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Ca2+-activated Cl− Current from Human Bestrophin-4 in Excised 
Membrane Patches

Takashi Tsunenari,1 Jeremy Nathans,1,2,3,4 and King-Wai Yau1,2

1Department of Neuroscience, 2Department of Ophthalmology, 3Department of Molecular Biology and Genetics, and 4Howard 
Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Bestrophins are a newly discovered family of Cl− channels, some members of which are activated by intracellular 
Ca2+. So far, all studies were carried out with whole-cell recordings from plasmid-transfected cultured cells, so it 
is unclear whether Ca2+ activates bestrophin through a metabolic mechanism or in a more direct way. We report 
here experiments that addressed this question with excised, inside-out membrane patches. We chose human 
 bestrophin-4 (hBest4) for heterologous expression because it gave particularly large Cl− currents when expressed, thus 
allowing detection even in excised membrane patches. hBest4 gave a negligible Cl− current in a Ca2+-free solution 
on the cytoplasmic (bath) side, but produced a Cl− current that was activated by Ca2+ in a dose-dependent manner, 
with a K1/2 of 230 nM. Thus, Ca2+ appears to activate the bestrophin Cl− channel without going through a freely 
diffusible messenger or through protein phosphorylation. Because the activation and deactivation kinetics were 
very slow, however, we cannot exclude the involvement of a membrane-associated messenger.

I N T R O D U C T I O N

Bestrophin is the protein product of VMD2, a gene 

that when defective causes juvenile-onset, autosomal-

dominant, vitelliform macular dystrophy (VMD/Best 

disease) in the retina (Petrukhin et al., 1998; Marquardt 

et al., 1998). The human genome codes for four mem-

bers of the bestrophin family, with no obvious homol-

ogy to any other human protein (Sun et al., 2002; 

Tsunenari et al., 2003). A number of recent studies us-

ing heterologous expressions have shown that bestro-

phins form Cl− channels (Sun et al., 2002; Tsunenari 

et al., 2003; Qu et al., 2003, 2004; Qu and Hartzell, 2004; 

Fischmeister and Hartzell, 2005). Disease-associated 

point mutations in bestrophin have also been found to 

result in severely inhibited Cl− currents when heterolo-

gously expressed (Sun et al., 2002; Qu et al., 2003).

Bestrophin has been localized to the basolateral 

membrane of the retinal pigment epithelial (RPE) 

cells (Marmorstein et al., 2000). These cells mediate 

the transfer of water, ions, and metabolites between the 

photoreceptors and the heavily vascularized choroid 

behind the RPE. Because Cl− fl ux is generally associ-

ated with the transepithelial transport of substances, 

it is reasonable to think that bestrophin, with its pur-

ported location, has an important role in such a func-

tion of RPE cells. In the electrooculogram, which is a 

mass voltage signal rather similar to the common elec-

troretinogram but recorded on a longer time scale, 

there is a component (the “light peak”) that reaches 

peak in 6–9 min after light onset (Francois et al., 1967; 

Deutman, 1969; Gallemore et al., 1998b). In patients 

with Best disease, this light peak is substantially re-

duced even before the onset of disease symptoms, indi-

cating that the light peak refl ects a physiological entity 

the defect of which is intrinsically associated with (and 

possibly causes) the disease rather than a consequence 

of degenerative processes in the course of the disease 

(Francois et al., 1967; Deutman, 1969; Gallemore et al., 

1998b). Moreover, electrophysiological evidence sug-

gests that the light peak refl ects an increase in the 

 basolateral Cl− conductance of RPE cells (Steinberg 

et al., 1985; Gallemore et al., 1998a). The correlative 

information from these studies thus corroborates the 

conclusion from heterologous expression that bestro-

phin is a Cl− channel.

A putative agent controlling the Cl− conductance as-

sociated with the electrooculogram light peak is intra-

cellular Ca2+ (Steinberg et al., 1985; Gallemore et al., 

1998a). Indeed, the Cl− channel formed by heterolo-

gously expressed human bestrophin is opened by a rise 

in intracellular Ca2+ concentration (Sun et al., 2002). 

Xenopus and mouse bestrophin homologues were found 

to be Ca2+ sensitive in a similar way (Qu et al., 2003, 

2004). However, all studies so far were performed with 

the whole-cell, patch-clamp recording method, so the 

question remains whether the effect of Ca2+ on bestro-

phin goes through an enzymatic reaction such as pro-

tein phosphorylation, or is more direct. At the same 

time, it is diffi cult to study with the whole-cell recording 
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method the kinetics of activation and deactivation of 

the channel in response to Ca2+ changes, and to exam-

ine more than one intracellular Ca2+ concentration 

in a single experiment. Accordingly, we have turned to 

 excised, inside-out patch recording. We have chosen 

human bestrophin-4 (hBest4) for these experiments 

because, among the gene products of the four human 

bestrophin genes, hBest4 shows by far the highest whole-

cell Cl− current in transfected cell lines (Tsunenari 

et al., 2003). A large Cl− current is important for obtain-

ing any measurable current from excised membrane 

patches. Our experiments indicate that Ca2+ is able to 

activate hBest4 in a cell-free environment, and provide 

a clearer dose dependence of the opening of the bestro-

phin channel on Ca2+.

M AT E R I A L S  A N D  M E T H O D S

Electrophysiology
CHO-K1 cells or HEK293 cells were cotransfected with the hBest4 
and EGFP expression plasmids (both in the pRK5 vector) at a 4:1 
or 10:1 ratio, by using 3–6 μl FuGENE 6 (Roche Applied Science) 
at 1–2.5 μg of hBest4 plasmid DNA per 35-mm dish (containing 
four or fi ve 12-mm circular coverslips plated with cells). The EGFP 
plasmid (0.1–0.5 μg) alone was also used as a mock-transfection 
control. Within 3 d after transfection, inside-out patches of 
plasma membrane were excised from transfected cells identi-
fi ed by EGFP fl uorescence and recorded at room temperature 
(23–25°C). The data were acquired with a DIGIDATA1200 and 
pClamp6 software (Molecular Devices Corporation). Solutions 
containing different buffered Ca2+ concentrations were applied 
with a rapid solution changer (RSC-200, Bio-Logic Science 
 Instruments). Liquid junction potentials were <5 mV and have 
not been compensated. With respect to nomenclature, hBest4 is 
the human bestrophin family member with the fi rst 12 residues 
being M T V S Y T L K V A E A  (NCBI accession no. AAR99657; also see 
Fig.1 of Tsunenari et al., 2003).

Solutions
Standard bath solution contained (in mM) 140 NaCl, 5 KCl, 
2 CaCl2, 1 MgCl2, 10 glucose, and 10 Na-HEPES, pH 7.4. The patch-
pipette solution contained (in mM) 150 NMDG-Cl, 1 EGTA, and 

20 NMDG-HEPES, pH 7.4. The compositions of the various bath 
solutions are summarized in Table I; in addition, they all contained 
20 mM NMDG-HEPES, pH 7.2. The free Ca2+ concentration was 
calculated with the WINMAXC2.5 software (Patton et al., 2004).

R E S U LT S

When expressed in CHO-K1 cells, hBest4 gave whole-

cell currents that often exceeded 20 nA (versus, for ex-

ample, hBest1, which typically gave currents no more 

than 1 nA). In the steady presence of 100 nM free Ca2+ 

on the cytoplasmic side, the Cl− current (measured with 

NMDG+ as the cation on both sides of the membrane; 

see Materials and Methods) recorded from a membrane 

patch with a voltage step resembled in time course the 

whole-cell current of hBest4 previously reported (cf. 

Fig.2 of Tsunenari et al., 2003); a −120-mV pulse in-

duced a rapid inward current that decreased by �30% 

over several hundred milliseconds, and a +80-mV pulse 

induced an outward current that slowly increased over 

the same duration (Fig. 1 A, bottom, and collected 

 results in Fig. 1 C; 9 cells). These current relaxations 

probably refl ected a mild voltage dependence of the 

Ca2+-activated Cl− current. The same patch in the ab-

sence of Ca2+ showed negligible current (Fig. 1 A, top, 

and collected results in Fig. 1 C). Experiments on cells 

mock transfected with the EGFP plasmid alone gave 

negligible currents in the absence or presence of cyto-

plasmic Ca2+ (Fig. 1, B and C; 7 cells).

For dose–response experiments, we used HEK293 

cells for expression because these gave substantially 

larger Cl− currents with hBest4 than CHO-K1 cells. 

In Fig. 2 A, top, which shows one such experiment, there 

was no detectable current at negative or positive volt-

ages in the absence of Ca2+ on the cytoplasmic side 

(left trace, 10 mM EDTA and no added Ca2+; see also 

Fig. 2, B and D). Adding 300 nM Ca2+ activated a cur-

rent that gradually increased over �1 min (Fig. 2 A, 

middle trace in top panel, and Fig. 2 B). Increasing the 

TA B L E  I

Compositions of Bath Solutions

Ca2+ solutions

NMDG-Cl Methanesulfonate CaCl2 EDTA EGTA HEDTA NTA

mM mM mM mM mM mM mM

Near-zero Ca2+ 135 10

20 nM Ca2+ 128.5 3.24 10

40 nM Ca2+ 125.2 4.9 10

100 nM Ca2+ 127.6 3.7 10

300 nM Ca2+ 122.2 6.4 10

1 μM Ca2+ 132.4 1.3 10

10 μM Ca2+ 128.8 3.1 10

100 μM Ca2+ 131.4 1.82 5

Low Cl− 20 111.4 1.82 5

All solutions contained 20 mM HEPES, and pH was adjusted to 7.2 with NMDG. HEDTA, N-hydroxyethylethylenediaminetriacetic acid; NTA, nitrilotri-

acetic acid.
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Ca2+ concentration to 100 μM activated more current, 

again with a slow time course. This slowness was not 

due to a slow solution exchange, which was near com-

pletion within 1 s (Fig. 2 C and legend). The disap-

pearance of the current upon removing Ca2+ had a 

similarly slow time course (Fig. 2 D). In 24 patches, the 

mean current at +80 mV was 1.2 ± 0.6 (mean ± SD) 

pA at near-zero Ca2+ and 168 ± 136 pA at 100 μM 

Ca2+. Control experiments with mock-transfected 

HEK293 cells using the EGFP plasmid alone gave a 

mean current at +80 mV of 0.6 ± 0.5 pA (6 patches) at 

near-zero Ca2+ and 2.0 ± 1.9 pA (11 patches) at 100 μM 

Ca2+ (see Fig. 2 A, bottom, for example). Thus, any 

 endogenous Ca2+-activated Cl− current in HEK293 

cells should have little effect on the measurements of 

the bestrophin Cl− current.

The collective dose dependence of the Cl− current 

on Ca2+ concentration from multiple experiments is 

shown in Fig. 3. For each patch, three different Ca2+ 

concentrations were used in the following order: near-

zero, an intermediate concentration, and 100 μM. The 

currents were normalized against that at 100 μM Ca2+, 

which was saturated. We were unable to test more than 

one intermediate Ca2+ concentration for a given patch 

because of the slow onset and offset of the current (see 

Fig. 2, B and D), as well as the general instability of the 

patches. A high Ca2+ concentration such as 100 μM also 

produced a desensitization-like phenomenon, in that a 

subsequent exposure to the intermediate concentration 

of Ca2+ elicited a smaller current than before. No ap-

parent difference in the relation between positive and 

negative voltages was observed. In both cases, the rela-

tion can be described by the Hill equation, with a K1/2 

of 230 nM Ca2+ and a Hill coeffi cient, n, of 0.53. The 

small Hill coeffi cient means that the activation of the 

Cl− current spans over a 1,000-fold change in free Ca2+ 

concentration; signifi cant activation occurred at 20-nM 

Ca2+, but the activation still did not reach maximum at 

10 μM Ca2+.

As mentioned earlier, the time course of current 

onset in response to Ca2+ application was slow (Fig. 

2 B). This time course showed no obvious depen-

dence on voltage or Ca2+ concentration (Fig. 4). At 

+80 mV, for example, the current onset could be 

 described by a  single-exponential function with a 

time constant of 21.5 ± 3.5 s at 20 nM Ca2+ (mean ± SD, 

3 patches),  versus 16.3 ± 8.7 s (4 patches) at 10 μM 

Ca2+, i.e., a less than twofold change in time course 

for a 500-fold change in Ca2+ concentration. The 

 deactivation of the current when switching the Ca2+ 

concentration from 100 μM to near zero was compa-

rably slow (Fig. 2 D), with a single-exponential time 

constant of 18.0 ± 7.9 s at +80 mV (n = 17) (and 

21.5 ± 7.2 s at −120 mV).

D I S C U S S I O N

Based on the extensive evidence reported so far, it ap-

pears that bestrophins are bona fi de chloride channels 

(Sun et al., 2002; Tsunenari et al., 2003; Qu et al., 2003, 

2004; Qu and Hartzell, 2004; Fischmeister and Hartzell, 

2005). Recently, hBest1 has also been reported to infl u-

ence the kinetics and voltage dependence of endoge-

nous L-type Ca2+ channels when hBest1 was transiently 

expressed in an RPE cell line (Rosenthal et al., 2006), 

though what this means remains unclear.

Figure 1. Cl− current of hBest4 in inside-out 
membrane patches excised from transfected 
CHO-K1 cells. (A) Cell cotransfected with hBest4 
plasmid and EGFP plasmid. (B) Cell transfected 
with EGFP plasmid alone (negative control). 
In each case, the same patch was alternatively ex-
posed to near-zero Ca2+ and 100-nM Ca2+ in the 
bath. The current traces were produced by 350-ms 
voltage steps from a holding potential of 0 mV to 
voltages between −120 and +80 mV in 40-mV 
 increments. Both of the patch pipette solution 
and the bath solution contained NMDG+ and 
Cl− as major ions. (C) Collected results of experi-
ments shown in A and B, measured at the end 
of the 350-ms voltage to +80 mV (mean ± SEM). 
Left, nine patches; right; seven patches.
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In this paper, we have demonstrated that hBest4 Cl− 

channels on excised membrane patches can be  activated 

by free Ca2+ on the cytoplasmic side. These experiments 

allowed us to obtain a fairly well-defi ned dose depen-

dence of channel activation on free Ca2+ concentration. 

The K1/2 value for the activation was 230 nM Ca2+. 

 Previously, by comparing whole-cell currents elicited 

with different intrapipette Ca2+ concentrations across 

 bestrophin-transfected HEK293 cells, others have esti-

mated the K1/2 to be 210 nM for xBest2a and 228 nM 

for xBest 2b (Xenopus), and 230 nM for mBest2 (mouse) 

(Qu et al., 2003, 2004). These K1/2 values are remarkably 

close to our estimate here, but this agreement should be 

taken with caution because other bestrophin channels 

were used in these other studies, and the experimental 

approach was different. Generally speaking, the dose–

response relations derived from whole-cell recordings 

(Qu et al., 2003, 2004) are somewhat indirect, because 

they involved comparisons across cells and also assumed 

perfect Ca2+ buffering by the pipette solution dialyzed 

into the cells. Qu et al. (2003, 2004) used EGTA to 

 buffer Ca2+ up to the several-micromolar range, at the 

upper end of which EGTA might not be very effi cient 

(Patton et al., 2004). One difference between our fi nd-

ings and those of Qu et al. (2003, 2004) is that the Hill 

coeffi cient we measured is less than unity, versus 5–7, as 

can be estimated from the data of Qu et al. (2003, 2004). 

A Hill coeffi cient of <1 is rather unusual, typically indi-

cating negative cooperativity. On the other hand, a Hill 

coeffi cient of 5–7 seems unusually high as well. Ideally, 

the excised-patch experiments described here should 

be  repeated with the other bestrophin family members 

(including those used by Qu et al.), although low levels 

of functional expression might make this diffi cult.

We also tested the effect of divalent cations other than 

Ca2+, and found that Sr2+ was about as effective as Ca2+, 

but Ba2+ was only very weakly effective, and Mg2+ was 

practically ineffective (unpublished data). This selectiv-

ity conforms with the property of other Ca2+-activated 

Cl− channels (e.g., Reisert et al., 2003).

Another unusual feature with hBest4 is that the cur-

rent activates and deactivates very slowly in response to 

changes in Ca2+ concentration, with a time constant 

as long as 10–20 s. Previous studies on Ca2+-activated 

Cl− currents in excised patches of native membrane 

of Xenopus oocytes and other cell types gave activation 

Figure 2. Ca2+ dependence of hBest4 
Cl− current. (A) Top, currents re-
corded from an excised patch of 
hBest4-transfected HEK293 cell at 
free Ca2+ concentrations of near-zero, 
300 nM, and 100 μM. In each panel, 
the membrane voltage was stepped 
from 0 to −120 and +80 mV for 350 ms. 
Bottom, control experiment on an ex-
cised patch from a HEK293 cell mock-
transfected with EGFP plasmid alone. 
(B) Complete recordings of the same 
patch as shown in the top of A to indi-
cate the time course of activation of 
hBest4 current by Ca2+. Each point was 
derived from a set of measurements 
as shown in the top of A, showing the 
current amplitude at the end of the 
350-ms pulse to −120 mV (open symbol) 
and +80 mV (closed symbol). The ar-
rows indicate the time points at which 
the measurements in the top of A were 
obtained. The current activation time 
course at 300 nM Ca2+ in B could be 
described by a single exponential with 
time constant of 19 s at −120 mV and 
10 s at +80 mV. (C) Solution-exchange 
time course measured with the same 
patch shown in A and B. The solution 
exchange was relatively fast. Membrane 
voltage was recorded in zero-current 
clamp mode. A high-Cl− solution 
(135 mM Cl−, ECl = −2.7 mV) con-
taining 100 μM Ca2+ was replaced by a 

low-Cl− solution (23.6 mM Cl−, ECl = −47 mV) containing the same free [Ca2+]. No compensation for liquid-junction potential has 
been made in the trace. After compensation, the initial voltage would correspond to −1.5 mV, and reach −45 mV within 1–2 s after the 
onset of the solution exchange. (D) Same kind of experiment as in B, but from a different patch and showing the decline time course 
of the current.
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and deactivation kinetics that are orders of magnitude 

faster (e.g., Gomez-Hernandez et al., 1997; Reisert et al., 

2003). Because the activation time course of hBest4 

shows hardly any dependence on Ca2+ concentration, 

and the deactivation kinetics are comparably slow, the 

underlying rate-limiting step does not appear to be 

dominated by Ca2+ binding/unbinding. One possibil-

ity is that the opening/closing transitions of hBest4 

after Ca2+ binding are very slow. However, the voltage-

dependent relaxations of the current were only in the 

range of hundreds of milliseconds (see Fig. 1; also Fig. 2 

in Tsunenari et al., 2003), suggesting that the  opening/

closing transitions were not rate limiting. The slow 

 kinetics may refl ect an effect of Ca2+ on the channel 

that is indirect. We can probably rule out the involve-

ment of a kinase as an intermediate because no ATP was 

required for the channel activation in our experiments. 

Nonetheless, the action of Ca2+ may still be indirect 

and act through, for example, a membrane-associated 

messenger such as lipid or a membrane-associated 

regulatory protein. Finally, an intermediate scenario is, 

in principle, also possible; namely, Ca2+ binds  directly 

to bestrophin, but this binding indirectly controls 

the opening/closing of the channel through another 

entity. A complex activation mechanism may also ex-

plain the sublinear dose–response relation. Interestingly, 

among the various bestrophins that we have studied, 

heterologously expressed hBest1, hBest2, and dmBest1 

(Drosophila) showed no obvious voltage-dependent re-

laxations of the current, whereas hBest3 and ceBest1 

(Caenorhabditis elegans), like hBest4, both showed very 

slow (in the range of a second or hundreds of milli-

seconds) voltage-dependent current relaxations (Sun 

et al., 2002; Tsunenari et al., 2003). Thus, there is het-

erogeneity in channel kinetics among the bestrophin 

homologues. Whether this implies heterogeneity in the 

gating mechanism for bestrophins, as apparently is the 

case for the TRP channel superfamily (Clapham, 2003; 

Nilius et al., 2005), is unclear.

If Ca2+ indeed binds directly to bestrophin, where is 

the binding site? In the case of the large-conductance 

Ca2+-activated K+ channel (BK channel), a high-affi nity 

Ca2+-binding site (the Ca2+ bowl) has been identifi ed 

between the S9 and S10 domains, corresponding to 

the sequence T E L V N D T N V Q F L D Q D D D D D P D T E L Y L T Q  

(residues 883–910, with the negatively charged gluta-

mates and aspartates in bold face) near the cytoplasmic 

COOH terminus of mSlo1 (Schreiber and Salkoff, 1997; 

Schreiber et al., 1999). This sequence has 10 negative 

charges, 5 of which are consecutive. Interestingly, all 

members of the human bestrophin family also have 

fi ve consecutive negative charges, together with three 

nearby negative charges, in the cytoplasmic COOH ter-

minus (for hBest4: 306A E Q I I N P F G E D D D D F E T N Q L I D-

R N L Q V 332; for hBest1–3: residues 291–317, which are 

highly homologous to hBest4). We have noticed that 

Xenopus and mouse bestrophins also have a similar 

 sequence: residues 306–332 for Xenopus bestrophin 2 

(Qu et al., 2003) and residues 291–317 for mouse bestro-

phin 2 (Krämer et al., 2004; Qu and Hartzell, 2004). 

Five of the disease-associated human mutations in 

hBest1 previously studied are in fact situated in this 

 region (Q293K, G299E, E300D, D301E, and T307I; see 

Sun et al., 2002). All of these mutants produced sub-

stantially reduced whole-cell currents in transfected 

HEK293 cells, suggesting that this region is crucial for 

channel function. Whether this region indeed has a 

role in the Ca2+ sensitivity of bestrophin Cl− channels 

remains to be determined.
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Figure 3. Dependence of hBest4 Ca2+-activated Cl− current on 
free Ca2+ concentration. Same procedure as in Fig. 2 B, including 
the order of solution application: near-zero Ca2+ followed by an 
intermediate Ca2+ concentration, and then by 100 μM Ca2+. The 
plotted currents have been normalized with respect to the cur-
rent at 100 μM Ca2+. Filled circles represent mean values (±SD) 
at +80 mV, and open circles represent mean values at −120 mV 
(3–5 patches each). The smooth curve is the Hill equation with 
K1/2 = 230 nM and a Hill coeffi cient of 0.53.

Figure 4. Time constant of current activation at different Ca2+ con-
centrations. Same patches as in Fig. 3. The values are mean ± SD.
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