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Introduction
Structural alignment of proteins plays a fundamental 
role in understanding their functional similarity and 
evolutionary relationship. Generally, since  protein 
structure is more conserved than protein sequence, 
structure comparison is more evident to identify high 
distantly proteins than sequence comparison. As a result, 
the prediction of the new protein’s function is carried 
out through the detection of local or global structural 
similarity between a new protein and a protein with 
a known function.1 The methods are used to measure 
the structural similarity between two proteins and then 
produce a pairwise structural alignment between them.

Many algorithms have been developed to find the 
optimal structural alignment. These methods deal 
with two significant problems: a search algorithm for 
determining an optimal alignment between two structures 

and a scoring function to evaluate the created alignment.2 
The structural alignment problem can be formulated 
as a search algorithm for finding the optimal set of 
correspondences minimizing the spatial distance between 
pairs of residues.3,4 The algorithm does not have any initial 
knowledge about correspondence between residues. 
Accordingly, the problem is computationally intractable 
and known as NP-hard.5 Though many similarity scoring 
functions have been proposed in polynomial time.6,7 no 
procedure (of any running time) has been proposed to 
optimize structural alignment.8,9 Taylor and coworkers 
write: ‘In structure comparison, we do not even have an 
algorithm that guarantees an optimal answer for pairs of 
structures’.10

Many efforts have been made to explore efficient 
pairwise structural alignment. In this regard, SSAP11 
employs a double dynamic programming technique based 
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Abstract
Introduction: Similarity analysis of protein structure 
is considered as a fundamental step to give insight 
into the relationships between proteins. The primary 
step in structural alignment is looking for the optimal 
correspondence between residues of two structures to 
optimize the scoring function. An exhaustive search 
for finding such a correspondence between two 
structures is intractable.  
Methods: In this paper, a hybrid method is proposed, 
namely GADP-align, for pairwise protein structure alignment. The proposed method looks for an 
optimal alignment using a hybrid method based on a genetic algorithm and an iterative dynamic 
programming technique. To this end, the method first creates an initial map of correspondence 
between secondary structure elements (SSEs) of two proteins. Then, a genetic algorithm combined 
with an iterative dynamic programming algorithm is employed to optimize the alignment.
Results: The GADP-align algorithm was employed to align 10 ‘difficult to align’ protein pairs in 
order to evaluate its performance. The experimental study shows that the proposed hybrid method 
produces highly accurate alignments in comparison with the methods using exactly the dynamic 
programming technique. Furthermore, the proposed method prevents the local optimal traps 
caused by the unsuitable initial guess of the corresponding residues.
Conclusion: The findings of this paper demonstrate that employing the genetic algorithm along 
with the dynamic programming technique yields highly accurate alignments between a protein 
pair by exploring the global alignment and avoiding trapping in local alignments.
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optimization methods is to explore the global alignment 
and to avoid trapping in local alignment originated by 
improper initial alignment. 

The paper is organized as follows. Section 2 describes the 
combination of GA with iterative dynamic programming 
algorithm in detail. Section 3 shows the evaluated genetic 
algorithm performance and makes a comparison between 
TM-align, MMLigne, SPalign, and CLICK methods. 
Section 4 concludes the proposed algorithm.

Materials and Methods
The GADP-align algorithm
The proposed GADP-align algorithm is introduced in 
this section. Fig. 1 represents the steps of the algorithm in 
summary. The algorithm first looks for a match between 
SSEs of two proteins to produce an initial match between 
their secondary structures. Then, the algorithm employs a 
procedure as shown in a flowchart to align two structures 
at the residue level. 

Matching of the SSE sequences
To find an initial corresponding element between the 
secondary structures of two proteins, the algorithm encodes 
each protein secondary structure in an SSE sequence 
including two letters of the alphabet (H for α-helix and S 
for β-strand). Then, it employs the Needleman-Wunsch 
dynamic programming algorithm27 to create an initial 
correspondence between two sequences. The algorithm 
considers a score of +2 for identical SSEs and -1 for non-
identical SSEs as well as a score of -2 for the gap-opening 
penalty. Then, the initial match is submitted to the genetic 
algorithm to search heuristically for initial corresponding 
residues within each matched SSEs.

The genetic algorithm
The algorithm starts with a set of chromosomes as 
the initial map of SSE matching. Fig. 2 represents the 
structure of a sample chromosome. Each chromosome 
contains a sequence of matched SSE pairs, and each pair 
is represented by the SSE type (0 for α-helix and 1 for 
β-stand), the number of corresponding residues within 
the SSE, and the list of their position along with the 
peptide. Coil and loop structures are highly irregular and 
are ignored in both protein structures. The population 
size was set to N=100 by default.
Initial population
To produce an initial population, the SSE sequences 
of two proteins are compared and matched using 
Needleman-Wunsch dynamic programming, and a set 
of chromosomes is defined based on pairs of matched 
SSEs. For each pair of matched SSEs in the individuals, an 
initial list of corresponding residues is randomly selected, 
ranging between 20% and 100% of the shorter SSE length. 
Fitness function
For evaluating each alignment, the TM-Score is used via 
the formula9:

on atom-to-atom vectors in the structure space. SPalign12 is 
another method for pairwise protein structure alignment 
based on SPscore as a size-independent scoring function to 
compare protein sequences. Alternatively, several methods 
use the distance geometry to represent each protein by a 
pairwise distance matrix between all Cα atoms. DALI13 is 
a popular method that uses the Monte Carlo algorithm 
to obtain the optimal superposition of matrices. Other 
methods use additional heuristics to produce faster or 
more accurate alignment, such as CE.14 MMLigne15 uses 
statistical inference and CLICK16 matches the clique of 
residues to find one-to-one equivalence residues. Several 
strategies have been proposed to optimize the previously 
obtained equivalence set further. These include the Monte 
Carlo algorithm or simulated annealing,13 dynamic 
programming,8 the incremental combinatorial extension 
of the optimal path,14,17 and genetic algorithm.18-20 
Recently, the multi-criteria protein structure comparison 
tool is developed for combining methods and generating 
consensus structural similarity scores.21 The tools 
additionally are used to generate the training set for a 
template-based protein structure prediction based on the 
threading strategy. These methods commonly employ 
machine learning techniques22,23 for implementation of 
their proposed strategy. Recently, some approaches have 
been proposed to solve the protein classification problem 
based on two-dimensional multi-view images of the 
protein structure and learning methods.32,33

Several methods use iterative dynamic programming 
over an initial map of corresponding residues to find 
a transformation and choose the final alignment after 
some heuristic iterations. STRUCTAL24 uses five sets of 
equivalent residues, including start, middle, and end of a 
chain, sequence identity, and similar Ca torsion angles, to 
produce the final alignment based on the highest score. 
TM-align9 obtains an initial alignment by aligning the 
secondary structures, and gapless or gapped matching 
of two structures. SPalign25 uses similar heuristics as 
TM-align and gapless threading, secondary structure 
fitting, and fragment with 20 size matching are used 
as initial alignment. TS-AMIR26 uses a text modeling-
based technique to match secondary structure elements 
(SSEs) and then find the starting and ending residues of 
these elements as the initial alignment. These strategies 
for optimizing the initial correspondence would be 
impractical in some conditions like when sequence 
identity is low or when the SSEs have different sizes. In this 
paper, we introduce GADP-align as a hybrid algorithm 
for the optimal alignment of proteins by combining 
genetic algorithm with iterative dynamic programming 
technique. The genetic algorithm is a heuristic algorithm 
that is highly adaptable with dynamic programming. In the 
proposed method, in addition to the leading operators of 
genetic algorithm, we add the shift operator for enhancing 
the genetic algorithm’s global exploring along two protein 
chains. The main objective of combining these two 
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𝟏𝟏+( 𝒅𝒅𝒊𝒊
𝒅𝒅𝟎𝟎(𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻)

)
𝟐𝟐

𝑳𝑳𝑻𝑻𝒂𝒂𝒊𝒊
𝒊𝒊 ]                          Eq. (1)

Where LTarget is the length of query protein which is the 
protein with a lower number of SSEs, Lali is the number 
of aligned residues, di is the distance between ith pair of 
aligned residues, and d0(LTarget) = 1.24√Ltarget − 153 − 1.8 . It 
can be seen that the formula is independent of the protein 
size.
Selection strategy
The selection process chooses the high-fitness 
chromosome by using the tournament selection. This 
means that the chromosome with a higher fitness value 
has a higher probability of being placed in the intermediate 
population. The tournament selection randomly selects 
k individuals through the substitution of the current 
population. The best chromosome having the highest 
score is entered into the middle population. This process 
is repeated N (=100) times. In the experiments, the value 
of k was set to 3.
Crossover operator
The crossover operator is used to combine the genetic 
information of two individuals. In the proposed method, 
the crossover is done at two points along the chromosome 

with Pc=0.75 as the crossover probability. These two 
points are chosen randomly, and then, the first and third 
segments are swapped, as shown in Fig. 3.
Mutation operator
The mutation operator randomly mutates an individual. 
It allows the algorithm to search within the solution space 
and converge the population to the global maximum while 
it prevents the algorithm from falling into a local optimal 
trap. In the proposed method, the number of aligned 
residues within a pair of matched SSEs in the individual 
may be increased or decreased by 1 with Pm=0.04 as the 
mutation probability.
Shift operator
The procedure utilizes the shift operator to find an optimal 
matching between the SSE sequences of two proteins. The 
operator generates a new matching between SSEs and tries 
to converge to the global optimal matching instead of a 
local matching. For each individual in the population, the 
SSEs are shifted left or right with the shifting probability 
of Ps=0.45. Fig. 4 shows the shift operator for the proteins 
3HHR and 1TEN PDB-ID, whereas the SSEs of 1TEN is 
shifted right or left along with the 3HHR protein.
Replacement 
The generational replacement strategy was used to replace 
the entire population of the current generation with 

Figure 1. The GADP-align algorithm in summary.

Fig. 2. The structure of a sample chromosome for aligning 1BGE:B (HHHHH) and 2GMF:A (HHSHHHSH) proteins. The rectangles with diagonal lines 
represent α-helices and the rest boxes are β-strands. The first SSE of 2GMF:A protein is matched with the second SSE of 1BGE:B using the Needleman-
Wunsch algorithm and seven residues are selected randomly as the initial correspondence of these matched SSEs.
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the generated population after applying the crossover, 
mutation, and shift operations. To prevent missing the 
individual with the highest score, the best chromosome is 
passed to the next generation as an elitism. 
Termination
Since the genetic algorithm is a random search approach, 
the algorithm does not generate an exact solution. Two 
different criteria were used for the termination of the 
algorithm. The first criterion is the unchanged maximum 
score (elitism) for 30 numbers of generation, and the 
second criterion is the termination of the algorithm after 
the production of 100 numbers of generation.
Dynamic programming
In each iteration, the algorithm submits the chromosome to 
a dynamic programming procedure to compute and apply 
the Kabsch rotation matrix.28 As a result, a new alignment 
is created by running the dynamic programming on the 
score similarity matrix, which is defined as: 

S(i, j) = 1
1 + dij2/d0(Lmin)2

 
                                                                                         Eq. (2)

where dij is the distance of the i and j denote residues from the 
query and target proteins and   d0(Lmin) = 1.24√Lmin − 153 − 1.8  
with Lmin is the length of the smaller protein. Furthermore, 
the gap opening penalty of dynamic programming is 
defined -0.6. Then, the new rotation matrix and score 
matrix are computed based on newly aligned residues. 
This procedure is repeated for  n(=5) times to obtain the 
alignment with the highest score. Algorithm 1 shows the 

pseudo-code implemented for the above iterative dynamic 
programming algorithm.

Algorithm 1. Iterative dynamic programming
Input: a chromosome
Output: the alignment with the highest score
1: AR ←aligned residues in chromosome k
2: for i=1 to n do
3: Compute Kabsch rotation matrix based on AR
4: Rotate the target protein using the rotation matrix
5: Compute the score similarity matrix using formula 2  
6:  Run dynamic programming on the score similarity matrix
7: AR←new aligned residue pairs
8: end for

Results
The proposed method was implemented using the 
C++ programming language within visual studio 2013 
on a personal computer having 2.60 GHz Core i5 and 
6 GB RAM. The genetic algorithm was evaluated for 
its convergence and stability. The performance of the 
proposed method was examined on different datasets and 
compared with similar state-of-the-art methods, including 
TM-align, MMLigne, SPalign, and CLICK. In this section, 
the results have been presented and discussed.

Convergence analysis
The implemented genetic algorithm has been investigated 
for its convergence to an optimal or near-optimal solution. 
Fig. 5 represents the convergence graph drawn for three 

Fig. 3. The crossover operator. The SSEs alongside diagonal lines are swapped.

Fig. 4. The shift operator. Dashed boxes represent the matched SSEs (before applying the shift operator). After two shifts to the left, a new SSE matching 
has been generated as represented in dark gray.
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different protein pairs. In each graph, the highest fitness 
function values are shown by red curves, while the 
blue curves represent the average fitness values of the 
generations. As it can be seen from the figure, the fitness 
curves are swinging during iterations indicating that 
different initial correspondence causes different values of 
the scoring function.

Stability analysis
Regarding that genetic algorithms are stochastic search 

methods, it is necessary to run the algorithm multiple 
times to examine its stability. A standard deviation of less 
than average concludes the stability of the algorithm. Fig. 
6 shows the stability diagram for three different protein 
pairs. The TM-score for alignment of 2GMF:A & 1BGE:B 
is the same for all 20 runs. However, for 1TEN & 3HHR:B 
and 1A8Y & 1A81 pairs of proteins, the standard deviation 
differs for different runs. Additionally, for analyzing the 
stability and effectiveness of randomized algorithms like 
genetic algorithm, it is essential to use statistical tests such 

Fig. 5. The convergence of the algorithm to an optimal solution for (A) 
1A8Y & 1A81, (B) 2RHE & 3HLA:B, and (C) 2GMF:A & 1BGE:B. The blue 
swinging curve shows the average fitness of generations, and the red steps 
curve represents the best fitness value in the generation.

Fig. 6. GADP-align stability diagram of (A) 1TEN & 3HHR:B, (B) 1A8Y & 
1A81, and (C) 2GMF:A &1BGE:B

(A)

(B)

(C)

(A)

(B)

(C)
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as t test and the Wilcoxon signed-rank test, which are 
parametric and non-parametric methods, respectively. If 
the data is approximately normally distributed, the t test 
would be more reliable to be used. However, the Wilcoxon 
signed-rank test does not assume the distribution of the 
data. We use Shapiro-Wilk and Kolmogorov-Smirnov test 
to assess whether the data is normal or not. Table 1 shows 
the Shapiro-Wilk and Kolmogorov-Smirnov normality 
tests obtained by the proposed method. From the results, 
both tests have a p-value lower than 0.05, which indicates 
data are not normally distributed. Thus, it is recommended 
to use a non-parametric statistical test method. The 
Wilcoxon signed-rank test is used to compare the average 
of two related samples and assess their difference. A null 
hypothesis Ho is typically defined to state that there is 
no median difference between pairs of samples and H1 
is considered as an alternative hypothesis whether the 
median difference is not equal to zero. The P value of 
the statistical test denotes whether we accept Ho or not. 
The significant level of α=0.05 is considered for rejecting 
Ho. The last column in Table 1 shows the results of the 
Wilcoxon signed-rank test. The asymp. sig. (2-tailed) the 
value represents the P value of the test. The results indicate 
that the P value is better than the significance level α 
(0.05 by default). This observation reveals that there is 
no statistically significant difference between the first and 
second 15 runs of the genetic algorithms. As a result, the 
stability of the genetic algorithm is proven.

Experimental result 
To evaluate the performance of the GADP-align algorithm, 
10 ‘difficult to align’ protein pairs were used.29 The results 
were compared with those of the TM-align algorithm as a 
state-of-the-art alignment method. In general, the quality 
of alignment depends on the contradictory necessities 
of earning a lower RMSD and a higher length of the 
alignment. TM-score is a reasonable particular score 
to evaluate the alignment quality by making a balance 
between the alignment length and its accuracy. As shown 
in Table 2, GADP-align yields a higher TM-score than 
TM-align in four cases among ten protein pairs. TM-
align could not align significantly with two protein pairs, 
including 1TEN & 3HHR:B and 2RHE & 3HLA:B whereas 
the TM-score is less than the threshold of 0.5. This is while 
GADP-align produces a more significant alignment in 
terms of TM-score for these two protein pairs. Besides, 
the results of GADP-align were compared with those of 
TM-align, MMLigne, SPalign, and CLICK as four online 
structure alignment tools. Table 3 shows the results in 
terms of root mean square deviation (RMSD) and length 
of alignment (Nali). As shown in the table, the proposed 
method produces a higher length of alignment in all 10 
cases than MMLigne, SPalign, and CLICK. The method 
also produces alignments better than or equal to those of 
TM-align for nine protein pairs in terms of length of the 
alignment.

Regarding the low differences between the numbers 

Table 1. The results of the normality test of four instances in 30 runs of the genetic algorithm

Query 
Protein

Target 
Protein 

Kolmogorov-Smirnov Shapiro-Wilk Wilcoxon signed-rank

Statistic df* Sig. Statistic df Sig. Z Asymp. Sig (2 tailed)

3HHR 1TEN 0.389 30 0.000 0.624 30 0.000 -0.707 0.480

1A02 1A8Y 0.211 30 0.002 0.859 30 0.001 -0.712 0.477

1ACZ 1A81 0.194 30 0.005 0.811 30 0.000 -1.068 0.286

1A8Y 1A81 0.249 30 0.000 0.812 30 0.000 -1.120 0.263

*df: The degree of freedom.

Table 2. Comparison of structure alignments for 10 ‘difficult’ structures obtained by TM-align and GADP-align methods

Query Protein Target Protein
TM-align GADP-align

TM-1 TM-2 TM-1 TM-2
1UBQ 1FXI:A 0.56841 0.4793 0.5864 0.49831
1TEN 3HHR:B 0.2685 0.16816 0.81947 0.40575
2RHE 3HLA:B 0.46138 0.23485 0.53542 0.48751
1PAZ 2AZA:A 0.55969 0.52731 0.55984 0.52735
1MOL:A 1CEW:I 0.68484 0.61127 0.68484 0.61127
2RHE 1CID 0.67452 0.46537 0.67452 0.46537
1EDE 1CRL 0.58509 0.36486 0.58509 0.36486
1NSB:A 2SIM 0.66308 0.67683 0.66247 0.67621
2GMF:A 1BGE:B 0.59183 0.48049 0.62034 0.50198
4FGF 1TIE 0.72732 0.56967 0.72732 0.56967

TM-1: TM-Score which is normalized by the length of Chain 1.
TM-2: TM-Score which is normalized by the length of Chain 2.
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of SSEs of protein pairs in the Fischer set, GADP-align 
has not remarkably produced different TM-score values 
except for two cases. Therefore, another experiment was 
organized using a set of 200 non-homologous protein 
chains, which were collected by Zhang and Skolnick.9 
Ten pairs of proteins were randomly chosen from the 
set and GADP-align as well as the above four alignment 
tools were employed for their alignment. The alignment 
results are represented in Table 4, including RMSD and 
the length of the alignment. Besides, the value of TM-
Score was calculated for both GADP-align and TM-align 

methods. The results for GADP-align in Table 4 are 
the average values calculated based on ten runs of the 
developed genetic algorithm. As shown in Table 4, the 
alignment quality in terms of TM-score by GADP-align 
is higher than that of TM-align for three protein pairs, 
while both methods obtained a similar TM-score for four 
cases. In the case of non-homologous protein pair 1ACZ 
& 1A02N, the TM-Score value obtained by GADP-align 
(=0.27) is considerably lower than that of TM-align (=0.49 
that is very near to similarity threshold of 0.5) indicating 
that GADP-align precisely identifies non-homologous 

Table 3. Comparison of structure alignments for 10 ‘difficult’ structures obtained by TM-align, MMLigner, SPalign, and CLICK methods

Query 
Protein

Target 
Protein

TM-align9 MMLigner15 SPalign25 CLICK16 GADP-align

RMSD Nali RMSD Nali RMSD Nali RMSD Nali RMSD Nali

1UBQ 1FXI:A 2.63 63 2.80077 57 2.48 62 1.91 58 2.63 63
1TEN 3HHR:B 5.14 51 1.65336 84 1.74 86 1.47 82 1.74 86
2RHE 3HLA:B 3.39 79 3.13553 79 2.73 77 2.22 66 3.68 86
1PAZ 2AZA:A 2.82 86 2.12664 77 2.39 83 1.92 79 3.00 87
1MOL:A 1CEW:I 2.25 82 1.91291 77 2.12 81 1.57 72 2.25 82
2RHE 1CID 2.90 100 2.50037 90 2.56 97 1.71 81 2.90 100
1EDE 1CRL 4.32 235 3.05788 161 2.86 202 2.32 213 4.32 235
1NSB:A 2SIM 3.82 312 2.80825 273 2.86 286 2.25 242 3.79 311
2GMF:A 1BGE:B 3.44 103 3.01005 96 2.70 94 1.89 76 3.80 110
4FGF 1TIE 2.82 117 2.73193 111 2.75 115 2.03 95 2.82 117

Table 4.  Comparison of structure alignments of selecting randomly five proteins of a set of 200 non-homologous protein chains

Query 
Protein

Target 
Protein

MMLigner15 SPalign25 CLICK16 TM-align9 GADP-align

RMSD Nali RMSD Nali RMSD Nali RMSD Nali

TM-score 1
RMSD Nali

TM-score 1

TM-score 2 TM-score 2

1A02:N 1AOE:A 2.05 22 4.26 67 2.25 102 5.75 108 0.23
0.30 5.54 111 0.26

0.33

1A81 1A8Y - - 4.47 99 2.11 88 6.43 119 0.25
0.20 6.59 139 0.29

0.24

1A02:N 1A81 - - 4.71 90 2.38 137 6.20 124 0.26
0.27 6.22 125 0.26

0.28

1ACZ 1A02:N 3.52 79 3.01 76 2.39 122 3.29 79 0.49
0.23 5.49 114 0.27

0.16

1A81 1ACZ - - 3.51 48 2.29 122 4.55 96 0.18
0.33 6.54 120 0.14

0.25

1ACZ 1A8Y 4.39 49 3.72 49 2.49 122 4.96 68 0.32
0.14 6.58 124 0.21

0.15

1ACZ 1AOE:A 1.73 23 3.69 52 2.43 110 5.42 67 0.28
0.19 6.23 120 0.32

0.15

1AOEA 1A81 - - 3.79 71 2.41 84 5.33 105 0.32
0.26 5.53 106 0.31

0.25

1A8Y 1A02:N - - 4.12 92 2.34 124 6.06 123 0.23
0.26 6.52 131 0.23

0.26

1AOE:A 1A8Y 3.80 56 3.51 66 2.22 75 6.09 118 0.32
0.21 6.56 118 0.32

0.21

Nali: number of aligned residues, RMSD: root-mean-square deviation
TM-score 1:TM-Score which is normalized by length of Chain 1
TM-score 2: TM-Score which is normalized by length of Chain 2
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proteins by using an appropriate initial correspondence 
map between a protein pair. From Table 4, it can be seen 
that the alignment quality in terms of RMSD and length 
of alignment by GADP-align is higher than MMLigne, 
SPalign, and CLICK methods for the non-homologous 
protein pairs. 

Discussion 
According to the previous comparative analysis,30,31 
conventional methods are not powerful enough for protein 
structure alignment. Despite the proposition of different 
methods based on effective biological insights, they mostly 
employ an unsuitable scoring scheme to assess the quality 
of alignment. The scoring schemes are commonly work 
based on two contradictory criteria including RMSD and 
the length of the alignment. TM-score makes a balance 
between these two scores in order to provide a reasonable 
measure for assessing the quality of alignment. 

The analysis of the experimental results conducted in 
this study indicates the effectiveness of the GADP-align 
method for protein structure alignment. The overall 
results show the method aligns difficult to align pairs of 
proteins with a quality better than or equal to other state-
of-the-art tools. In addition, examining the methods on a 
set of 200 non-homologous protein chains demonstrates 
the high applicability of the method in comparison with 
other similar tools.

GADP-align combines the advantages of the global 
exploring ability of the genetic algorithms and fast 
convergence mechanism of dynamic programming. This 
combination makes the method free from the typical 
requirement of the user-supplied initial guess to achieve the 
optimal alignment. In this way, the method automatically 
generates a set of initial residue-residue equivalences 
using a genetic algorithm, and then, searches between 
sets of residue-residue correspondence maximizing the 
scoring function. Furthermore, the method iteratively 
looks for alternative SSE matching instead of relying on 
the SSE matching initially produced by the Needleman-
Wunsch algorithm. GADP-align looks for the optimal 
alignment of residues within the matched SSEs through a 
procedure of randomly choosing the aligned residues. The 
results in Table 4  depict that the methods, which exclusively 
use the iterative dynamic programming algorithm with an 
arbitrary initial alignment, converge to the nearest local 
minimum RMSD. 

Conclusion
The developed genetic algorithm utilizes the novel shift 
operator, particularly in structures with high differences 
in size to avoid trapping of the search in a local optimal 
score. Besides, the results demonstrate that a relevant 
initial guess of corresponding residues is essential to 
obtain alignment with a high score. Since the protein 
structure alignment is a discrete optimization problem, 
other efficient evolutionary algorithms which are suitable 

What is the current knowledge?
√ Three-dimensional structure of query and target proteins
√ Optimization by dynamic programming approach
√ Optimization by genetic algorithms

What is new here?
√ Combining genetic algorithm and dynamic programming 
helps to explore the global alignment and avoid trapping in 
local alignments 
√ The shift operator helps to find an optimal matching 
between the secondary structure elements.

Research Highlights

for discrete optimization can be employed instead of 
genetic algorithms. 
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