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Abstract
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell

aging, which may lead to vascular dysfunction as seen in diabetes. There is no information

on whether this may contribute to the progression of diabetic retinopathy (DR). In this study,

we have assessed the occurrence of senescence-associated markers in retinas of strepto-

zotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normo-

glycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that

in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-

Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target

of miR34a. Expression of senescence-associated factors primarily found in retinal micro-

vasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In

aging rats, retinal expression of senescence associated-factors was mainly localized at the

level of the retinal pigmented epithelium and only minimally in the retinal microvasculature.

The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyr-

osine was more pronounced in the retinal vasculature of diabetic rats as compared to nor-

moglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug

FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in

the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates reti-

nal microvascular cell aging whereas physiological aging affects primarily cells of the retinal

pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and

DR progression involve vascular cell senescence due to increased oxidative/nitrative

stress.
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Introduction
Hyperglycemia-induced dysfunction of retinal blood vessels is a major contributing factor in the
pathogenesis of diabetic retinopathy (DR), the leading cause of blindness in working-age adults
[1–3]. Despite the recent evidence suggesting the existence of both neural and vascular alter-
ations in the diabetic retina [4–7], hyperglycemia-induced retinal microangiopathy remains a
main pathogenic event for DR and a key therapeutic target for its prevention and cure [8, 9].

Several molecular mechanisms have been implicated to explain hyperglycemia-induced reti-
nal vascular dysfunction. In particular, augmented oxidative and nitrative stress, due to
increased production of reactive oxygen and nitrogen species (ROS and RNS, respectively) [10,
11] and impaired endogenous antioxidant ability [12], have been shown to induce inflamma-
tory responses leading to capillary cell dysfunction and death [10].

Oxidative stress-induced vascular inflammation also occurs during physiological aging [13–
16] where vascular senescence plays a key role in the pathogenesis of age-associated cardiovas-
cular disease [17–21]. Interestingly, increased oxidative and nitrative stress may accelerate vas-
cular senescence also in diabetes [22–24]. As a result, endothelial cells (ECs) and surrounding
tissues undergo structural alterations in a complex senescence process characteristically similar
to what occurs during physiological aging [25–29], but not including replicative senescence-
associated telomere shortening and its downstream consequences [30].

The acquisition of senescence-like features in blood vessels can promote a chronic inflam-
matory phenotype known as senescence-associated secretory phenotype (SASP) [31], charac-
terized by up-regulation of inflammatory cytokines largely due to persistent acetylation/
activation of the pro-inflammatory transcription factor NF-kB [32].

Here we have investigated the effects of hyperglycemia in promoting/accelerating aging of
the retinal microvasculature by monitoring the appearance of senescence-like markers relative
to oxidative/nitrative stress parameters in diabetic adult rats (4.5 months old) at 8 and 12
weeks of hyperglycemia and in aging non-diabetic rats (12–14 months).

The obtained results show that hyperglycemia-induced retinal microangjopathy involves accel-
erated senescence of the retinal microvasculature resulting from increased oxidative and nitrative
stress and from induction of redox-dependent intracellular signaling and epigenetic events.

Materials and Methods

Animals
All animals were housed in the vivarium of Georgia Regents University and kept under a 12
hour day/night light cycle. Adult male Sprague-Dawley (SD) rats (250–300g) obtained from
Harlan Laboratories (Dublin, VA) were made diabetic by a single intravenous injection of
streptozotocin (STZ) [65mg/kg dissolved in 0.1M sodium citrate (pH 4.5)]. Control rats from
the same strain (SD) were delivered equal volumes of the vehicle alone. Rats were considered
to be diabetic when fasting blood glucose levels were found to be�300 mg/dL. One group of
STZ-rats kept diabetic for 8 weeks were treated with daily doses (10mg/Kg/day) of the peroxy-
nitrite decomposition catalysts 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron III
chloride (FeTPPS), administered in the drinking water [33]. FeTPPS prevents the formation of
nitrotyrosine by scavenging out peroxynitrite and also limits the levels of hydroxyl radicals pro-
duced as peroxynitrite by-products [34, 35]. All the diabetic rats were sacrificed after 8 and 12
weeks of hyperglycemia with an overdose of anesthesia followed by a thoracotomy.

Another set of animals used in our experiments included non-diabetic rats at 12 and 14
months of age, which represented the aging group. Normoglycemic rats at 4.5 months of age
(age-matched with the STZ-rats) were used as controls.
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At the time of the sacrifice, retinas were excised and preserved in different conditions
according to the subsequent biochemical and morphological analysis. A list of the different
experimental groups is provided in Table 1.

Morphological analysis
Eyes were enucleated, embedded in Optimal Cutting Temperature (OCT) mounting medium
(Tissue Tek, Torrance, CA), and frozen on dry ice. Retinal cryosections (20 μM) were fixed in
4% paraformaldehyde (PFA) prior to immunohistochemical analysis. For retinal and RPE flat
mounts, enucleated globes were immediately fixed in 4% PFA followed by retinal extraction
and separation from RPE. Fixed retinal sections and whole retinas were incubated overnight at
4°C with primary antibodies, rabbit anti-CDKN2A/p16INK4a (1:500, Abcam, Cambridge, MA),
rabbit anti-SIRT1 (1:100, Cell Signaling, Danvers, MA), mouse anti-nitrotyrosine (Cayman
Chemical, Ann Arbor, MI), or goat anti-4-hydroxynonenal (1:200, Abcam, Cambridge, MA)
and co-labeled with isolectin B4 (1:1000, Invitrogen, Grand Island, NY) to localize retinal vas-
cular structures. Slides/retinal flat mounts were washed with 1% Triton X-100 in 0.1M PBS
(pH 7.4) 3 times followed by a one hour incubation with the secondary antibodies, goat anti-
rabbit IgG-conjugated Alexa Fluor 488 and goat anti-mouse IgG-conjugated Alexa Fluor 488,
chicken anti-goat Alexa Fluor 488, and streptavidin. Nuclei were stained following 5 minute
incubation with Hoescht 33342 (Invitrogen, Carlsbad, CA) in phosphate buffered saline (PBS)
at a1:24,000 dilution. Slides and retinal flat mounts were then mounted using Fluoromount
(Fisher Scientific, Pittsburg, PA) or Vectashield (Vector Laboratories, Burlingame, CA). For
flat mounts, retinas were sectioned into four quadrants and flattened upon Superfrost micro-
scope slides (Fisher Scientific, Pittsburgh, PA, USA). Sections and flat mounts were examined
by epifluorescence using a Zeiss Axioplan-2 microscope (Carl Zeiss, Göttingen, Germany)
equipped with the Axiovision program (version 4.7).

Senescence-associated β-galactosidase activity assay
Senescence-associated β-galactosidase (SA-β-Gal) reactivity-based assay was performed to evi-
dence senescent areas in retinal sections, retinal flat mounts, and RPE flat mounts using a com-
mercially available kit assay (Cell Signalling, Danver, MA). The tissues were fixed with 2%
formaldehyde and 0.2% glutaraldehyde in PBS. Positive reactivity to β- galactosidase is evi-
denced at pH 6 only in senescent cells, in vitro and in vivo. Slides and/or flat mounts (retinas
and RPE) images were captured 20X and 63X magnification by light microscopy using Zeiss
Axioplan2 (Carl Zeiss Microscopy, Thornwood, NY).

Protein analysis
Western blotting analysis was performed according to standard protocols [36] using anti-
SIRT1 (Cell Signaling, Danvers, MA) and anti-p16INK4a (Abcam, Cambridge, MA). After incu-
bation with horseradish peroxidase-conjugated secondary antibody (GE Healthcare Life Sci-
ences, Pittsburg, PA) bands were detected using the enzymatic chemiluminescence reagent
ECL (GE Healthcare, Pittsburg, PA).

Sirt-1 activity assay
An assay for the detection of SIRT1 decatylase activity in retinal tissue was performed as a two-
step enzymatic reaction as per manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO). In
the first step, deacetylation by SIRT1 is performed using a substrate that contains an acetylated
lysine side chain. In the next step, cleavage of the deacetylated substrate by the Developing
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Solution occurred resulting in the release of a highly fluorescent group. The measured fluores-
cence at 340nm/430nm wavelength (excitation/emission) using spectraMax Gemini EM,
(Molecular Devices, Sunnydale, CA) was directly proportional to the deacetylation activity of
the enzyme in the sample.

mRNA analysis
QiagenRNeasy extraction kit was used to extract mRNA from rat retinas. Quantification of
SIRT1 and p16INK4a mRNA expression was performed using Quantitative Real-time RT-PCR.
All primers listed in Table 2 were obtained from Invitrogen (Carlsbad, CA). All data were nor-
malized to β -actin mRNA.

Assessment of microRNA expression
Extraction of microRNAs (miRs) from rat retinas was performed by following the miRNeasy
extraction method (Qiagen, Germantown, MD). MiR34a expression was then quantified using
miRCURY LNA Universal RT microRNA PCR (Exiqon, Woburn, MA). This system combines
a Universal RT reaction, a primer set for miR-103a-3p, an endogenous control, with LNA-
enhanced PCR primers designed by the company for the target sequence of miR34a (ACAACCA
GCTAAGACACTGCCA; catalog #204486).

In situ hybridizations (ISH) of miR34a
ISH was performed on frozen retinal section fixed in 4% PFA. MiRs were demasked by incuba-
tion with proteinase K for 30 minutes. Slides were incubated overnight at 58°C with a double-
(5’ and 3’)-digoxigenin (DIG)-labeled probe for the senescence-associated microRNA 34a
(/5DigN/ACAACCAGCTAAGACACTGCCA/3Dig_N/; hsa-miR-34a; Exiqon, Woburn, MA).
Slides were then washed in 2x, 1x and .1x concentrations of sodium citrate (SSC) buffers at
58°C, 53°C, and 37°C, respectively, followed by a one hour incubation with anti-DIG (Roche

Table 2. List of Primers.

gene Primer sequence

p16INK4a Sense:TGGACAATGGCTACTCAA

Antisense: TTCCCTGAG ACACTAGAT

SIRT1 Sense:TGTTTCCTGTGGGATACCTGA

Antisense:TGAAGAATGGTCTTGGGTCTTT

β-actin Sense: CGAGTACAACCTTCTTGCAG

Antisense: TGAAGAATGGTCTTGGGTCTTT

doi:10.1371/journal.pone.0139664.t002

Table 1. Experimental animal groups andmetabolic parameters.

Treatment Group Duration of Diabetes Age in months (mos) n Weight (g) Blood Glucose (mg/dl)

Control 0 4.5 6 315.6 187.6±12.9

D8wks 8 wks 4 6 278.2* 456.8±30.8

D12wks 12 wks 5 6 267.1* 464.9±26.2

D8wks+FeTPPS 8 wks 4 6 282.6 453.3±22.1

A12mos 0 12 6 374.2° 176±10.9

A14mos 0 14 6 387.5° 182±11.3

doi:10.1371/journal.pone.0139664.t001
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Diagnostics, Indianapolis, IN) and mounting with Fluoromount. Images were captured by
light microscopy using Zeiss Axioplan2.

Lipid Peroxidation assay
Hydroperoxide levels were measured using a quantitative extraction method (Cayman Chemi-
cal, Ann Arbor, MI). Lipid hydroperoxides of retinal extracts (300 μg) from control, aging and
diabetic retinas were extracted into a degassed chloroform/methanol mixture. Thiocyanate was
utilized as the chromogen for detection of hydroperoxide interaction with ferric ions. Absor-
bance was read at 500nm (spectraMax Gemini EM, Molecular Devices, Sunnydale, CA).

Statistical analysis
Group differences were evaluated using ANOVA and results were considered significant when
p<0.05. For in vivo studies, age-matched controls were compared to diabetic rats and aging rats,
and diabetic to aging rats (n = 6). Power calculations revealed that when n = 6, the power value
was above 0.9 with 50% differences in the treatment effects and a probability of error of 0.05.

Ethics statement
All animal procedures were performed following the recommendation of the Association for
Research in Vision and Ophthalmology (ARVO) Statement for the humane use of animals in
vision science and in compliance with the institutional protocols approved by the Animal Care
and Use Committee of Georgia Regents University (IACUC#2009–181). All experiments were
conducted with the ethical approval of the Institutional Animal Care and Use Committee of
Georgia Regents University.

Results

Assessment of SA-β-Gal in diabetic and aging retina
We have measured the effects of hyperglycemia in up-regulating SA-β-Gal activity at pH 6.0 in
retinal tissue. Fig 1A–1E demonstrates the presence of SA-β-Gal activity in retinal frozen sec-
tions, after 8 (Fig 1B) and 12 (Fig 1C) weeks of hyperglycemia, and in comparison to retinas of
aging normoglycemic rats at 12 (A12) and at 14 (A14) months of age (Fig 1D and 1E, respec-
tively) and to retinas of 4.5 month old normoglycemic control rats (Fig 1A). These images
demonstrate a progressive increase in SA-β-Gal activity levels in diabetic retinas in comparison
to control groups (Fig 1A–1C). In addition, SA-β-Gal activity appears to be increased primarily
in the inner retina around blood vessels (Fig 1B and 1C, black arrows). Interestingly, retinas of
aging rats also showed increased SA-β-gal activity, but mainly at the level of the retinal pig-
mented epithelium (RPE) (Fig 1D and 1E, black arrows).

To confirm the presence of SA-β-Gal activity in the vasculature of the diabetic retina and in the
RPE layer in the aging rats, we have assessed this senescence marker in flat-mounted retinas and
isolated retinal pigmented epithelium layers. Flat mount images in Fig 2 show increased SA-β-Gal
activity in the vasculature of the diabetic retina at 8 and 12 weeks of hyperglycemia (black arrows
in Fig 2B and 2C, respectively) in comparison to normoglycemic 4.5 months old controls (Fig 2A)
and normoglycemic aging rat retinas at 12 and 14 months of age (Fig 2E and 2F, respectively).

Interestingly, higher magnifications indicate that SA-β-Gal activity is particularly evident
microvasculature structures, which include capillaries and postcapillary venules (black arrow-
heads, Fig 2D) in comparison to larger arterioles and venules. Flat-mounted RPE layers showed
higher SA-β-Gal activity in aging normoglycemic (Fig 3D and 3E) rat retinas than that mea-
sured in diabetic (Fig 3B and 3C) or non-diabetic (4.5 months old) control rat retinas (Fig 3A).
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SIRT-1 expression and activity in the diabetic and aging retina
Vascular senescence has been associated with decreased expression of SIRT-1 in vascular cells
[18, 37]. We have conducted studies to assess SIRT-1 expression and activity in the diabetic ret-
inas. As shown in Fig 4, SIRT-1 expression, at both mRNA [Fig 4A, �p<0.02 vs control (C),
#p<0.02 vsD8wks, n = 6)] and protein level (Fig 4B, �p<0.04 vs C) along with its enzymatic
activity (Fig 4C, �p<0.05 vs C, °p<0.05 vs D8wks, n = 6) were significantly down-regulated in
whole retinal tissue extracts of diabetic rats compared to both control and normoglycemic,
aging retinas.

Morphological analysis confirmed the effects of hyperglycemia on SIRT-1 expression in the
diabetic retinal microvasculature, as shown by double labeling with isolectin B4, demonstrating
a down-regulation of SIRT-1-specific immunoreactivity in retinal blood vessels of diabetic rats
(Fig 4E and 4F, white arrows) as compared to control (Fig 4D, white arrows) and aging (Fig 4G
and 4H) rat retinas. Notably, SIRT1 immunoreactivity diminished at the RPE/choroid level in
aging retinas (asterisk, 4G,H).

Up-regulation of p16INK4Aexpression in the diabetic and aging retina
Senescence promotes the withdrawal of vascular cells from the cell cycle due to up-regulation
of cyclin-dependent kinase inhibitors such as p16INK4A [17, 38]. Furthermore, studies have

Fig 1. SA-β-gal staining in cross sections of aging and STZ-rat retinas. SA-β-gal (blue color) was detected using immunohistochemical analysis of 20
μm frozen retinal sections from 4.5 months old normoglycemic controls (A), STZ-rats, at 8 (B) and 12 weeks (C) of hyperglycemia, and normoglycemic aging
rats at 12 (D) and 14 (E) months of age. Images were captured at 20X magnification. Scale bar equal to 50 μm. Black arrows are pointing areas of positive
reactivity for SA-β-gal (blue color).

doi:10.1371/journal.pone.0139664.g001
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Fig 2. SA-β-gal staining in inner retinal flat mounts. Positivity of SA-β-gal at pH6 (black arrows) was assessed in retinal flat mounts from 4.5 month old
normoglycemic controls (A), STZ-rats at 8 weeks (B,D) and 12 weeks (C) of hyperglycemia and in non-diabetic aging rats at 12 (E) and 14 (F) months of age.
In panelD, SA-β-gal reactivity is showed at 63X magnification to demonstrate positive reactivity in microvascular structures in the diabetic retina (8 weeks of
hyperglycemia, black arrowheads). MV = microvascular vessels, V/A = venules/arterioles. Scale bar equal to 20 μm.

doi:10.1371/journal.pone.0139664.g002

Fig 3. SA-β-gal in RPE flat mounts. Bright-field images show SA-β-gal positive areas found in RPE flat mounts from age-matched (4.5 months old)
normoglycemic control rats (A),STZ-rats, at 8 (B) and 12 weeks (C) of hyperglycemia, or in normoglycemic aging rats at12 (D) and 14 (E) months of age.
Scale bar equal to 20 μm.

doi:10.1371/journal.pone.0139664.g003
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shown that p16INK4a can also be activated in response to oxidative stress, through the action of
the p38-MAPK protein [39].

We have measured the expression levels of p16INK4A in diabetic retinas in comparison to
those measured in the aging and adult normoglycemic rat retinas. As shown in Fig 5, the
expression of p16INK4A, measured by qPCR and Western blotting analyses, was progressively
and significantly up-regulated in the diabetic retina at both mRNA and protein levels in com-
parison to aging and control rat retinas [Fig 5A (�p<0.009 vs control, #p<0.01 vs D8wks, n = 6)
and Fig 5B (�p<0.01 vs control vs D8wks),

#p<0.04, n = 6) respectively].
Immunohistochemical analysis further revealed that p16INK4A was specifically up-regulated

in the retinal vasculature of both 8 and 12 weeks of hyperglycemia (Fig 5D and 5E), in compar-
ison to adult normoglycemic controls (Fig 5C). Non-diabetic aging rat retinas showed
increased immunoreactivity to p16INK4A at the RPE/choroid interface, thus, mirroring the SA-

Fig 4. SIRT-1 expression and activity in rat retinas. A) Expression of SIRT-1 at mRNA level was measured using qPCR in retinal extracts from control,
diabetic, and aging rat retinas. MRNA levels were calculated as a ratio to β-actin expression and normalized to baseline controls. x± S.D, *p<0.02 vs C rat
retina; #p<0.02 vs D8wks diabetic; °p<0.05 vs D12wks diabetic n = 6. B) Bar histogram showing SIRT-1 protein levels normalized to β-actin in retinal extracts.
x ± S.D.,*p<0.04 vs control rat retina; #p<0.02, n = 6.C) Changes in enzymatic activity of SIRT-1 in vivo are displayed in bar histogram. x ± S.D, *p<0.05 vs
control rat retina; #p<0.02 vs D8wks, n = 6. Control retinas = white bar; aging retinas = gray bar; diabetic retinas = black bar. D-H) Retinal frozen sections were
probed with anti-SIRT1 (green) and anti-isolectin (red) to detect SIRT-1-specific immunoreactivity in control (D), diabetic (E-F), and aging (G-H) rats. White
arrows are indicating areas of merging double labeling (yellow) in inner blood vessels. White asterisks indicate areas SIRT1 immunoreactivity at the RPE/
choroid level. Hoescht staining was used to detect nuclei (blue). Scale bar equal to 50 μm.

doi:10.1371/journal.pone.0139664.g004
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Fig 5. Measurements of p16INK4a levels in rat retinas. A) Expression of p16INK4a at mRNA level was measured using qPCR in retinal extracts from control,
STZ, and aging rat retinas (as indicated above). Levels of p16INK4A specific mRNA are expressed as a ratio to β-actin and normalized to baseline controls.
x ± S.D, *p<0.009 vs control 4.5 month rat retina; #p<0.01 vs D8wks, n = 6.B)Western blotting analysis measuring p16INK4a protein levels; bar histogram
depicts p16INK4a protein levels normalized to β-actin in retinal extracts. x ± S.D,*p<0.01 vs C; #p<0.04 vs D8wks diabetic, n = 6. Control retinas = white bar;
aging retinas = gray bar; diabetic retinas = black bar. C-G) Frozen retinal sections were probed with anti-p16INK4a (green) antibodies and isolectin B4 (red) to
detect anti-p16INK4a -specific immunoreactivity in retinal vessels of control (C), diabetic (D-E), and aging (F-G) rats. Areas of merging labeling (yellow) are
indicated by the white arrows. White asterisks show p16INK4a positivity at the RPE/choroid level. Hoescht staining was used to detect cellular nuclei (blue).
Scale bar equal to 50 μm.

doi:10.1371/journal.pone.0139664.g005
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β-Gal results observed in Fig 1 (Fig 5F and 5G, asterisks). This supports findings that mature
RPE cells have the capacity to replicate, and therefore, can develop a senescent phenotype [40].

Expression of miR34a in the diabetic and aging retina
Evidence is provided demonstrating that vascular senescence involves epigenetic changes
including up-regulation of miR34a [41]. To further analyze the effects of hyperglycemia on
accelerated vascular senescence, we have assessed miR34a expression and localization in retinal
sections via a highly specific in situ hybridization (ISH) technique for miRNA detection in tis-
sue samples. Images in Fig 6 indicate that miR34a reactivity is up-regulated in the diabetic ret-
ina (Fig 6B) as compared to normoglycemic aging (Fig 6C) and control adult retina (Fig 6A).

ISH revealed that miR34a expression is localized around retinal blood vessels (white arrow),
but also in other cells of the inner retina as well as in the RPE of the diabetic retinas (Fig 6B).

Quantification of miR34a expression by qPCR (Fig 6D) further confirmed the results of the
ISH by showing a significant increase in total retinal expression of miR34a in the diabetic reti-
nas as compared to control, normoglycemic, 4.5 month old rat retinas (�p<0.01 vs control).
Retinal expression of miR34a, measured by qPCR, was also found to be slightly increased in
the aging retinas, however this was not statistically different from the normoglycemic adult
control (Fig 6D).

Effects of hyperglycemia and aging on levels of oxidative and nitrative
stress markers
One of the main inducer of accelerated vascular cell senescence is the up-regulation of reactive
oxygen and nitrogen species (ROS and RNS, respectively) and consequent oxidative and nitra-
tive/stress [42–45]. Therefore, we have conducted a comparative analysis of the levels of oxida-
tive and nitrative stress markers in the retinas of diabetic rats in comparison to normoglycemic
aging or adult rats.

Levels of lipid peroxidation, determined by assessing hydroperoxide concentrations in total
retinal lysates, were increased in STZ-rats at 8 and 12 weeks of hyperglycemia with levels
detected at 12 weeks of hyperglycemia being significantly higher than the diabetic at 8 weeks of
hyperglycemia (Fig 7A, �p<0.0001 vs C, #p<0.0001 vs D8wks, n = 6). In aging retinas of 12 and
14 months old rats, we have detected a significant increase in hydroperoxides levels compared
to control rats (Fig 8A, �p<0.05 vs C, n = 6), however this value was significantly lower than
that found in the diabetic retinas (Fig 7A, p<0.05 vs D8wks, n = 6).

Measurements of 4-hydroxynonenal (4-HNE) in retinal flat mounts, to assess aldehydic
products of lipid peroxidation, showed increased adduct formation specifically in the retinal
vasculature of diabetic rats at 8 and 12 weeks of diabetes (Fig 7C and 7D respectively, white
arrows), whereas in retinal flat mounts of 12 and 14 month-old (aging) rats we found immuno-
reactivity in extra-vascular areas of the retina (Fig 7E and 7F, white arrowheads).

We have also determined the occurrence of protein tyrosine nitration in the different exper-
imental groups. We have assessed nitrotyrosine formation in control, aging and diabetic rat
retinal flat mounts (Fig 8). Virtually no detection of nitrotyrosine-specific immunoreactivity
was observed in control retinas (Fig 8A) while this was increased in vascular structures of dia-
betic rats after 8 and 12 weeks of hyperglycemia (Fig 8B and 8C, respectively). Nitrotyrosine
formation in retinal flat mounts of aging rats was also increased compared to control retina,
but in a lesser extent than in diabetic retinas and was mainly localized in extra-vascular areas
(Fig 8D and 8E, white arrowheads).
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The sum of these results show that oxidative and nitrative retinal injury (lipid peroxidation
and nitrotyrosine adducts formation) was more pronounced in the diabetic retinal vasculatures
than in control and aging retina where was present in extravascular structures.

Effects of FeTPPS on vascular senescence in diabetic retinas
The previous data show that increased formation of nitrotyrosine adducts occurs in the dia-
betic retina. As nitrotyrosine formation is directly linked to production of the free radical per-
oxynitrite (ONOO-), we have tested the effects of the ONOO- decomposition catalyst
5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron III chloride (FeTPPS) to determine
whether scavenging of ONOO-, by limiting oxidative and nitrative stress, could also prevent
hyperglycemia-induced vascular senescence.

Treatments with the ONOO- decomposition catalyst FeTPPS significantly diminished the
levels of nitrotyrosine formation (Fig 9A and 9B, white arrows) and 4-HNE (Fig 9C and 9D,
white arrows) in the diabetic retina. FeTPPS treatment also decreased SA-β-Gal reactivity
detected in retinal frozen sections (Fig 10A and 10B) of diabetic rats. Examination of the senes-
cence markers, SIRT1 and p16INK4a, revealed that FeTPPS-treated diabetic rats displayed
increased/restored SIRT1-specific immunoreactivity (Fig 10C and 10D, white arrows) and also
decreased p16INK4a–specific immunoreactivity in inner retina blood vessels (Fig 10E and 10F,
white arrows).

Fig 6. Assessment of miR34a expression.MiR-34a detection was evidenced by in situ hybridization in retinal sections of control (4.5 months old), 8 wks
diabetic, and 14 months old aging rats. Representative images of control (A), diabetic (B), and aging (C) rat retinas probed for MiR-34a-DIG are depicted in
each panel. D)Control retina probed with scrambled miRNA. Scale bar 50 μm. In E) bar histogram representing relative fluorescence units of miR34a
amplicons measured by qPCR.x ± S.D, *p<0.01 vs C 4.5 month rat retina, n = 6.

doi:10.1371/journal.pone.0139664.g006
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Discussion
In this study we have investigated the effects of hyperglycemia in promoting retinal vascular
cell premature aging, a molecular event shown to lead to vascular dysfunction and induction of
inflammatory processes, all factors involved in the pathogenesis of DR [10, 20].

Fig 7. Measurements of lipid oxidative modifications. Bar histogram is representative of measurements of chloroform/methanol extracted
hydroperoxides (A) in retinal rat tissues in the different treatment groups. x ± S.D, *p<0.0001 vs C, #p<0.0001 vs D8wks, °p<0.0001 vs D8wks, n = 6.
Immunohistochemical analysis using anti-4-HNE specific antibodies in retinal flat mounts is shown in panels B and C. Areas of merging labeling (yellow) are
indicated by the white arrows. White arrowheads indicate extravascular areas immunoreactive to 4-HNE. Scale bar equal to 20 μm.

doi:10.1371/journal.pone.0139664.g007
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Our data showed that in a rat model of type 1 diabetes (STZ-rat) there was acquisition of
senescent-like phenotype of the retinal microvasculature demonstrated by an up-regulation of
senescence-associated markers.

Cellular senescence can be divided into two categories: replicative senescence, which is
dependent on the number of spontaneously completed cell divisions, and stress-induced pre-
mature senescence (SIPS) [23, 46]. The latter is suggested to be independent of telomere status
[47] and can be accelerated by a number of stimuli, including oxidative stress [48–51].

SA-β-gal activity at pH 6 occurs only in senescent cells as a result of the accumulation of
endogenous lysosomal beta-galactosidase [52]. In retinal flat mounts, higher SA-β-gal reactiv-
ity was evidenced in the microvasculature of STZ-rats (Fig 2), whereas in the aging rats was
mainly accumulated in the RPE (Fig 3).

Fig 8. Measurements of nitrative modifications. Representative images of immunohistochemical analysis using anti-nitrotyrosine in retinal flat mounts to
demonstrate changes in retinal NY formation in the different treatment groups. Double labeling with isolectin B4 was used to specifically assess NY
immunoreactivity in the retinal microvasculature. Areas of merging labeling (yellow) are indicated by the white arrows. Non-vascular areas immunoreactive to
NY are indicated by white arrowheads. Scale bar equal to 20 μm.

doi:10.1371/journal.pone.0139664.g008

Fig 9. FeTPPS effects on lipid peroxidation and nitrotyrosine formation. Representative images of anti-nitrotyrosine (A,B) and anti-4-HNE (C,D)
immunoreactivity (green) in retinal flat mount preparations of STZ-diabetic rats in comparison to retinas of diabetic rats that were treated with FeTPPS.
Double labeling for isolectin B4 (red) was performed to visualize merging areas (yellow) corresponding to vascular structures. Scale bar equal to 20 μm.

doi:10.1371/journal.pone.0139664.g009
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Up-regulation of post-mitotic factors such as the cyclin-dependent kinase inhibitor
p16INK4A [53], can be found in blood vessels in response to redox-dependent induction of p53
[54] and downstream activation of p38MAPK [55]. Increased expression of p16INK4A at
mRNA and protein levels was detected in the diabetic retinas at significantly higher levels than

Fig 10. Senescence-associated retinal changes with FeTPPS treatment. A,B) Retinal frozen sections
from diabetic and diabetic + FeTPPS groups were probed at pH6 for detection of SA-β-gal positivity (blue,
black arrows). Representative images from frozen retinal sections probed with anti-SIRT1 (C, D) and anti-
p16INK4a (E, F) (green) to detect immunoreactivities in diabetic and retinas of FeTPPS- treated diabetic rats.
Sections were co-labeled with anti-isolectin B4 (vascular structures, red). Hoescht staining was used to
detect nuclei (blue). Scale bar equal to 50μm.

doi:10.1371/journal.pone.0139664.g010
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retinas of aging and control age-matched rats. Immunohistochemical analysis, conducted in
retinal sections and flat mounts, [56] confirmed that p16INK4A expression was primarily local-
ized in retinal blood vessels of diabetic rats (Fig 5).

Blunted expression and activity of the histone deacetylase SIRT-1 was also evidenced in the
retinal microvasculature of diabetic rats (Fig 4). Loss of SIRT-1 deacetylase activity results in
persistent acetylation/activation of the transcription factor NF-kB and consequent expression
of pro-inflammatory genes [56–58]. Therefore, loss of SIRT-1 may explain hyperglycemia-
induced chronic inflammatory responses in the diabetic retina [59].

Suppression of SIRT-1 expression has been shown to be regulated by epigenetic mecha-
nisms such as up-regulation of miR34a [41, 60]. In our experimental conditions, retinal levels
of miR-34a were significantly elevated in the diabetic rats as compared to control adult and
aging rats. Interestingly, in situ hybridization showed that miR34a is also produced in non-vas-
cular retinal cells (Fig 6A–6C). MiRs can be released in exosomes, thus, affecting gene expres-
sion in an autocrine and paracrine manner [61, 62]. In addition, mirR34a is p53-dependent
[63] and its expression can also be triggered by oxidative and nitrative stress. Our data, there-
fore, suggest the interesting possibility that in the hyperglycemic milieu different retinal cells
can contribute to the induction of retinal microvascular cell senescence through stress-related
expression and release of miR34a.

Our data showed that hyperglycemia-induced up-regulation of senescence-like markers
appears to be a consequence of oxidative/nitrative stress and treatments of the diabetic rats
with the ONOO- decomposition catalyst, FeTPPS, significantly prevented the appearance of
senescence markers in the diabetic retinal microvasculature (Figs 9 and 10).

In addition, our study revealed that aging retinas express senescence markers primarily in
the RPE/choroid layer, an observation tangential to our focus on retinal vascular beds affected
in DR. Whether RPE cells are post-mitotic or not remains controversial. However, recent stud-
ies demonstrate that regional proliferation differences exist in adult RPE cells [40, 64, 65].

In summary, the results of the present studies demonstrate that hyperglycemia-induced oxi-
dative/nitrative stress accelerates retinal vascular cell senescence and consequent pro-inflam-
matory processes, thus, providing new relevant information on the pathogenesis of diabetic
retinal microangiopathy and DR progression.
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