algorithm would be
decided through experiments, which would be discussed
later.

The ensemble learning method combines several simple
models to form a more complex and comprehensive model.

CART could be optimized through ensemble learning to
enhance the stability; however, after ensemble learning opti-
mization, it is not feasible to use a visualization method to
interpret the relationship between the early warning thresh-
old of influenza outbreaks and the certain features of meteo-
rological data and influenza incidence data. So, we propose a
method to enhance the prediction accuracy and achieve visu-
alized interpretation of the decision of the early warning
threshold of influenza outbreaks simultaneously.

Based on the idea of ensemble learning, we provided an
optimized model to generate a more accurate prediction of
influenza outbreaks based on meteorological data and influ-
enza incidence data by combining CART, XGBoost, and
LightGBM. XGBoost (eXtreme Gradient Boosting) is pro-
posed by Tianqi Chen et al. in 2015, which is an optimization

Start

Update data

CART
classification

Judge the
threshold

Judge the
threshold

no

no Not signal early
warning

Signal early
warning

End

yes

yes

Combined
model

classification

Figure 1: Flow of our method.

Table 4: Evaluation of max_depth for CART.

max_depth ACC f1-score AUC

2 0.8361 0.6562 0.8019

3 0.8126 0.6793 0.7798

4 0.8135 0.7087 0.7943

5 0.7621 0.6315 0.7109

6 0.7709 0.6107 0.6954

7 0.7891 0.6051 0.6598

Table 5: Evaluation of min_impurity_decrease for CART.

min_impurity_decrease ACC f1-score AUC

0 0.8135 0.7087 0.7943

0.005 0.8135 0.7087 0.7943

0.01 0.8143 0.7165 0.8029

0.02 0.8177 0.7254 0.8087

0.05 0.8268 0.7301 0.8109

0.08 0.7521 0.6342 0.7651

0.1 0.7196 0.6072 0.7535

Table 6: Evaluation of min_weight_fraction_leaf for CART.

min_weight_fraction_leaf ACC f1-score AUC

0 0.8291 0.7370 0.8153

0.01 0.8043 0.6909 0.7733

0.02 0.8105 0.7144 0.7992

0.05 0.8358 0.7451 0.8208

0.1 0.8470 0.6369 0.7384

0.2 0.8578 0.6882 0.7572

0.3 0.7329 0.6153 0.7023

Table 7: Evaluation of different data tagging methods.

Data tagging method ACC f1-score AUC

Moving percentile method 0.8586 0.7610 0.8429

Monthly upquartile marking 0.8317 0.6963 0.7967

Dual cycle daily marking 0.8391 0.7129 0.7508
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Figure 2: Continued.

7Computational and Mathematical Methods in Medicine



on GBDT. LightGBM is another optimization of GBDT,
which mainly considers how to reduce the usage of memory
and how to reduce the cost of multimachine communication.

The flow of our method is demonstrated in Figure 1.
The CART basic model is used to decide the early warn-

ing threshold of influenza outbreaks through data visualiza-
tion. And if the CART basic model predicts that the early
warning threshold is reached according to meteorological
data and influenza incidence data, then the combination
model formed is used to predict, and if the combination
model decides that indeed the early warning threshold is
reached, then our model will signal the early warning.

This method reduces the probability of prediction errors
in the CART model used alone, but when the meteorological
and influenza incidence big data meet the warning condi-
tions of the CART model, they would be sent into the combi-
nation model for prediction.

The operation efficiency of the model can be greatly
improved. The complexity of this algorithm is comparable
with the basic CART algorithm, which is Oðlog NÞ, where
N represents the number of samples in the training set.

4. Experimental Results

4.1. Experimental Framework. We built our experimental
framework using Python 3.5.5. The Hold-Out method
divides the dataset D into two mutually exclusive subdatasets
D1 and D2, trains the model on D1, and tests the effect of the
model on D2. The Hold-Out method is a common method to
verify model parameters and evaluate the model effect. Gen-

erally speaking, the sample size included in D1 should
account for at least 2/3 of the D of the entire dataset. In prac-
tice, there is a widely used Hold-Out method [22]: when the
data has obvious time series factors, the time of online data is
after the offline dataset. In this case, the training set and test
set should be divided according to time.

In this work, we comply with the method. Since we have
the data for a total of five years from 2012 to 2016, we divided
the data from 2012 to 2015 as the training set and the data in
2016 as the test set. Dividing the dataset by year does not
destroy the characteristics of the original data, preserves the
characteristics of the data distribution to the greatest extent,
and avoids the introduction of noise in the segmentation of
the data.

The measurement metrics we used in this paper are as
follows:

(1) ACC. Accuracy represents the ratio of the number of
samples with the same predicted value as the actual
value to the total sample. When the accuracy of the
model is higher, it shows that the model prediction
results perform better.

(2) f1-score. f1-score is a more combined metric, which
could be calculated as f1‐score = 2 × ðprecision ×
recallÞ/ðprecision + recallÞ. While recall is calculated
as recall = TP/ðTP + FNÞ, where TP represents the
number of True Positive samples, while FN is the
number of False Negative samples. And precision is
calculated as precision = TP/ðTP + FPÞ, where FP is
the number of False Positive samples.
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(c) ROC of dual cycle daily marking

Figure 2: ROC for different data tagging methods.
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(3) AUC (Area Under Curve). AUC is often used to
evaluate a two-classification model. AUC reflects
a probability value that can intuitively quantify
the performance of this classifier. The larger the
AUC value, the better the performance of the clas-
sifier, and the maximum value is not more than 1.
AUC is relatively stable and can better measure the
performance of the classifier, that is, the early
warning model.

4.2. Decision of CART Parameters. Experiments are con-
ducted to decide several most important parameters for
CART, as shown in Table 3. The moving percentile method
is used to perform data tagging.

4.2.1. Decision of max_depth. Experimental results for differ-
ent max_depth are shown in Table 4.

It could be seen from the results that when the max dep
th ≤ 4, the ACC is higher. When the max depth > 4, the
ACC reduces. f1-score reaches the maximum number when
the max depth = 4.

And the AUC is also relatively high when the max dept
h = 4. f1-score and AUC reduce asmax_depth becomes larger
than 4. We could conclude that if the max_depth is larger
than 4, the model might become overfitting. Thus, we decide
that the setting of the max depth = 4.

4.2.2. Decision of min_impurity_decrease. Experimental
results for different min_impurity_decrease are shown in
Table 5.

It could be seen that with the increase of min_impurity_
decrease, ACC, f1-score, and AUC show the trend of first
increasing and then decreasing. After the value ofmin_impu-
rity_decrease is greater than 0.08, ACC, f1-score, and AUC all
have a large decline. Therefore, it can be judged that the
model has the best effect when the parameter is in the range
of 0.02 to 0.08. After further evaluation, finally, we set min
impurity decrease = 0:04.

4.2.3. Decision of min_weight_fraction_leaf. Experimental
results for different min_weight_fraction_leaf are shown in
Table 6.

It could be seen that when the min weight f raction lea
f = 0:05, f1-score and AUC all reach the maximum value,
while ACC is relatively high. Although ACC increases as
min_weight_fraction_leaf increases when min_weight_frac-
tion_leaf is larger than 0.05, both f1-score and AUC decline
largely. Thus, we could conclude that the model gets the best
effect when min_weight_fraction_leaf is around 0.05. After
further evaluation, we setmin weight f raction leaf = 0:062.

warning_if_week ≤ 0.5
Gini = 0.5

Samples = 274
Value = [137.0, 137.0]

Class = yes

Gini = 0.0
Samples = 129

Value = [73.946, 0.0]
Class = no

True

QNE_lastweek ≤ 876.75
Gini = 0.432

Samples = 145
Value = [63.054, 137.0]

Class = yes

False

winds_max_day3ago ≤ 9.25
Gini = 0.349
Samples = 49

Value = [26.941, 7.829]
Class = no

rh_avg_day2ago ≤ 70.0
Gini = 0.342
Samples = 96

Value = [36.113, 129.171]
Class = yes

Gini = –0.0
Samples = 47

Value = [26.941, 0.0]
Class = no

Gini = 0.0
Samples = 2

Value = [0.0, 7.829]
Class = yes

t_min ≤ 2.4
Gini = 0.409
Samples = 18

Value = [9.745, 3.914]
Class = no 

radiation_lastweek ≤ 29.85
Gini = 0.287
Samples = 78

Value = [26.368, 125.257]
Class = yes 

Gini = 0.0
Samples = 1

Value = [0.0, 3.914]
Class = yes

Gini = –0.0
Samples = 17

Value = [9.745, 0.0]
Class = no

Gini = 0.0
Samples = 6

Value = [3.439, 0.0]
Class = no

Gini = 0.262
Samples = 72

Value = [22.929, 125.257]
Class = yes

Figure 3: Data visualization of the CART model.

Table 8: Comparison between our model and baseline models.

Method ACC f1-score AUC

Optimized model 0.8721 0.7381 0.8709

CART 0.8586 0.7610 0.8429

XGBoost 0.8804 0.6998 0.8561

LightGBM 0.8735 0.7321 0.8224
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(a) ROC of our optimized model

1.0

0.8

0.6

0.4Tr
ue

 p
os

iti
ve

 ra
te

0.2

0.0
0.0 0.2 0.4

False positive rate

ROC curves

0.6 0.8 1.0

ROC curve of class 0 (area = 0.84)
ROC curve of class 1 (area = 0.84)
Micro-average ROC curve (area = 0.87)
Macro-average ROC curve (area = 0.84)

(b) ROC of the CART basic model

Figure 4: Continued.
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4.3. Evaluation of Data Tagging Methods. An experiment is
conducted to evaluate the best data tagging method for
our model. Results are shown in Table 7 and Figure 2.

Through the comparison, we could decide that the
moving percentile method is more suitable for our
model.
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(c) ROC of the XGBoost basic model
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Figure 4: ROC for different basic models.
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4.4. Definition of the Early Warning Boundary Value of
Meteorological Factors on Influenza. The visualization results
of the CART basic model are shown in Figure 3.

As we said before, according to the construction process
of the decision tree model, the classification rules can be seen
intuitively from the tree structure diagram, and then the
meteorological conditions need to be issued when an early
warning is given.

Thus, we could generate the early warning boundary
value of meteorological factors on influenza based on using
the moving percentile tagging method with the CART basic
model from Figure 3 as follows: (1) (warning_if_week = 0)
and (QNE_lastweek ≤ 876:75 hPa) and (winds_max_day3
ago > 9:25m/s); (2) (warning_if_week = 0) and (QNE_
lastweek > 876:75 hPa) and (rh_avg_day2ago ≤ 70%) and
(t_min ≤ 2:4°C); and (3) (warning_if_week = 0) and (QNE_
lastweek > 876:75 hPa) and (rh_avg_day2ago > 70%) and
(radiation_lastweek > 29:85MJ/m).

It is easy to see that the three conditions are mutually
exclusive and only one of them will be satisfied at most.
When one condition is satisfied, an early warning is issued.

4.5. Evaluation of the Optimized Model. We use the moving
percentile method as the data tagging method. And the com-
parison between our optimized model and the baseline
models is shown in Table 8 and Figure 4.

It could be seen that ACC and AUC of the optimized
model are better than those of the CART basic model. But
f1-score of the optimized model is smaller than that of the
CART basic model. According to our analysis, the mecha-
nism of the optimized model makes the number of samples
predicted as 1 become less; thus, the recall rate becomes lower
and the f1-score becomes lower. The ACC of CART is rela-
tively low, but the f1-score and AUC are relatively high.
The XGBoost model performs well in accuracy and AUC,
but the f1-score is relatively low. The LightGBM model is
slightly poor in AUC, and the ACC and f1-score tend to be
intermediate.

We have also shown a comparison of the accuracy
between our method and some state-of-the-art methods in
Figure 5.

5. Conclusion

In this paper, we try to combine meteorological data and
influenza incidence data to build a big data model to deter-
mine the early warning boundary value of meteorological
factors on influenza. We exploit the data visualization
method on the CART basic model to provide a way to gener-
ate an early warning threshold for influenza outbreaks based
on data analysis of meteorological data. We proposed an
optimized model to generate a more accurate early warning
signal.

Our approach comes at the expense of slightly reducing
the recall rate to improve ACC and AUC and also making full
use of the results of the CART model via data visualization.
Only when the CART basic model indicates that maybe an
early warning should be signaled, then the more complex
combination model of XGBoost and LightGBM would be
needed. Overall, it is a reasonable scheme according to the
evaluation.

Another strategy might be to take the “OR” operation for
the construction of the combination optimized model. When
at least one model is predicted to be 1, the final prediction
result is 1; that is, an early warning is needed. However, the
early warning threshold could not be generated through data
visualization, thus without interpretability. Also, the compu-
tation effort is more. Under realistic conditions, different
model combination strategies can be selected according to
different needs.

Actually, in this work, we have only introduced key mete-
orological factors, while the influenza outbreak is also closely
related to human flow, intercity migration index, vaccina-
tion, emergencies, and other factors. In future work, we
would try to establish a more comprehensive way to establish
the early warning system for influenza outbreaks.

88%

87%

86%

85%

84%

83%

82%

81%

80%

79%

78%

77%
Our method [19]

Accuracy

[21]

Figure 5: Comparison with other algorithms.
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