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Abstract: Maintenance of the neural progenitor pool during embryonic development is essential
to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly
compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue
to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to generate
neurons. While neural progenitors such as neuroepithelial cells and apical radial glia form strong
connections with their neighbours at the apical and basal surfaces of the neuroepithelium, neurons
usually form the mantle layer at the basal surface. This review will discuss the existing evidence that
supports a role for neurons, from early stages of differentiation, in promoting progenitor cell fates in
the vertebrates CNS, maintaining tissue homeostasis and regulating spatiotemporal patterning of
neuronal differentiation through Delta-Notch signalling.
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1. Introduction

During the development of the central nervous system (CNS), neurons derive from neural
progenitors and the Delta-Notch signaling pathway plays a major role in these cell fate decisions [1–4].
The traditional view is that the cell presenting the ligand Delta at the cell membrane activates the Notch
receptor in the adjacent cells (Notch trans-activation), delaying them from differentiating. Newborn
neurons express Delta and Mindbomb (a ubiquitin ligase and Notch signalling pathway modulator)
and hence are believed to activate the Notch signaling pathway in the surrounding tissue and maintain
their neighbouring cells in a proliferative state [5]. However, recent works challenge this simplistic
view and suggest that Notch and Delta interactions can also occur at the cell membrane within the same
cell to inhibit the Notch pathway (Notch cis-inhibition) [6], or in specialised endosomes to enhance
Notch activation [7,8].

The development of live-imaging approaches in the vertebrate nervous system has contributed to
major breakthroughs in the field of neurogenesis and neuronal differentiation. This approach, which
was initially developed in retina explants [9] and mammalian brain tissue, allows the visualization
of biological processes such as neural progenitor divisions, in vivo generation of neurons, neuronal
migration and axonal growth (for example [10–15]). Using this approach in mammalian embryonic brain
tissue was critical to show that neurons can derive from neural progenitors through both asymmetric and
symmetric divisions occurring at apical and non-apical locations of the neuroepithelium [10–14,16–22].
The neural progenitors that divide at the apical surface of the neuroepithelium are called apical
progenitors and those that divide away from the ventricle are variously called non-apical [23], basal, or
intermediate progenitors [24].
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More recently, development of long-term live-imaging in the nervous system of zebrafish and chick
embryos has been critical to elucidate the cellular and molecular mechanisms that regulate symmetric
and asymmetric modes of progenitor division and generation of neurons [7,25–30]. Recent studies
highlight the influential role that the daughters of neural progenitors may play in neural progenitor
pool maintenance and tissue patterning. This review discusses how recent findings obtained in the
vertebrate CNS reveal that newborn and differentiating neurons regulate both progenitor renewal and
neuronal patterning via Delta-Notch signalling.

2. Neurons Derived from Asymmetric Divisions Can Influence Sister Cell Fate through Notch
Signaling Pathway Activation

2.1. Neurons Inherit the Apical Attachment during Asymmetric Divisions

During asymmetrically fated divisions in chick and zebrafish, each daughter cell inherits either
the apical or basal attachment, and this asymmetric inheritance correlates with the adoption of distinct
daughter cell fates, neuron and progenitor respectively (Figure 1) [25,26]. The neuronal daughter
cell retains the apical domain containing the apical polarity protein Pard3 (previously known as
Par3), while the progenitor daughter transiently loses the Pard3 protein and apical contact. These
live-imaging studies also showed that nascent neurons remain integrated in the apical junctional belt
for several hours following division. Later, neurons detach from the apical surface and move to the
mantle layer at the basal surface of the neuroepithelium.
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Figure 1. Recently born neurons may influence the fate of sister cells. Neural progenitors are polarised
along the apico-basal axis of the neuroepithelium and localise apical polarity proteins such as Pard3
to the apical surface. Most neural progenitors divide at the apical surface of the neuroepithelium.
A daughter that inherits the apical attachment (outlined by Pard3), inherits the Delta modulator
Mindbomb and is likely to become a neuron. The daughter that transiently loses the apical attachment
but retains the basal attachment is likely to remain a progenitor. Current evidence suggests that the
neuronal daughter activates Notch signalling in its sister cell, promoting progenitor fate. However,
exactly whether and when this occurs is not yet clear.

The correlation between inheritance of the apical domain and neuronal fate was unexpected
considering that the majority of neural progenitors (which will continue to divide) contain an apical
attachment and these observations directly contradicted the view at the time that a daughter cell that
loses apical contact moves to the mantle layer and becomes a neuron.

Nonetheless, in the mammalian brain, there is also evidence that inheritance of the basal process
and loss of apical attachment correlates with progenitor fate [19,31]. At early stages of embryonic
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development, the neural progenitors that lose their apical attachment during division (10% of divisions)
are able restore it in some cases [31]. There is also evidence that differentiating neurons are initially
attached to the apical surface [32] suggesting that in mammals, like in zebrafish and chick, daughter
cells inheriting the apical and basal cellular compartments during asymmetric divisions correlate with
neuronal and progenitor fates respectively.

2.2. Recently Born Neurons Derived from Apical Progenitor Divisions May Activate the Notch Pathway in
Sister Cells

Although early work in dissociated cell culture systems and some in vivo studies had shown
an association between Par3 function and progenitor fate [33], experimental reduction in apical
polarity protein (aPKC and Pard3) function has subsequently been shown to lead to a significant
decrease in neurogenic divisions [25] and an overactivation of the Notch pathway [27], supporting
the potential role for apical proteins in neuronal cell fate decisions. Further studies in zebrafish
showed that Mindbomb plays a role downstream Pard3 function [27,30]. Mindbomb function is
essential for Delta endocytosis and its loss-of-function blocks Notch trans-activation and leads to
an increase in neuronal differentiation at the expense of neural progenitor fates [34,35]. During
asymmetric division in the zebrafish telencephalon and chick spinal cord, the daughter cell committed
to becoming neuronal inherits Mindbomb [27,30], while its sister cell (that does not inherit Mindbomb)
activates the Notch signaling pathway and follows a progenitor fate [26,27]. This raised the possibility
that, during asymmetric divisions, the neuronal daughter, through the inheritance of Pard3 and
Mindbomb, activates Notch signaling in the sister cell. In zebrafish, the reduction of Pard3 function
leads to Mindbomb symmetric inheritance [26,27] and symmetric proliferative divisions [25]. The
observation that pairs of sister cells with decreased Mindbomb or Delta function are unable to activate
the Notch pathway when surrounded by wild type cells in zebrafish [7,27], further supports the
hypothesis that Notch activation depends on signals specifically provided by cells from the same
lineage. In the mammalian brain the Notch receptor is enriched at the basal surface of the dividing
cells, although we do not know whether the Notch receptor is asymmetrically inherited [10]. However,
Mindbomb-1 mutant clones are able to activate the Notch signaling pathway when surrounded by
wild type cells [5], raising the possibilities that Notch pathway activation in the mammalian brain
can result from interlineage cellular interactions as proposed by Yoon et al. [5], or from intralineage
cellular interactions mediated by the Mindbomb-2 function. Other works suggest that asymmetric
activation of the Notch pathway in asymmetric divisions can result from the asymmetric inheritance
of Sara-expressing endosomes by the progenitor daughter. Sara endosomes in both vertebrate and
non-vertebrate systems carry Delta, Mindbomb [7] and Notch receptor [8], and it has been suggested
that the inheritance of these endosomes can enhance the cell-autonomous activation of Notch signaling
pathway in the progenitor fated cell.

2.3. Non-Apical Asymmetric Divisions—Do Newborn Neurons Influence Sister Cells Fates?

Intermediate progenitors, also called basal or non-apical progenitors, divide away from the apical
surface and do not form apical or basal attachments. These progenitors, which were initially thought
to be exclusive to the mammalian telencephalon, have now been reported in other brain regions and
organisms [23,36–40]. There is evidence that intermediate progenitors can divide symmetrically to
produce two neurons or asymmetrically to generate two neurons of different subtypes [37] and/or a
progenitor and a neuron [24]. In the zebrafish spinal cord, for example, V2a and V2b neurons derive
from a single asymmetric division that depends on Notch function [4,37]. The V2a daughter expresses
the Notch ligand Delta C and Notch loss-of-function leads to an increase in V2a neurons at the expense
of V2b neurons. This suggests a potential mechanism by which V2a may influence its sister cell to
adopt a V2b fate in a Notch-dependant manner.

In mammals, the basal radial glia progenitor subtype is also capable of dividing asymmetrically
to self-renew and to produce neurons. Basal radial glia progenitors seem to preferentially inherit
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the basal process during division and express Hes1 [15] whose expression likely depends on Notch
signalling pathway activation [41]. However, the underlying mechanisms that regulate intermediate
progenitor renewal remain largely unknown, and so far there is little evidence that basal radial glia cell
progenitor fate is influenced by signals provided by sister neurons.

These studies overall provide indirect evidence that differentiating daughters derived from
asymmetric divisions occurring at the apical or basal surface of the neuroepithelium have the potential
to influence sister cell fates by activating the Notch signalling pathway in its sibblings.

3. Differentiating Neurons can Influence the Fate of Surrounding Cells during Apical
Detachment

3.1. During Apical Detachment, Differentiating Neurons Influence Surrounding Cells to Maintain Progenitor
Fates and Tissue Integrity

Newborn neurons, across vertebrates and in different regions of the nervous system, have been
shown to transiently retain the cellular process that attaches them to the apical surface of the neural
tube (Figure 2) [25,26,32,42–44]. During differentiation, neurons detach from the apical surface of
the neuroepithelium without disrupting the apical surface and compromising neuroepithelial tissue
integrity. This is potentially achieved by neurons reducing the area of the apical end-foot prior to
delamination [6] and neurons detaching from the apical surface through abscission of the apical
end-foot [44].
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Figure 2. Delta-Notch signalling occurs at multiple steps during neuronal differentiation. (A) Recently
born neurons (yellow) initially retain their attachment to the apical surface and are connected to their
neighbours through adherens junctions that include N-cadherin (green circles). Prospective neurons
require Notch activity (indicated by blue stripes) to reduce the size of the apical end-foot. There is
evidence that at this point of differentiating neurons are capable of activating Notch signalling (blue)
in the adjacent cells (Notch trans-activation). (B) Following reduction of the apical end-foot area,
Notch signaling in the differentiating neuron is inhibited cell-autonomously, leading to reduction of
N-cadherin localization at the apical end-foot (light green circle) and allowing apical process retraction.
Meanwhile, differentiating neurons in the zebrafish spinal cord extend two long, transient processes
along the basal surface of the neuroepithelium. Delta ligand (yellow diamonds) is enriched in the
basal processes and Notch signalling (blue) is activated in the adjacent cells to prevent neuronal
differentiation. Importantly, the basal processes can span several cell diameters and therefore contact
cells that are not direct neighbours, activating Notch at a long distance. (C) Differentiating neurons
finally retract the apical process and move to the basal surface of the neuroepithelium. The retraction
of basal process and apical attachment precedes axon extension.
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Differentiating neurons are initially connected to their neuroepithelial neighbours at their apical
processes through adherens junctions that include N-cadherin [6,32] and Notch signalling pathway
regulates the neuronal apical detachment [6]. Initially the activation of Notch signalling is required
(or maintained) in differentiating neuron to reduce the size of its apical area [6]. Notch signalling is
then inhibited cell-autonomously (through cis-inhibition), which increases the expression of neuronal
differentiation markers (such as Deltas and neurogenins) and reduces the localisation of N-cadherin to
the neuronal apical end-foot [6]. The differentiating neuron expressing Delta-like 1 (Dll1) promotes
progenitor fates in adjacent tissue by activating the Notch signalling pathway revealed by the expression
of the Notch reporter gene Hes5 [6]. In the cortex, maintenance of Notch signaling in neurons following
apical detachment also appears to be required for correct neuronal migration [45,46].

Notch1 signalling is required for the development and maintenance of radial glial cells [46], while
reduction of Notch activity was previously shown to disrupt neuroepithelium integrity and increase
neurogenesis [47,48]. There is also evidence that N-cadherin-based adherens junctions are critical to
maintain tissue integrity and ensure correct rates of proliferation and differentiation [49]. However,
the study reported by Baek and colleagues [6] supports a new hypothesis in which disruption of the
neuroepithelial integrity due to Notch pathway inhibition results from the loss of N-cadherin without
the reduction of neuronal apical end-foot area. It remains unknown whether Notch inhibition and
an enlarged apical area would interfere with neuronal apical abscission, which has previously been
suggested to potentially cause disruption of neuroepithelial tissue integrity [44,50].

3.2. Cellular Protrusions Developed by Differentiating Neurons Influence Neuronal Patterning in the
Adjacent Tissue

Although it conventionally occurs between immediate neighbours, in Drosophila, Notch-Delta
signalling has been shown to operate over larger distances to pattern mechanosensory bristles [51–56].
We recently showed that this can occur in the vertebrate neural tube [54]. All recently born neurons
in the zebrafish spinal cord extend two long protrusions along the basal surface of the spinal cord
that span several neural progenitors (Figure 2). These basal protrusions express high levels of Delta
protein and Notch reporter activation occurs in the cells within their reach, suggesting that basal
protrusions regulate Delta-Notch signalling pathway activation over long distances [54]. Spinal
neurons initially differentiate with a sparse, periodic pattern [37,57–60] and never differentiate close in
space and time [54]. We provided evidence that basal protrusions developed by differentiating neurons
may spatially and temporally regulate the pattern of neuronal differentiation through long-range
Delta-Notch-mediated lateral inhibition. This was further confirmed by mathematical modelling that
showed the positioning and timing of neuronal differentiation cannot be explained by Delta-Notch
signalling occurring between immediate neighbours but can be explained by the basal protrusions
delivery of long-range Delta-Notch-mediated lateral inhibition [54].

Live imaging shows recently born chick spinal neurons extending highly dynamic, transient
protrusions during apical detachment [61]. Similar processes have been described in the mouse
neocortex, where basal progenitors (which are neurogenically committed) project transient, dynamic
filopodia-like protrusions that contact radial glia processes [62]. As both radial glia cells and basal
progenitors are molecularly heterogeneous and can be divided into subpopulations based on their
Notch signalling pattern (Hes1 and/or Hes5 expression, for example) and expression of Delta (Dll1
and/or Dll3, for example) respectively, it suggests that basal progenitors may have the potential to
activate Notch signalling pathway in radial glia cells through filopodia like protrusions [62]. However,
this is yet to be proved.

3.3. Where Do Delta-Notch Interactions Occur?

The subcellular localisation of Delta-Notch signalling in the majority of the contexts remains
poorly characterised at the cellular and subcellular level. Depending on the vertebrate system and the
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moment of the cell cycle, Delta-Notch interactions have been suggested to occur closer to the apical
surface [32], at the cell body and at the basal surface of the neuroepithelium [54].

In the mammalian brain for example, Notch receptor and a Notch cleaving protein, Presenilin1,
are found overall apically and there is evidence that the Notch intracellular domain is cleaved at
the apical surface of neural progenitors to be later translocated to the nuclei [32,63]. Delta antibody
is also internalised at the apical surface of neuroepithelial cells [32], supporting the hypothesis that
Delta-Notch interactions may take place at the apical surface at the adherens junctions. However, in
zebrafish spinal cord, Delta D can be found in differentiating neurons in aggregates at the cell body
and in the long cellular protrusions they develop at the basal surface of the neuroepithelium (see
description in Section 3.2). A mathematical model developed by Hadjivasiliou and Moore et al. [54] to
describe the long distance influence of basal protrusions on the spatiotemporal patterning of neuronal
differentiation shows that Delta-Notch signalling mediated by basal protrusions is significantly more
important than soma-soma signalling, suggesting that in this context at least, Delta-Notch signalling
occurs predominantly basally. However, it remains unknown where Delta-Notch interactions occur,
whether these locations are conserved across species, or whether they operate at different phases of the
cell cycle and neuronal differentiation.

In the developing retinal neuroepithelium, there is evidence that both Notch receptor and Delta
ligands set up opposing spatial gradients of expression [64,65] and Notch activation correlates with the
size of apical area and cell fates [66]. However, these observations need to be explored in greater detail.
The development of better tools to visualise the in vivo dynamics and formation of gradients of Notch
and Delta proteins will greatly assist in this area.

4. Conclusions

These works suggest that, from the moment of division, neuronal daughter cells are initially
primed to activate the Notch signalling pathway in their sister cells and later, during apical
detachment, in the surrounding tissue. While the location and timing of Delta-Notch interactions
are better defined in Drosophila systems [56,67–72], less is known about the location and mechanisms
of Delta-Notch interactions during neurogenesis and neuronal differentiation in the vertebrate
neuroepithelium [32,54,63,66]. Delta is observed in basal protrusions [54] and at the apical surface [32],
while Notch receptor is cleaved at the apical surface of neuroepithelial cells [32]. Thus, Notch activation
appears to occur at multiple steps and for different purposes. Indeed, decreased proliferation of
hippocampal progenitor cells is observed in conditional Notch mutants in adult mice, suggesting that
the importance of Notch signaling may continue into adulthood [73]. Together, these studies illustrate
the importance of refining signalling to certain areas of the cell body, but also suggest adaptation
between different regions of the CNS. Understanding how this signalling changes over time during the
initial period of neuronal differentiation remains a key question. We suggest that future work focussing
on the mechanisms and subcellular locations of Delta-Notch interactions and how these change over
the lifetime of both the organism and of an individual cell will give us a clearer understanding of
signalling dynamics and how they influence cell fates.
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