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Summary

When electron microscopy (EM) was introduced in the 1930s
it gave scientists their first look into the nanoworld of cells.
Over the last 80 years EM has vastly increased our under-
standing of the complex cellular structures that underlie the
diverse functions that cells need to maintain life. One draw-
back that has been difficult to overcome was the inherent
lack of volume information, mainly due to the limit on the
thickness of sections that could be viewed in a transmission
electron microscope (TEM). For many years scientists strug-
gled to achieve three-dimensional (3D) EM using serial section
reconstructions, TEM tomography, and scanning EM (SEM)
techniques such as freeze-fracture. Although each technique
yielded some spatial information, they required a significant
amount of time and specialist expertise to obtain even a very
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small 3D EM dataset. Almost 20 years ago scientists began to
exploit SEMs to image blocks of embedded tissues and perform
serial sectioning of these tissues inside the SEM chamber. Using
first focused ion beams (FIB) and subsequently robotic ultra-
microtomes (serial block-face, SBF-SEM) microscopists were
able to collect large volumes of 3D EM information at resolu-
tions that could address many important biological questions,
and do so in an efficient manner. We present here some ex-
amples of 3D EM taken from the many diverse specimens that
have been imaged in our core facility. We propose that the
next major step forward will be to efficiently correlate func-
tional information obtained using light microscopy (LM) with
3D EM datasets to more completely investigate the important
links between cell structures and their functions.

Introduction

Seeing into the world of the cell through the use of magni-
fying devices has fascinated scientists and nonscientists alike
since Antonie van Leeuwenhoek in the 17th century used his
simple microscope to see the microworld of the cell (Hoole,
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1800). Microscopes have developed over the centuries and
today microscopy remains an essential technique in the Life
Sciences. Microscopy has contributed to observations on ev-
ery scale: from the first observation of single-celled bacteria
by van Leeuwenhoek through the detailed anatomy of the
mammalian brain by Camillo Golgi and Ramon Y Cajal (Golgi,
1873;Ramony Cajal, 1890), and more recently the live imag-
ing of intracellular organelles and protein complexes (Cognet
et al., 2014). However, there is a limit to the use of photons
for microscopic imaging, which was first calculated by Ernst
Abbe in 1873 (Abbe, 1873). By Abbe’s theory the ultimate
resolution of a light microscope in X,Yis 187 nm and that can
only be achieved with the use of high-quality objective lenses
and thin specimens. This is problematic since developments
in molecular biology have revealed the importance of pro-
tein function and dissecting molecular pathways, highlighting
the need to image increasingly small structures. Clever meth-
ods have been developed to circumvent the Abbe diffraction
limit in light microscopy (LM), the variously named super-
resolution techniques (Saka & Rizzoli, 2012; Swedlow, 2012).
These techniques still have their limits, generally becoming in-
effective below 50 nm. To answer certain biological questions
we require better resolution than that.

Though LM continues to develop, it is unlikely to reach
resolutions where cellular ultrastructure becomes visible. For
that we can make use of electrons. Electrons as a means of
imaging structures below LM limits came out of the wave-
particle theory developed by De Broglie in 1924 (de Broglie,
1925a, b). Just 2 years later, the first electromagnetic lenses
were developed by Hans Busch (Busch, 1927), allowing Ernst
Ruska together with Max Knoll to construct a prototype TEM
in 1931 (Ruska et al., 1940). In TEM, electrons are propelled
through a thin tissue-section (typically 50-90 nm), extending
resolution to the A range. In a scanning electron microscope,
developed by Max Knoll in 1933, the electron beam scans the
surface of a sample and is able to resolve structures in the nm
range. Using these techniques we are able to see the smallest
structures in the cell. However, the requirement of electron
microscopes to operate under high vacuum and their strong
electron beam precludes any experiments with living samples.
Further removing EM from the world of the living cell was the
factthatthe technique inherently resulted in 2D images, either
from the thin sections needed for TEM or the surface imaging
only nature of SEM. So although resolution limits were not an
issue in EM it came at the expense of 3D visualization.

The goal of biological microscopy is to image life in its
most natural form. Life happens in three dimensions and 3D
EM imaging has been slow to develop. 3D LM was greatly
enhanced with the introduction of the confocal microscope,
which allowed highly resolved optical sections to be collected
and reconstructed in 3D (Cremer & Cremer, 1978; Shep-
pard & Kompfner, 1978). In electron microscopy (EM), imag-
ing in 3D was initially dependent on serial-section TEM or
electron tomography (ET) (Linberg & Fisher, 1986; Knott et
al., 2009; Mishchenko, 2009; Bock et al., 2011; Takemura
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et al., 2013). These techniques are very labour intensive and
require a high degree of skill and training. Electron tomog-
raphy has been yielding high-resolution 3D data for over
40 years (Hoppe, 1974). Using this method a “thick” (up to
500 nm) sample is placed in a high-voltage TEM and im-
aged at increasing angles around the centre of the sample.
3D views can be reconstructed from the resulting image se-
quences (McEwen & Marko, 2001; Subramaniam etal., 2003).
Still, the depth that can be imaged is limited, it requires very ex-
pensive equipment (a high-voltage TEM) and it is very labour-
intensive. Serial section TEM did produce volume information
but in the predigital imaging era there was a limit to what
could be done with that information, in particular with re-
spect to reconstructions. Bock et al., used the power of digital
imaging to collect and reconstruct data from 1215 serial sec-
tions of brain in an attempt to determine the connectivity in
the visual cortex (Bock et al., 2011). In a subsequent study
Takemura et al. acquired more than 200,000 micrographs
resulting in the reconstruction of 379 neurons (Takemura
et al., 2013). Even though they developed a semiautomated
reconstruction workflow, this study demonstrates that serial
sectioning and manually imaging the sectionsis a very labour-
intense method. Another technique which has been used to
bring the third dimension to EM, is array tomography where
serially sectioned cells or tissues are mounted on silicon wafers
in exact order and imaged in an SEM (Hayworth et al., 2014).
SEMs generally provide surface information, but if a surface is
perfectly smooth, backscattered electrons can be used to obtain
information from the first few nanometres below the surface,
resulting in TEM like images. Automatically cutting and then
scanning ribbons of serial sections reduces the time needed
for imaging in 3D EM considerably, but is still not devoid of
a significant and time-consuming technical input. Although
all these methods have brought 3D EM imaging none are easy
or efficient to perform and as a result publications using these
approaches are few.

Over thelast 20 years, development of two new methods has
led to a dramatic increase in 3D EM studies (Peddie & Collinson,
2014). The first, serial block-face imaging SEM (SBF-SEM), de-
veloped by Winfried Denk, uses an automated ultramicrotome
located in the SEM chamber (Denk & Horstmann, 2004). The
second uses a focused ion or plasma beam (FIB) to mill away a
thin section of a hard substrate also done in the SEM chamber
(Young et al., 1993; Bushby et al., 2011). Both methods are
based upon the principle of block-face imaging, that is, that
the surface of a plastic embedded block of cells or tissue is im-
aged then sectioned and reimaged. The process can run in an
automated manner to collect many hundreds of serial images.
Using the SEM at low electron energies the depth of electron
imaging is limited to the upper few nm of the block-face, en-
suring high Zresolution (Briggman &Bock, 2012). These new
technologies have brought the full 3D to nanoscale imaging
while also delivering efficiency and high-quality results.

The primary difference in these new methods is in their
method of sectioning. In SBF-SEM, sectioning is performed by
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an automated ultramicrotome located in the SEM chamber,
automatically removing thin sections (=20 nm thick) from
the block-face (Denk & Horstmann, 2004). Making use of a
very high-resolution detector (the Gatan 3View is equipped
with a detector that allows acquisition of images up to 32K x
24K pixels) ensures that relatively large areas (up to 500 um?)
can be scanned at high X, Y resolution, providing both large
overviews and detailed ultrastructure (Holcomb et al., 2013).
The resulting 3D images will consist of nonisotropic voxels,
because the X, Y resolution is smaller than the Z slicing. One
important consideration is that one image, or one ‘slice’ con-
tains information of the first nanometres below the sample
surface due to the low voltages used in acquisition, whereas
slicing is done at tens of nanometres.

In FIB-SEM the FIB propels Gallium ions towards the block-
face, which at high energies results in the milling of the sample
surface, removing sections as thin as 5 nm. Subsequent milling
and imaging of the block-face, results in image stacks with the
possibility of very small isotropic voxels providing the data for
precise high-resolution 3D reconstructions, albeit with limited
total volume, approximately 50 um? (Ballerini et al., 2001).
Although SEM is not capable of achieving the levels of res-
olution seen in TEM, the resolution obtained with modern
field emission SEM technology (FE-SEM) (<2 nm) allows us
to answer many biological questions. Using these techniques,
stacks of thousands of serial images have been acquired for 3D
reconstructions (Denk & Horstmann, 2004; Knottetal., 2011;
Holcomb et al., 2013; Maco et al., 201 3; Starborg et al., 201 3;
Hughes et al., 2014; Peddie & Collinson, 2014), making these
extremely powerful tools in the Life Sciences.

Bringing together the data from live sample functional LM
with 3D SEMis our ultimate goal. Correlating functional imag-
ing in LM with the ultra-structural detail at specific time-points
to elucidate the exact processes at an ultrastructural level will
open up new and powerful areas of experimentation. The con-
cept of such correlative light and electron microscopy (CLEM)
was first used in the 1960s (Godman et al., 1960; Abandowitz
& Geissinger, 1975). A plethora of different combinations
of LM and EM techniques were used since then for CLEM;
from bright-field or fluorescence imaging correlating with
classical SEM, to live confocal imaging of dendritic spines in
mouse brain correlated with serial sectioning TEM or FIB-SEM,
but also combining light and EM with ©CT/X-ray imaging
(Heymann et al., 2006; Knott et al., 2009; Robinson
& Takizawa, 2009; Caplan et al., 2011; Muller-Reichert
& Verkade, 2012; Handschuh et al., 2013; Arkill et al.,
2014; Maco et al., 2014). In light of the recent ad-
vances in 3D imaging on both the LM and EM scale we
strongly believe that the future of CLEM will rest upon
high-resolution 3D imaging in both modalities. The com-
bination of LM and EM in 3D is the next step that will
help link the functional and structural details of cells
and tissues.

Materials and methods

SBF-SEM

For SBF-SEM, samples were fixed and prepared with variations
of the protocol as described by Deerinck et al. (2010). Resin
embedded samples were mounted on an aluminium speci-
men pin (Gatan, www.gatan.com), using conductive epoxy
(Circuit Works, www.chemtronics.com). The specimens were
precision trimmed in a pyramid shape using an ultramicro-
tome and coated with 5 nm of Pt, in a Quorum Q 150T ES
sputter coater (www.quorumtech.com). The aluminium pins
were placed in the Gatan 3View2 (www.gatan.com) in a Zeiss
Merlin SEM (www.zeiss.com). The block was faced with the
3View ultramicrotome unit to remove the platinum top layer
and for imaging we used the Gatan Digiscan IT ESB detector
at an accelerating voltage of between 1.3 and 1.8 kV (sample
dependent).

An important adaptation to the staining protocol for Ara-
bidopsis root tips and other fragile samples was an agarose
embedding step after the initial fixation, and for plants the
use of ruthenium red and Spurr’s epoxy. In brief, 5-day-old
Arabidopsis seedlings on agar plates were fixed in 0.1 M phos-
phate buffer pH 6.8, 3% glutaraldehyde and 2% paraformalde-
hyde for 2 h. Individual samples were encased in rectangular
agarose blocks, as described (Wu et al., 2012). The samples
were transferred to fresh fixative and kept overnight at 4 °C.
The next day, samples were washed 5x 3 min in cold 0.15 M
cacodylate buffer. En bloc contrast staining was performed by
consecutive incubations in heavy metal containing solutions.
Between these steps samples were always washed 5 x 3 min in
ultrapure water (UPW). The first staining step was a 1-h incu-
bation onice in 0.2% ruthenium red and 2% aqueous osmium
tetroxide in 0.15 M cacodylate buffer. After washing, the sam-
ples were incubated for 20 min in a fresh thiocarbohydrazide
solution (1% w/v in UPW) at room temperature (RT). The next
wash step was followed by incubation in 2% osmium in UPW
at RT for 30 min and 2% uranyl acetate at 4 °C overnight. The
following day, Walton’s lead aspartate staining was performed
for 30 min at 60 °C. For this, a 30 mM L-aspartic acid solu-
tion was used to freshly dissolve lead nitrate (20 mM, pH 5.5),
the solution was filtered and blocks incubated for 30 min at
60 °C. After final washing steps, the samples were dehydrated
using ice-cold solutions of 30%, 50%, 70%, 90%, 2x 100%
ethanol (anhydrous), 2x 100% aceton, 30 min each. Resin
embedding was done using Spurr’s (Electron Microscopy Sci-
ences, www.electronmicroscopysciences.com/) by first plac-
ing the samples in 30% propylene oxide/Spurr’s for 2 h, 50%
propylene oxide/Spurr’s for 2 h, followed by three incuba-
tions in 100% Spurr’s (overnight, 8 h and overnight). The
next day samples were put in fresh Spurr’s resin and placed
at 60 °C for 24 h. The use of Spurr’s as embedding resin
was also preferred for skin tissue due to its low viscosity.
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When making use of lanthanide salts, staining was performed
as described (Deerinck et al., 2010), replacing the uranyl ac-
etate incubation step with overnight incubation in UAR-EMS
uranyl acetate replacement stain (Electron Microscopy Sci-
ences, www.electronmicroscopysciences.com) 1:3 in H,O.

FIB-SEM

For FIB-SEM, cellular monolayers were grown either on
Aclar (7.8 mils, Electron Microscopy Sciences, www.electron
microscopysciences.com) or on gridded coverslips (MatTek
Corporation, 200 Homer Ave, Ashland, MA 01721, USA).
Samples were prepared as described by Knott et al. (2011)
and resin embedded samples were mounted on stubs and
coated with 8 nm of Pt in a Quorum Q 150T ES sputter coater
(Quorum Technologies, www.quorumtech.com). The stubs
were placed in the Zeiss Auriga FE-FIB-SEM (www.zeiss.com)
and the SEM was used at 15 kV to visualize cells/tissues below
the Pt layer and localize the cell or region of interest (ROI).
Subsequently, the stage was tilted 54°, so that the surface was
perpendicular to the FIB. Using the gas injection system (GIS)
an additional layer of Pt was deposited on the ROI to protect
the surface from beam damage (FIB current 500pA-1nA,
5 min). To create a surface to image with the SEM, a trench
was milled just before the Pt covered area, using high currents
(6.5-10 nA) to reduce the preparation time. After this, the
sample was allowed to stabilize in the vacuum for at least
1 h, but preferably overnight to minimize drift during imaging.
Images were acquired using an ESB detector (grid: 1194 V)
at 1.5 kVand 3072 x 2304 pixels. Imaging parameters were
adjusted so that imaging time did not exceed 1 min. Next, the
FIB was set up to mill the Pt covered area at a current of 2 nA
and 5-20 nm sections.

Microwave tissue processing

Tissue samples from mouse brain and skin were fixed in 2%
PFA, 2.5% glutaraldehyde in 0.15 M Cacodylate buffer pH 7.4
with 2 mM CaCl,. Samples of Arabidopsis leaves were fixed
in 0.5% PFA, 2.5% Glutaraldehyde in 0.1 M phosphate buffer
pH 6.8. After several washes in buffer samples were processed
in a Pelco Biowave Pro, (Ted Pella, Inc., www.tedpella.com)
with use of microwave energy and vacuum. Briefly, samples
were fixed in 1% reduced Osmium in cacodylate buffer
with CaCl, 7x 2 min with alternating microwave power of
100 W/0 W. This step was repeated once. After two washes
in UPW with power of 250 W, samples were stained in 1%
Uranyl acetate 7x 1 min with alternating microwave power
of 150 W/0 W. After two washes in UPW, samples were
dehydrated in series of EtOH, each step 40 s at 250 W without
vacuum. In the next steps samples were infiltrated in series
of different dilutions of Epon resin: EtOH 7x 3 min each at
250 W with vacuum. Finally, samples were embedded in Epon
resin 30 min at 200 W, 2 x 45 min at 375 W with no vacuum.

© 2015 The Authors
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Image processing

Images were acquired as a series of 2D tiff (FIB-SEM) or dm3
(3view) files. In order to compile a 3D tifffile format, the images
were registered in Fiji (Schindelin et al., 2012) (http://fiji.sc/
Fiji; Plugin Registration > StackReg > Translation) or IMOD
(Kremer et al., 1996) (http://bio3d.colorado.edu/imod/; tiltx-
corr algorithm). Representation of orthogonal views and/or
threshold-based segmentation was done in Imaris (BitPlane,
www.bitplane.com) or Fiji's 3D Viewer. Manual segmenta-
tion and visualization of 3D data was done using 3DMOD
(http://bio3d.colorado.edu/imod/doc/3dmodguide.html).

3D reconstructions of confocal images were done using
Volocity (PerkinElmer, www.perkinelmer.co.uk/volocity).

Near infrared branding

After live-imaging, mouse brain samples were fixed for 3D EM
using 2% PFA, 2.5% GA in 0.15 M cacodylate buffer. Subse-
quently, one hemisphere was sectioned at 60 um using a Leica
VT1200S vibratome (Leica, www.leica-microsystems.com),
and the ROI was reacquired using the pattern of blood vessels
visualized with phase-contrast LM as a guide. After determin-
ing which section contained the region imaged by LM, four
small laser brands were scarred into the tissue using the NIRB
technique as described by Bishop et al. (2011) using a Zeiss
LSM 780 (www.zeiss.com) equipped with a Spectra Physics
MaiTai multiphoton laser. Tissue was subsequently prepared
for EM.

Results

Volume scanning electron microscopy in diverse samples

We have successfully imaged numerous samples with both
3D SEM methods (Figs. 1 and 2, Table 1) including many
different tissue and species types. These different sample types
have each required optimization for 3D SEM and there is no
one-size-fits-all protocol that can be applied if optimal results
are to be achieved.

All examples of 3D SEM images that are shown in this paper
were acquired with a Zeiss Merlin or Zeiss Auriga SEM. The
resolution of the microscopes is, for the settings used, between
1 and 2 nm. When we mention voxels sizes for the presented 3D
images, we refer to pixel size for X, Y and to the slice thickness
for Z.

Imaging using SBF-SEM and FIB-SEM

In Figure 3 we show images from samples of mouse lung and
brain, and an Arabidopsis root tip, taken with SBF-SEM. A
single 2D image from a series shows the presence of immune
cells in the alveoli of the mouse lung (Fig. 3A). A reconstruc-
tion of 102 consecutive images adds context and geometric
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(A)

(C) SEM/

Fig. 1. Schemes of serial block-face SEM techniques. (A) A schematic view of SBF-SEM: the electron beam scans the surface of the sample and sections
(=20 nm) are removed by a fully automated ultra-microtome. (B) Images acquired by SBF-SEM results in voxels with a larger z than x, y dimensions. (C)
A schematic view of FIB-SEM: a Focused Ion Beam aligned to a coincidence point with the electron column (SEM) is used to create a surface for imaging

with the electron beam, and subsequently to mill away sections =5 nm. (D) Thin sections in the FIB-SEM allow imaging at isotropic voxels, where x =y

=Z.

information (Fig. 3B). The 3D presentation of a series of im-
ages shows how the immune cells are adhering to the alveoli
while patrolling the airways. The extent of contact between
the cell and the alveolar wall was not clear in the 2D sections
and this example clearly demonstrates the value of 3D volume
information. The strength of SBF-SEM is its ability to provide
high-resolution images in X, Y and also image very large vol-
umes of samples. The imaging of large fields of view at high
X, Y resolution allows for zooming in on areas of interest in
the large datasets. In Figure 3C, a field of view of 25.4 x
25.4 pum? of mouse brain tissue was imaged at 4000 x
4000 pixels, yielding 6.3-nm pixels, and block slicing was
done at 40 nm. The overview image shows a neuronal cell
body and the surrounding neuropil, including the Golgi appa-
ratusin the cell body and synapses with clearly visible synaptic
vesicles in the neurites. These high-resolution images allow
for reconstructions of synaptic vesicles that have a size of 40—

50 nm (Fig. 3D). In Figure 3E we show an Arabidopsis root tip
sectioned with transverse slices of 75 nm, starting at the tip
and continuing for 2000 images (150 um). The image shows
an overview of the whole diameter of the root (70 um) from
the tip comprising the columella, lateral root cap, quiescent
centre and part of the meristem. Although the tip was sec-
tioned transversally digital reslicing of the 3D image allows for
examining any orientation that is desired. We used a similar
dataset to zoom in and crop out a small area of 10.35 x 7.23 x
3.9 um?. The dataset consisted of 6 x 6 x 25 nm?> voxels and
in theimages plasmodesmata, cytoplasmic channels that cross
the cell wall, were visible as electron dense objects (Fig. 3F).
Using 3D volume representation and intensity threshold filter-
ing, we can display the presence of plasmodesmata between
cells, their distribution and relative positions. The complexity
and number of plasmodesmal connections was not apparent
in 2D representations (Zhu & Rost, 2000). The advantage of

© 2015 The Authors
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10°m 10m

Fig. 2. Summary of imaging modalities and scales. Diagram illustrating the imaging modalities and scales used in correlative microscopy. Making use of

LM techniques that can yield large fields of view as well as high resolution allows for functional studies to be performed. Methods for preserving, preparing

and transferring these samples to 3D SEM can be used to create a correlative microscopy work flow to better link cellular events to the underlying cellular

nano-structure.

Table 1. List of samples

Bacteria

Pichia pastoris
Entire organism
Arabidopsis thaliana
Root tip
Medicago truncatula
Root tip
Stem
Drosophila melanogaster
Ventral nerve cord
Adult brain
Mus musculus
Brain
Choroid plexus
Heart
Lung
Pancreas
Skin

Cultured mouse embryonic fibroblasts

Homo sapiens
Cultured HeLa cells

© 2015 The Authors
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SBF-SEM is that it collects data that result in both overview
and detail information.

FIB-SEM permits thinner Z slicing, because the technique
allows for very precise sectioning in the nanometre range.
Because of that reason it is very well suited for obtaining
3D volume images with small isotropic voxels (See Fig. 1D).
Making use of a Zeiss Auriga FIB-SEM we imaged mouse em-
bryonic fibroblast cells, at a magnification and resolution that
allows clear visualization of the endoplasmic reticulum (ER),
mitochondria, plasma membrane, Golgi stacks, microtubules,
endosomes and nuclear pores (Fig. 4A). To visualize the 3D
structure of the ER and mitochondria, segmentation was per-
formed manually on the collected 2D images, which were then
used for 3D rendering of the segmented objects. Figure 4B
shows part of a mitochondrion in red and the ER in yellow, in
respect to an orthogonal X, Y view. This kind of visualization
allows the precise geometry of complex structures like the ER
to be visualized. To avoid time-consuming manual segmen-
tation, acceptable segmentation can often be achieved by ap-
plying simple intensity threshold filters for structures that are
more electron dense than their surroundings. In FIB-SEM im-
ages of cultured lung epithelial cells (Fig. 4C) the desmosomes
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Fig. 3. 3D-EM images, acquired by SBF-SEM. (A) Mouse lung tissue imaged by SBF-SEM, X, Y pixels 37 nm, Z slices 70 nm. Single plane from 3D series
showing lung alveoli and immune cells. Dark areas in left corners are caused by charging, a common issue when imaging bare resin. Scale bar: 5 um. (B)
Volume representation of the image stack made in Fiji. This view shows an immune cell residing in an alveolus. Total volume = 19,47 x 22,42 x 7,14
pm. Scale bars 5 um. (C) Mouse brain imaged at 4000 x 4000 pixels, X, Y pixels 6.3 x 6.3 nm Zslices 40 nm. Scale bar: 5um. (D) Manual segmentation
ofasubset (7,91 x 7,51 x 0,84 um) of this dataset done using IMOD. Dendrites are presented in blue, a synapse in green and its synaptic vesicles in pink.
Scale bar: 1um. (E) Orthogonal views of 2000 slices at 75 nm Z of a 5-days-old seedling from Arabidopsis thaliana. Scale bar: 20 pum. (F) Arabidopsis root
tip image stack of 10,35 x 7,23 x 3,9 um. 3D volume reconstruction shows plasmodesmata that connect the cytoplasm of 2 neighboring cells. Scale
bar: 20 pm.

© 2015 The Authors
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Fig. 4. Examples of 3D-EM using FIB-SEM. (A) Mouse embryonic fibroblasts. A single image showing numerous subcellular organelles. The red arrowhead
indicates a clathrin coated pit. Scale bar: 1 «m. (B) Manual segmentation of a dataset using IMOD consisting of 7,55 x 7,55 x 10 nm voxels. Reconstruction
used to show the detailed geometry of the ER (yellow) and mitochondria (red). Scale bar: 1 m. (C) Cultured lung epithelial cells from a dataset consisting
of 6,2 x 6,2 x 15 nm voxels. A single image showing staining of intermediate filaments and desmosomes. Scale bar: 1 ym. (D) 3D volume rendering was
done in Fiji showing the organization of the intermediate filaments and connections to the desmosomes. Scale bar: 1 um. (E) Mouse brain tissue (corpus
callosum) imaged with isotropic voxels (25 x 25 x 25 nm) from a dataset of 25 x 19 x 19 um. Scale bar: 5 um. (F) Volume reconstruction of a subset
of thedata (17 x 17 x 6,9 um) was done in Fiji showing myelin sheaths running through the tissue. Scale bar: 5 pm.

© 2015 The Authors
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Fig. 5. Developing new protocols for SBF-SEM. (A) Mouse brain tissue stained with an Osmium Thiocarbohydrazide Osmium protocol using Uranyl
Acetate en bloc staining (Deerinck et al., 2010). Scale bar: 10 um. (B) Mouse brain tissue stained as panel A, replacing uranyl acetate with lanthanide
salts. Scale bar: 10 um. (C) Arabidopsis thaliana root tip that was en bloc stained with uranyl acetate. Scale bar: 5 um. (D) Arabidopsis root tip done under
same conditions as panel C, except replacing uranyl acetate with lanthanide salts. Scale bar : 5 um. (E) Mouse brain tissue in which contrast staining
and embedding was performed using a microwave oven. imaged in a Zeiss Merlin with a Gatan Digiscan II detector. Scale bar: 1 pm. (F) A similar sample
to panel E was imaged in a Zeiss Auriga using a BSE detector. Scale bar: 1 pum.

© 2015 The Authors
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Fig. 6. Consecutive SBF-SEM and FIB-SEM imaging. (A) A volume 0of 26,75 x 38,20 x 12,83 um of normal mouse skin reconsted from SBF-SEM imaging.
Undifferentiated basal layer (*) and differentiated layers (**granular layer and *** cornified layer) can be distinguished. Scale Bar: 10 pm. (B) A similar
sample was used for imaging in a FIB-SEM. A basal layer keratinocyte is shown where subcellular organelles and connections between cells, such as
desmosomes, are visible. Scale Bar: 1 um. (C) Medicago truncatula root tips imaged by SBF-SEM. Orthogonal views of a volume of 177 x 166 x 60 um
consisting of 600, 100 nm slices is shown. Segmentation in red shows the cell walls and gives an overview on the general organization of the cells within
the root tip. Scale Bar: 20 um. (D) The same sample was transferred to a Zeiss Auriga FIB-SEM at 5 nm isotropic voxels. A selected region of 8 x 8 x 3
um is shown in a 3D representation showing mitochondria, the Golgi apparatus, and plasmodesmata connecting to the ER. Scale Bar: 1 pum.

and intermediate filaments are more contrasted, compared to
the other objects in the image. Visualizing only voxels with
specific grey-values clearly shows the organization of the cell
adhesion structures and how they are connected to the cy-
toskeleton (Fig. 4D). FIB-SEM is the method of choice when
detailed reconstructions are essential. In addition to cellular
monolayers, we have also imaged tissues, more specifically
mouse brain corpus callosum, containing mainly myelinated
axons (Fig. 4E). Here again structures with more contrast, in
this case the myelin sheath surrounding the axons, can easily
be segmented by using intensity threshold filtering, resulting
in a 3D representation of the myelin ensheathments (Fig. 4F).

Optimizing staining and sample preparation

One significant difference between preparing samples for TEM
and block-face imaging SEM is the need for more intense stain-

© 2015 The Authors
Journal of Microscopy © 2015 Royal Microscopical Society, 259, 80-96

ing both to produce sufficient image contrast and also to make
the sample more conductive. Several protocols have been pub-
lished but individual optimizations for diverse samples such as
yeast, viruses, plants, bacteria and even different mammalian
tissues can yield improved results (Leser et al., 2009; Knott
et al., 2011). Since the contrast in SBF-SEM is not dissimilar
to TEMs used in the 1950’s and 1960s the older EM liter-
ature can be an extremely valuable source for testing and
reintroducing steps to improve specimen fixation and con-
trast. For plant material we tested the use of ruthenium red
that allowed us to better visualize plasmodesmata in the cell
wall (Figs 3E and F). Replacing uranyl acetate by lanthanide
salts (LS) yielded more cytoplasmic detail and contrast in sev-
eral samples (Figs. 5A and B) and also appeared beneficial in
plant roots to produce darker staining of the cell wall (Figs. 5C
and D) which can be very useful in intensity threshold fil-
tering based image segmentation although with some loss in



90 A.KREMER ET AL.

cytoplasmicdetail. Other older stains and fixatives are being in-
vestigated such astannic acid, malachite green, and cuprolinic
blue, which may come back into fashion as 3D SEM further
develops.

A significant challenge when using the complicated pro-
tocols required for 3D block face imaging studies is the time
required to process samples and embed them in plastic. In
addition, different cells and tissue types can require additional
steps to produce optimum results. Adding multiple staining
steps and dealing with tissues that are difficult to infiltrate
(such as plant and skin) can make the staining, dehydration
and embedment protocols require 5-7 days. Thus, trying to
develop optimal protocols can be time consuming. However,
we have preliminary data that indicate that the use of a
specially designed and regulated microwave oven (BioWave)
for 3D SEM sample preparation may shorten the time for
testing different staining and embedding conditions from
multiple days to a few hours. In Figures 5E and F we show
two samples of brain prepared using microwave processing
which took less than 6 h from fixation to polymerized plastic
resin. The staining of the tissues and the infiltration and
polymerization of the plastic appear identical to those samples
processed conventionally. This method can potentially make
the optimization of staining protocols for new tissue types
much more efficient. It was equally successful for samples of
mouse skin and Arabidopsis leaf (data not shown).

Using both 3D SEM techniques on the same sample

To increase both the field of view and the resolution in three
dimensions, a combination of SBF-SEM (largest field of view)
and FIB-SEM (finest axial resolution) in the same sample
is possible by transferring samples between SBF-SEM and
FIB-SEM systems. Both technologies require samples that are
en bloc contrast stained and plastic embedded, but there can
be a difference in contrast in the images due to differences in
sensitivity between detectors. The 3View detector allows im-
age acquisition of a large field of view at high pixel resolution
and is generally used at lower magnification. In FIB-SEM,
smaller areas are imaged and the SEM is used at higher
magnification allowing the backscatter detector to collect
more electrons resulting in a better signal-to-noise ratio.

We have compared several samples in a Merlin SEM with
3View and Auriga FIB-SEM and noticed that in general sam-
ple preparation for FIB-SEM requires less metal staining to
generate optimal contrast than is needed for SBF-SEM; how-
ever, samples can be successfully imaged even using the same
preparation method. By using SBF-SEM on mouse skin we
could image the different epidermal layers and dermis, so that
it is possible to visualize the architecture of the tissue (Fig. 6A).
For a detailed view of the 3D cellular ultrastructure we trans-
ferred the samples to the FIB-SEM allowing clear visualization
of desmosomes and cellular cytoskeleton (Fig. 6B). In a similar
way we imaged the root tips of Medicago truncatula, first by

SBF-SEM at a Z section thickness of 100 nm, which allowed
us to look at the general morphology of the cells (Fig. 6C).
The cells mainly consist of a vacuole, whereas the cytoplasm,
containing all the organelles occupies a small volume near the
cell wall. The same sample was transferred to the FIB-SEM and
using the last image of a stack that was collected by SBF-SEM
for orientation we imaged an area containing cytoplasm bor-
dering the junction of 2 cells. The reconstruction of the area
that wasimaged shows plasmodesmata, ER, mitochondria and
Golgi apparatus, obtained by intensity threshold filtering of a
3D dataset of 5-nm isotropic voxels (see Fig. 6D).

Towards a workflow for 3D—3D correlative microscopy

There are many roads to CLEM and our goal is to be able to
image the exact same region with both imaging techniques,
so to find back the same ROI, and to do this with a minimum
of manual, labour intensive, steps. Our aim is to establish an
efficient workflow for CLEM from 3D LM to 3D EM. A confocal
image can be acquired from photons that are localized several
micrometres below the sample surface and whose resolution
will be no greater than 50 nm. In 3D SEM, the image will come
from the sample surface and the maximum resolution will be
about 5 nm. This presents several challenges, the greatest of
which is matching the origin of the photon to its correspond-
ing EM location. Ultimately this process has to deal with the
resolution difference as well as the changes that a particular
sample undergoes when being fixed, stained, dehydrated and
embedded for EM, (cryo techniques used in several laborato-
ries may be helpful in this regard as well as preserving a more
natural structure). Until we can develop a cellular positioning
system (CPS), which will allow us to precisely overlay the LM
and EM datasets, we are restricted to cruder yet still effective
means.

For 3D CLEM it is crucial to develop a strategy for identifying
the ROI imaged in the LM so that we can position the sample
appropriately for 3D-SEM imaging. For cultured cells growing
in monolayers, amethod has been used for some time in which
gridded cover slips can be used for LM making the cells of
interest easily reacquired in the SEM (Polishchuk et al., 2000;
Brown et al., 2009; Kobayashi et al., 2012). An example of this
method generated in our laboratory can be seen in Figure 7.
After acquiring a confocal image and recording in which exact
grid the cell of interest was located (Fig. 7A), we processed
the sample for FIB-SEM. We could retrace the right position,
because the grid was printed into the resin and visible using
a secondary electron detector (see Fig. 7B). A high voltage
back-scattered electron image of the block-face shows that the
morphological features of the cell were identical to the features
that were visualized by confocal microscopy (Figs. 7A and C).
In Figures 7D and E we show a confocal image and 3D-SEM
image of the same cell.

Another method to identify a ROI between LM and EM data
sets was developed by Bishop et al. (2011). Near-infrared laser
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Fig. 7. CLEM. (A) Human lung epithelial A549 cells were grown on gridded coverslips and imaged by confocal microscopy, with wheat germ agglutinin
in green and nuclear dye in blue the cells of interest are highlighted in the red box. Scale bar: 24 um. (B) An SEM image, using SE2 detector shows the
lines of the coverslip grids. Scale bar: 50 um. (C) An image of the block-face was taken at 15 kV, using a BSE detector confirming the identification of the
cell of interest. The red box indicates the area that will be imaged with FIB-SEM. (D) 3D reconstruction of a confocal z-stack, showing the cell of interest.
Scale bar: 10 um. (E) 3D reconstruction of the FIB-SEM image of the area indicated with a red box in panel C. The imaged volume dimensions are 16,92
x 11,47 x 9,58 um. Fiji was used for image processing. Scale bar: 20 pm.
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Fig. 8. CLEM. (A) NIRB was used to introduce scars in brain tissue, after live-cell imaging, in order to create reference points that allow correlation of
the LM images to SBF-SEM data. A bright-field image shows the presence of four laser-brands (1—4). Scale bar: 20 um. (B) The first image of a stack,
generated by SBF-SEM, shows laser-brands 2 and 4 in the corners. Importantly, no apparent damage to the ultra-structure surrounding the brands is
visible. Scale bar: 10 um. (C) A confocal image showing in vivo imaging of astrocyte Ca®* activity. Red arrows indicate two areas of astrocyte activity a
few microns below the laser-brands. Scale bar: 30 «m. (D) Based on the laser-brands, the two astrocytes, indicated in panel C, could be retraced in the
SBF-SEM data-set. Arrowheads indicate the astrocytes in a single SEM image. Scale bar: 10 um. (E) Manual segmentation of the astrocytes was done
using IMOD. 2 orthogonal views and the segmented astrocyte in green are shown in the volume. Scale bar: 10 um.
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branding (NIRB) is a method that allowed introduction of
markers around a ROI with the use of an infrared laser that
brands scarsinto tissue. The technique wasused by Maco et al.,
to perform 3D CLEM, combining live imaging of axons and
dendrites in mouse brain with FIB-SEM (Maco et al., 2013).
We made use of NIRB in combination with morphological fea-
tures for CLEM on mouse brain. First Ca®* activity in specific
astrocytes was imaged in vivo several hundreds of microns be-
low the surface of the brain. After fixation and sectioning we
were able to relocate the area of interest, using the pattern
of blood vessels as reference points (Knott et al., 2009; Maco
etal., 2013). Four small marks were branded surrounding this
area (Fig. 8 A). The section was then stained and embedded for
SBF-SEM. Using the SBF-SEM, we approached 1 um at a time
(in 100 nm steps) until the marks were seen (Fig. 8B). With the
marks delineating the edge of the field of view we reacquired
the astrocytes of interest just below the marks (Figs. 8C and D).
Part of an astrocyte was reconstructed using IMOD (Fig. 8E).

Discussion and future prospects

The use of volume SEM in Life Sciences is dramatically increas-
ing, for both SBF-SEM and FIB-SEM, and these techniques are
being applied to many diverse samples. Both SBF-SEM and
FIB-SEM have distinct advantages and share some common-
alities in aspects of sample preparation, imaging parameters
and data analysis. The major difference is in the Z resolution
that the systems can provide. With FIB-SEM small isotropic
voxels are achievable but only in relatively small volumes.
SBF-SEM can handle much larger volumes but is limited in
Z resolution. Ideally, a laboratory or core facility performing
volume SEM would benefit from having access to both types
of devices even though the cost and complexity of using both
is significant.

Although many of the original biological applications for
SBF-SEM are in the field of neuroscience and protocols were
optimized for brain samples (Young et al., 199 3; Ballerini et al.,
2001; Denk & Horstmann, 2004; Drobne et al., 2004; Drobne
et al., 2005; Heymann et al., 2006, Knott et al., 2011). To
some extent, FIB-SEM is more forgiving than SBF-SEM and
in some cases samples prepared for TEM will give acceptable
(yet less than optimal) results. As 3D SEM techniques become
more available examples are appearing of the use of both tech-
niques in other cells and tissues (Pollier et al., 2013; Fendrych
et al., 2014; Peddie & Collinson, 2014; Rybak et al., 2014).
However, in many laboratories, sample preparation for brain
tissue has been used as a basis for preparing other tissue types
for 3D SEM. This is not optimal, especially in advanced imag-
ing cores that are confronted with requests to image a wide
range of different tissues or species. Because sample prepa-
ration and sample handling is very time-consuming, and in
view of the fact that the 3D EM field is developing rapidly,
staining and embedding protocols are often copied without
thorough optimization for the particular tissue. Ideally, for
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each species/tissue type a unique sample preparation protocol
should be established. In Table 1 we provide an overview of
different tissues that we have imaged so far by SBF-SEM or FIB-
SEM. For all these a separate staining and embedding protocol
was developed to optimize the subsequent imaging. Because
the SEM image is generated by a backscattered electron detec-
tor, it is crucial that samples are stained with several heavy
metals that provide both contrast in the image and conductiv-
ity of the sample, to help prevent charging. Generally, en bloc
staining will consist of (multiple) osmium, uranyl acetate and
sometimes Pb infiltration steps (Deerinck et al., 2010; Joensuu
etal., 2014). Besides changing incubation times with osmium,
Pb and uranyl acetate or Lanthanide salts, it could be impor-
tant to reintroduce other and older EM stains. Other helpful
procedures such as protecting fragile samples from mechani-
cal damage during the extensive processing required are also
important. We adapted our protocol, based on a publication
to prepare root tips for TEM (Wu et al., 2012). Before the first
osmium step, we surround these samples in agarose to protect
the sample from collapsing or mechanical stress and this will
also improve conductivity because osmium binds the agarose.
In future it would be helpful to create a publicly accessible
Web resource to collect and make available protocols used for
different sample types. Volume SEM is still a developing field
and ensuring that protocols are optimized for each sample will
help demonstrate its potential to produce high quality 3D data
sets.

Our results from many diverse samples have shown the
degree of detail that can be achieved in volume SEM. Fea-
tures such as Arabidopsis plasmodesmata which appeared as
sparse structures in 2D TEM were shown to be extensive and
complex. Reconstructions of entire root cap cells in this same
species would have been impossible in single TEM sections
because of their morphology which wraps them in a spiral
pattern around the root tip allowing only a small subportion
of the cells to be seen in single sections. Our SBF-SEM results al-
lowed the entire rank of cells to be visualized greatly enhancing
our understanding of their true morphology (Fendrych et al.,
2014). Even structures which appeared relatively simple in 2D
EM, such as mitochondria and ER, look much more complex
when seen in their full 3D geometry. Just as the full extent of
the branches of a tree cannot be appreciated from a single pho-
tograph, the real complexity becomes apparent when you can
walk around it and see its full 3D shape. Similarly, the com-
plexities and interrelationships of the ultrastructure in many
cells and tissues will appear much more clearly when volume
EM reconstructions are made.

The full potential that volume EM studies can bring to bio-
logical imaging cannot be overstated. Ultimately it is desirable
to have the freedom to transverse the resolution scale from
mm to nm to allow for a “Google Earth” view of cells and tis-
sues. This not only opens up the possibility of identifying rare
events which can be more easily located in a large overview
image, but also the opportunity to zoom in on those events
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and see them at the scale of nanostructure. Volume EM data
also opens up the possibility of quantitative EM studies without
the restrictions of small sample size which 2D EM has mostly
had to live with. Linking the functional information that can
be obtained with live cell and tissue imaging and relating it
to the underlying fine structure of the cell opens up powerful
possibilities. The prospect of creating 3D nanostructural at-
lases of whole tissues or organisms, which has already been
extensively discussed in the literature and is in process for such
tissues as brain and C. elegans (Hall & Altun, 2008; Ellisman
etal., 2011), presents another new opportunity to understand
life at levels heretofore difficult or impossible to achieve.

Volume EM data sets are extremely large — even with small
samples —and the computing infrastructure necessary for sim-
ple visualizations and reconstructions is not yet efficient nor
well integrated. Manual reconstructions of even small num-
bers of organelles (such as seen in Fig. 4B) take many hours. In
addition, the more difficult intensely laborious steps involved
in accurately quantifying 3D EM data need to be improved.
Because EM reveals the full ultrastructural details of a cell,
data that has been used to answer one specific question can be
reassessed. It is possible to conceive of data from a single cell or
tissue type being reused again and again to answer different
questions. A repository of 3D EM data sets could be an invalu-
able resource to scientists from many areas of interest. Thus,
volume EM has the potential not just to answer the questions
we have today, but also to be invaluable in answering ques-
tions we have not yet even come up with. However, to take
advantage of these data, computing needs to catch up with
imaging as our ability to collect data far exceeds our ability to
analyse it.

Improvements in the entire workflow of 3D EM are neces-
sary if the technique is to become fully integrated in life science
research. 3D SEM is not a trivial technique technically, noris it
inexpensive. Therefore, it is essential that the entire process be
made as efficient as possible. Optimal sample preparation pro-
cedures for different sample types, optimal resin formulations
that work for both SBF- and FIB-SEM, and the optimal hard-
ware parameters for imaging are still being developed. On the
IT side, reconstructing high-quality images, automated seg-
mentation of specific substructures from the rich data sets
produced, easily and accurately correlating the 3D EM data
with 3D LM data and archiving and data mining of existing
data sets is even more in need of improvement. Nevertheless,
this method opens up so many possibilities for seeing cellular
ultrastructure in new ways it will certainly redefine the way
we see the cellular nanoworld.
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