

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib



## Generic mitigating and promoting effect of zeolite on anaerobic digestion: Physicochemical and metataxonomic data



## Xiaoqing Wang, Vincent Dürr, Angéline Guenne, Nadine Derlet, Chrystelle Bureau, Elodie Gittard, Laurent Mazéas, Olivier Chapleur\*

Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France

#### ARTICLE INFO

Article history: Received 18 June 2024 Revised 8 July 2024 Accepted 9 July 2024 Available online 14 July 2024

# Dataset link: 16S rRNA gene sequencing data (Original data)

Keywords: 16S sequencing Zeolite Inhibition Biogas production Microbial community Antibiotic Salt Pesticide

## ABSTRACT

This article provides comprehensive data on degradation performance and microbial dynamics derived from a set of 24 lab-scale batch anaerobic digesters involving various types of inhibitors and the addition of zeolite as a support material. In the first series of 12 digesters, three inhibitors were investigated at the following concentrations: 20 g/L of sodium chloride, 400 mg/L of erythromycin, and 5 mg/L of S-metolachlor. Each inhibitor was tested in triplicate, along with a control condition without inhibition. A parallel series was set up identically, except that 15 g/L of zeolite was introduced into each digester to mitigate the inhibition and promote the degradation process. The provided data comprises information regarding the experimental setup, monitoring measurements that assess the degradation performance (production, composition, and apparent isotopic factor of biogas, pH, dissolved inorganic and organic carbon and volatile fatty acids concentrations), microbial samples information, and 16S rRNA gene sequencing data that decipher changes in microbial structure. This datapaper is associated with research article [1] and presents both the sequencing data and the associated physicochemical data in a structured table format. The sequencing data were generated using the Ion Torrent PGM sequencer and have been deposited in the

Corresponding author.
 *E-mail address:* olivier.chapleur@inrae.fr (O. Chapleur).
 Social media: @OlivierChapleur, @INRAE\_PROSE (O. Chapleur)

https://doi.org/10.1016/j.dib.2024.110748

2352-3409/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

European Nucleotide Archive (ENA) database at EMBL-EBI under accession number PRJEB65129 (https://www.ebi.ac.uk/ ena/browser/view/PRJEB65129), with sample accession numbers ranging from ERS16257742 to ERS16257691 [2]. The data serves as a valuable resource for comparisons with data from other studies on lab-scale batch anaerobic digesters, particularly those utilizing zeolite as a support material or involving inhibition caused by similar types of inhibitors (salts, antibiotics, or pesticides).

© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

## Specifications Table

| Subject                  | Environmental Genomics and Metagenomics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specific subject area    | Microbial ecology of anaerobic digestion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Type of data             | Table, Figure, Raw sequencing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data collection          | Gas pressure in the digesters was measured using a differential manometer<br>(Digitron 2082P, Margam, UK) to calculate gas production. Gas composition<br>was analyzed by micro gas chromatography (CP4900, Varian, Palo Alto, USA).<br>Isotopic fractionation of methane and carbon dioxide (δ13CH4 and δ13CO2)<br>was measured using a Trace Gas Chromatograph Ultra coupled to an isotope<br>ratio mass spectrometer Delta V Plus through a combustion machine GC III<br>(Thermo Scientific) to calculate the apparent isotopic factor (aapp) following<br>the description in [3].<br>Dissolved inorganic and organic carbon (DIC and DOC) were measured using a<br>TOC-L CPN analyzer (Shimadzu) following the French standard NF EN 1484.<br>Volatile fatty acids (VFAs) were measured using ionic chromatography (ICS<br>5000+, Thermo Fisher Scientific) equipped with an IonPAc ICE-AS1 column<br>(9 mm 250 mm) as described in [3]. PH of the liquid samples was measured<br>with a pH meter (HANNA).<br>DNA sequencing was performed on Ion Torrent Personal Genome Machine<br>according to the manufacturer's instructions and following the procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | described in [4].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data source location     | INRAE, Antony, France.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data accessibility       | Data are available with the article. The sequencing data have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | deposited in ENA at EMBL-EBI under accession number PRJEB65129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | (https://www.ebi.ac.uk/ena/browser/view/PRJEB65129) with sample accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | numbers ranging from EKS16257/42 to EKS16257691.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | Repository name: ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | Data identification number: PRJEB65129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Related research article | <ul> <li>Wang, X., Dürr, V., Guenne, A., Mazéas, L., Chapleur, O. 2024. Generic role of<br/>zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions:<br/>Insights from degradation performance and microbial characteristics. Journal of<br/>Distribution of the second second</li></ul> |
|                          | Environmental Management, 356, 120,676. 10.1016/j.jenvman.2024.120676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Value of the Data

• The presented data provide connections between anaerobic digester performance (biogas production, dissolved inorganic/organic carbon and volatile fatty acids accumulation, methanogenesis pathway), inhibition types (salts, pesticides, antibiotics), zeolite addition as a support material, and microbial community structure at different time points. All data can serve as a valuable resource for comparative analysis with other studies on lab-scale batch anaerobic digesters utilizing zeolite or investigating similar inhibitors. The 16S rRNA sequencing data are particularly useful for identifying microbial characteristics influenced by zeolite and different types of inhibition. Access to the sequencing data and associated metadata allows researchers to conduct new studies. The data can also be helpful for exploring relationships between zeolite and specific microbial functions.

- We present comprehensive information on anaerobic digestion performance and microbial structure characteristics in the presence of erythromycin and S-metolachlor (a typical antibiotic and pesticide, respectively), the influence of which has been limited studied but is of increasing interest in anaerobic digestion. The use of zeolite to mitigate their inhibition is also a novel research focus.
- All 8 tested conditions were designed in triplicate in the same experimental system, with identical inoculum and substrate, at a constant mesophilic temperature. The selected samples for sequencing were highly representative to reflect microbial structure changes in the different conditions

This data can be related to previous data from our group on AD inhibition by different inhibitors and mitigation using zeolite or other support materials, conducted under similar experimental conditions and measuring similar parameters [5–7]. Our previous studies investigated the influence of different concentrations of ammonia and phenol, the impact of various support media on the inhibition, and the effects of different co-inhibitors on AD. This paper provides additional knowledge by specifically analyzing the effect of zeolite on a wide range of inhibitors.

## 1. Background

Zeolite is an aluminosilicate mineral with favorable physicochemical properties. It has been demonstrated to mitigate the inhibition in anaerobic digestion caused by several inhibitors, such as long-chain fatty acids, ammonia, and phenolic compounds [8–10]. We verified the broad applicability of zeolite's mitigating effect on other types of inhibitors found in anaerobic digestion, including sodium chloride, erythromycin, and S-metolachlor, from aspects of anaerobic digestion performance and microbial structure changes. The data article adds value to the related research article by providing detailed raw degradation performance data and sequencing data, which enhances data transparency, reproducibility, and accessibility while allowing other researchers to treat the data as a reference.

#### 2. Data Description

The experimental design of this study is depicted in Fig. 1. A total of 24 batch anaerobic digesters were set up and divided into two series. Within each series, the 3 inhibitors were examined in triplicate alongside a control condition without inhibitors. One of the series included the addition of zeolite to evaluate its potential in mitigating the inhibition and promoting the anaerobic digestion process. The nomenclature of the digesters, the type of inhibitor added, the presence of zeolite, the number of replicates, and the selected dates for 16S rRNA sequencing and associated sample names are presented in Table 1. Tables 2–4 present the cumulative total biogas, methane, and carbon dioxide production data over time for each digester, while Fig. 2 provides a graphical representation of the production curves using the mean values of the triplicates for each condition. Table 5 displays the apparent isotope factor ( $\alpha app$ ) of the biogas over time calculated from the isotopic fractionation of methane and carbon dioxide ( $\delta$ 13CH4 and  $\delta$ 13CO2), serving as an indicator of the methanogenic pathways. This data is also illustrated in Fig. 3 using the mean values of the triplicates for each condition. As noted by the horizontal lines in the figure,  $\alpha$  app greater than 1.065 implies the hydrogenotrophic pathway as the dominant methanogenesis pathway, while  $\alpha$  app less than 1.055 indicates acetoclastic methanogenesis as the prominent pathway [11]. Tables 6 and 7 depict the concentration of dissolved inorganic and organic carbon (DIC and DOC) over time in each digester, with Fig. 4 presenting these datasets using the mean values of the triplicates. The pH values are recorded in Table 8 and illustrated

| Table 1      |       |             |     |       |     |        |       |      |     |     |      |      |      |         |    |
|--------------|-------|-------------|-----|-------|-----|--------|-------|------|-----|-----|------|------|------|---------|----|
| Experimental | setup | information | and | dates | and | sample | names | used | for | 16S | rRNA | gene | sequ | iencing | ş. |

| Name of digester | Type of inhibitor | Zeolite addition | Replicate | Dates used for | 16S rRNA sec | uencing and as | sociated sample | names   |         |          |
|------------------|-------------------|------------------|-----------|----------------|--------------|----------------|-----------------|---------|---------|----------|
|                  |                   |                  |           | Day 0          | Day 6        | Day 13         | Day 20          | Day 34  | Day 41  | Day 55   |
| 0_a              | No inhibitor      | No               | a         |                |              |                | 0_a_D20         | 0_a_D34 |         |          |
| 0_b              | No inhibitor      | No               | b         |                |              |                | 0_b_D20         | 0_b_D34 |         |          |
| 0_c              | No inhibitor      | No               | с         |                |              |                | 0_c_D20         | 0_c_D34 |         |          |
| Na_a             | Sodium chloride   | No               | a         |                |              |                | Na_a_D20        |         |         | Na_a_D55 |
| Na_b             | Sodium chloride   | No               | b         | Inoculum_3     |              |                | Na_b_D20        |         |         | Na_b_D55 |
| Na_c             | Sodium chloride   | No               | с         |                |              |                | Na_c_D20        |         |         | Na_c_D55 |
| ERY_a            | Erythromycin      | No               | a         |                |              |                | E_a_D20         |         |         | E_a_D55  |
| ERY_b            | Erythromycin      | No               | b         |                |              |                | E_b_D20         |         |         | E_b_D55  |
| ERY_c            | Erythromycin      | No               | с         |                |              |                | E_c_D20         | E_c_D34 |         |          |
| MET_a            | S-metolachlor     | No               | a         | Inoculum_4     |              |                | M_a_D20         | M_a_D34 |         |          |
| MET_b            | S-metolachlor     | No               | b         |                |              |                | M_b_D20         | M_b_D34 |         |          |
| MET_c            | S-metolachlor     | No               | с         |                |              |                | M_c_D20         |         | M_c_D41 |          |
| 0z_a             | No inhibitor      | Yes              | a         |                | 0z_a_D6      |                | 0z_a_D20        |         |         |          |
| 0z_b             | No inhibitor      | Yes              | b         |                | 0z_b_D6      |                | 0z_b_D20        |         |         |          |
| 0z_c             | No inhibitor      | Yes              | с         | Inoculum_1     | 0z_c_D6      |                | 0z_c_D20        |         |         |          |
| Naz_a            | Sodium chloride   | Yes              | a         |                |              | Naz_a_D13      | Naz_a_D20       |         |         |          |
| Naz_b            | Sodium chloride   | Yes              | b         | Inoculum_2     |              | Naz_b_D13      | Naz_b_D20       |         |         |          |
| Naz_c            | Sodium chloride   | Yes              | с         |                |              | Naz_c_D13      | Naz_c_D20       |         |         |          |
| ERYz_a           | Erythromycin      | Yes              | a         |                | Ez_a_D6      |                | Ez_a_D20        |         |         |          |
| ERYz_b           | Erythromycin      | Yes              | b         |                | Ez_b_D6      |                | Ez_b_D20        |         |         |          |
| ERYz_c           | Erythromycin      | Yes              | с         |                | Ez_c_D6      |                | Ez_c_D20        |         |         |          |
| METz_a           | S-metolachlor     | Yes              | a         |                | Mz_a_D6      |                | Mz_a_D20        |         |         |          |
| METz_b           | S-metolachlor     | Yes              | b         |                | Mz_b_D6      |                | Mz_b_D20        |         |         |          |
| METz_c           | S-metolachlor     | Yes              | с         |                | Mz_c_D6      |                | Mz_c_D20        |         |         |          |

| <b>Table 2</b><br>Cumulat | ive bioga                | s produc                   | tion in              | each d               | igester  | (mL).    |                      |                       |                          |                      |                      |            |                       |                    |                   |                   |            |                                       |                    |                    |                    |                                         |                        |                   |
|---------------------------|--------------------------|----------------------------|----------------------|----------------------|----------|----------|----------------------|-----------------------|--------------------------|----------------------|----------------------|------------|-----------------------|--------------------|-------------------|-------------------|------------|---------------------------------------|--------------------|--------------------|--------------------|-----------------------------------------|------------------------|-------------------|
| Day                       | 0_a                      | 0_b                        | 0_c                  | Na_a                 | Na_b     | Na_c     | Ery_a                | Ery_b                 | Ery_c                    | Met_a                | Met_b                | Met_c (    | )z_a 0                | z_b 0              | z_c N             | az_a N            | az_b N     | laz_c E                               | 'yz_a Er           | yz_b En            | yz_c Mi            | etz_a Me                                | tz_b Me                | tz_c              |
|                           | 1 70.66                  | 0 00 99 65                 | 0 205                | 0                    | 14 705   | 17 64    | 0 27 03              | 7 26 50               | 0 00 00                  | 0/10                 | V 60 69              | 0 60 775   | 0                     | 0<br>79C 3Z        | 0 25 03           | 0                 | 0 21 664   | 0<br>0                                | 0                  | 0<br>56.156        | 0                  | 0                                       | 0<br>01 AEE            | 130 261           |
|                           | 4 194.37                 | 1 198.782                  | 193.21               | 132.587              | 132.113  | 139.820  | 136.98               | 9 198.02              | 3 159.996                | 168.192              | 187.836              | 181.168    | 264.564               | 259.031            | 248.253           | 181.665           | 186.797    | 185.265                               | 208.614            | 205.663            | 123.973            | 259.577 2                               | 44.955 2               | 65.784            |
|                           | 5 236.38                 | 34 242.665                 | 229.158              | 177.912              | 175.678  | 183.76   | 7 175.27             | 5 253.59              | 5 190.925                | 206.103              | 229.064              | 225.425    | 357.926               | 354.672            | 329.411           | 236.511           | 249.894    | 244.958                               | 273.154            | 269.857            | 180.319            | 353.113                                 | 27.296                 | 77.121            |
|                           | 6 260.35<br>7 778.84     | 38 272.958<br>.6 293.927   | 256.423              | 206.331              | 200.779  | 210.22   | 3 205.33<br>5 228.03 | 8 283.45i<br>5 305.17 | 5 219.689<br>7 747 836   | 238.964              | 257.685              | 256.094    | 464.358<br>583 73     | 450.747<br>555 366 | 416.08<br>520.709 | 289.684<br>336.06 | 305.779    | 297.006<br>340.84                     | 334.289<br>405 579 | 338.234<br>414 677 | 238.887<br>308 153 | 447.601 4<br>550.934 4                  | 07.012 4<br>90.585 6   | 88.544<br>09 222  |
|                           | 8 290.47                 | 9 308.367                  | 288.175              | 240.061              | 231.951  | 236.170  | 5 238.30             | 7 316.36              | 5 258.08                 | 275.808              | 287.851              | 284.451    | 695.946               | 655.682            | 625.347           | 407.427           | 421.33     | 403.77                                | 473.364            | 484.499            | 375.938            | 651.931                                 | 61.449                 | 730.91            |
|                           | 11 344.38                | 32 365.674                 | 344.712              | 283.87               | 270.135  | 282.26   | t 279.95             | 5 360.20              | 1 320.567                | 330.51               | 337.521              | 325.034    | 1076.52               | 980.548            | 967.974           | 608.74            | 613.556    | 579.065                               | 730.327            | 768.369            | 640.656            | 3 268.626                               | 02.812 10              | 66.373            |
|                           | 12 374.27                | 78 400.158                 | 375.201              | 308.202              | 292.928  | 306.74   | 1 304.40             | 385.60                | 2 356.946                | 365.705              | 367.418              | 351.349    | 1252.436<br>1 AE7 OD6 | 1146.311           | 1140.367          | 711.602           | 714.879    | 687.255<br>702 065                    | 865.779            | 926.554            | 790.553 1          | 113.641 9                               | 32.581 12              | 48.565            |
|                           | 14 432.70                | 3/ 41/.12<br>3 458.585     | 427.518              | 341.769              | 314.185  | 328,115  | 5 323.44             | 6 404.65              | 3 435.284                | 428,854              | 399.126              | 370.417    | 1652.108              | 1520.907           | 1513.05           | 947.945           | 924.853    | 711.668                               | 1187.137           | 284.199 1          | 132.996 1          | 449.635 12                              | 39.484 16              | 25.118            |
|                           | 15 497.50                | 479.709                    | 445.728              | 357.457              | 317.311  | 341.21   | 1 329.65             | 9 410.20              | 7 462.629                | 457.747              | 415.181              | 378.733    | 1794.51               | 1718.667           | 1706.44           | 1077.904          | 1045.827   | 1016.602                              | 1356.156           | 460.927            | 1320.71 1          | 633.859                                 | 425.62 17              | 80.934            |
|                           | 18 602.81                | 8 592.155                  | 538.72               | 404.348              | 355.674  | 381.60   | 9 371.33             | 9 447.62              | 3 582.967                | 594.413              | 510.813              | 435.821    | 1987.384              | 1966.444           | 1980.409          | 1459.099          | 1414.792   | 1389.906                              | 1685.968           | 1760.42 1          | 641.236 1          | 884.276 17                              | 68.878 19              | 84.947            |
|                           | 19 665.73                | 34 661.869<br>r 740.664    | 594.776              | 429.963              | 383.201  | 391.35   | 400.38               | 4 475.4               | 9 662.514                | 677.906              | 564.836              | 469.266    | 2035.277              | 2045.141           | 2072.46           | 1602.017          | 1566.724   | 1542.627                              | 1790.16            | 856.629 1          | 754.897 1          | 975.387 18                              | 81.841 20              | 63.735            |
|                           | 21 812.23                | 142.061                    | 727.264              | 457.794              | 406,998  | 415.07   | 7 445.04             | 6 520.50              | 9 848.552                | 867.23               | 6279.779<br>695.79   | 509.125    | 2104.256              | 2139.919           | 2177.536          | 1788.798          | 1792.757   | 1776.614                              | 1936.219           | 988.227 1          | 840.052 2 2 2 2 2  | 21 / 51 / 51 / 51 / 51 / 51 / 51 / 51 / | b8.824 21<br>48.922 21 | 63.242            |
|                           | 22 903.63                | 14 921.345                 | 807.811              | 463.858              | 409.3    | 430.15   | 472.66               | 3 544.95              | 3 949.625                | 969.236              | 772.139              | 544.205    | 2108.267              | 2164.021           | 2204.375          | 1843.875          | 1863.01    | 1852.216                              | 1993.535           | 034.845 1          | 971.261 2          | 148.182 21                              | 10.064 21              | 90.952            |
|                           | 25 1143.53               | 14 1183.761                | 1033.717             | 523.569              | 453.647  | 477.36   | 2 523.01             | 2 582.64              | 5 1206.008               | 1265.644             | 971.641              | 627.645    | 2122.449              | 2205.414           | 2269.124          | 1932.26           | 1973.133   | 1962.059                              | 2092.026           | 114.335 2          | 077.403 2          | 200.242 22                              | 18.538 22              | 15.583            |
|                           | 26 1263.70               | 12 1306.479                | 1147.447             | 546.396              | 476.91   | 501.96   | 2 553.58             | 3 608.42              | 5 1320.018               | 1393.959             | 1069.573             | 672.677    | 2145.089              | 2225.287           | 2291.142          | 1967.029          | 2011.385   | 2003.888                              | 2135.192           | 145.559 2          | 120.631 2          | 226.335 22                              | 50.291 22              | 41.893            |
|                           | 27 1390.77               | 74 1440.984                | 1265.096             | 559.799              | 487.763  | 513.90   | 4 571.12             | 3 619.34              | 2 1423.765               | 1527.562             | 1179.416             | 724.084    | 2151.713              | 2232.999           | 2298.731          | 1984.164          | 2033.03    | 2023.48                               | 2153.79            | 158.372 2          | 139.508 2          | 236.628 22                              | 62.326 22              | 51.378            |
|                           | 28 1508.28               | 54 1564.072<br>6 1600.225  | 15/8.31/<br>1501 053 | 190.882<br>601 309   | 573 746  | 543.38(  | 0.509 0              | 7 644.51<br>8 655 661 | 0 1513.9/8<br>5 1507 359 | 1750.652             | 1293.395             | /81.866    | 2161.48               | 2240.356           | 2305.007          | 2013.401          | 2068.119   | 2060.944                              | 2186./0/           | 184.45/ 2          | 187873 7           | 245.226 22                              | 72 803 77              | 260.37            |
|                           | 32 1918.17               | 7 1958.487                 | 1836.205             | 663.541              | 577.061  | 611.76   | 201.60               | 3 708.43              | 1774.405                 | 1907.443             | 1776.254             | 978.341    | 2198.36               | 2275.772           | 2344.085          | 2071.971          | 2122.517   | 2120.214                              | 2236.486           | 233.249 2          | 225.455 2          | 290.515 25                              | 06.722 23              | 00.945            |
|                           | 33 1992.57               | <sup>15</sup> 2006.928     | 1942.739             | 696.855              | 602.38   | 643.70   | 9 747.59             | 3 739.84              | 1 1854.727               | 1948.464             | 1878.584             | 1052.835   | 2203.297              | 2280.04            | 2349.85           | 2097.004          | 2145.352   | 2145.215                              | 2258.525           | 256.817            | 2246.57 2          | 296.693 23                              | 14.748 23              | 07.633            |
|                           | 34 2035.3                | 88 2041.261                | 2009.654             | 733.735              | 627.796  | 679.50   | 7 799.25             | 1 771.30              | 7 1919.062               | 1980.854             | 1945.848             | 1139.018   | 2228.776              | 2303.799           | 2372.494          | 2111.368          | 2157.104   | 2159.101                              | 2265.437           | 270.194 2          | 256.539 2          | 321.058 23                              | 38.953 23              | 33.494            |
|                           | 35 2071.3                | 33 2078.288                | 2055.792             | 764.165              | 646.811  | 708.65   | 3 856.28             | 6 808.51              | 3 1975.803               | 2003.654             | 1984.639             | 1240.641   | 2239.954              | 2316.687           | 2384.685          | 2126.846          | 2171.391   | 2176.282                              | 2273.284           | 282.395 2          | 267.247 2          | 333.019 23                              | 50.564 23              | 47.537            |
|                           | 36 2095.12               | 27 2097.521                | 2085.978             | 791.319              | 661.578  | 733.65   | 5 884.8              | 1 829.83              | 3 2001.132               | 2030.123             | 2012.054             | 1361.254   | 2242.431              | 2322.164           | 2389.347          | 2133.04           | 2179.018   | 2186.094                              | 2277.424           | 291.783 2          | 275.461 2          | 337.224 23<br>257.204 23                | 53.758 23<br>66.113 73 | :49.558<br>50 121 |
|                           | 41 2210.16               | 520.0012 50                | 2/2.0012             | 1019-115             | 806.412  | 929.60   | 07.5CU1 0            | 05-056 C              | 5 2148 605               | 2127.591             | 2137.654             | 1937 915   | 227.1222              | 2337 191           | 2405.059          | 276.1012          | 720.022    | C05-1222                              | 2304-052           | 2 104-112-         | 305 191 2          | 360.466.72                              | 57 CTT-00              | 161.86            |
|                           | 42 2233.30               | 9 2241.78                  | 2251.816             | 1084.045             | 853.364  | 988.71   | 7 1306.8             | 8 1118.46             | 5 2178.301               | 2141.678             | 2170.964             | 1999.747   | 2263.78               | 2345.104           | 2411.169          | 2175.028          | 2226.032   | 2234.878                              | 2352.308           | 291.467 2          | 334.573 2          | 369.802 23                              | 80.413 23              | 71.757            |
|                           | 43 2237.74               | 14 2246.549                | 2268.623             | 1172.649             | 907.954  | 1063.149 | 1395.31              | 7 1213.87.            | 3 2205.712               | 2162.653             | 2175.533             | 2039.164   | 2266.881              | 2350.506           | 2414.67           | 2174.994          | 2225.299   | 2234.378                              | 2360.511           | 2291.6 2           | 343.676 2          | 375.204 23                              | 84.181 23              | 74.758            |
|                           | 46 2248.51               | 15 2258.287                | 2301.837             | 1389.608             | 1048.847 | 1269.36  | 9 1562.82            | 2 1421.29             | t 2233.958               | 2181.494             | 2187.038             | 2088.652   | 2296.06               | 2381.953           | 2445.217          | 2199.371          | 2247.341   | 2258.054                              | 2398.56            | 2321.48 2          | 382.193 2          | 409.619 24                              | 15.895 24              | 07.705            |
|                           | 47 2251.91               | 17 2262.889                | 2307.04              | 1572 510             | 1122.545 | 1369.71  | 2 1642.22            | 2 1520.93             | 5 2259.435               | 2204.338             | 2207.446             | 2115.23    | 2299.728              | 2386.555           | 2449.118          | 2202.873          | 2250.843   | 2261.589                              | 2404.463           | 327.949 2          | 387.428 2          | 413.654 2<br>2419 50 27                 | 420.33 24              | 11.674            |
|                           | 49 2279.04               | 15 2292.608                | 2332.829             | 1640.118             | 1267.935 | 1544.19  | 3 1771.89            | 7 1684.78             | 2294.985                 | 2222.722             | 2227.324             | 2143.674   | 2309.462              | 2397.686           | 2457.779          | 2211.724          | 2260.546   | 2270.537                              | 2414.049           | 336.304 2          | 398.546 2          | 425.239 24                              | 30.686 24              | 22.811            |
|                           | 53 2301.99               | 12 2314.975                | 2360.515             | 1814.455             | 1530.037 | 1745.739 | 9 1924.95            | 8 1867.81             | 1 2328.877               | 2261.729             | 2266.638             | 2237.031   | 2319.827              | 2412.586           | 2469.679          | 2221.544          | 2268.081   | 2279.777                              | 2426.153           | 342.066 2          | 418.288 2          | 438.844 2                               | 442.45 24              | 33.722            |
|                           | 54 2305.12               | 9 2317.362                 | 2364.164             | 1874.398             | 1619.848 | 1814.956 | 5 1986.36            | 7 1940.13             | 3 2356.257               | 2265.786             | 2270.218             | 2271.708   | 2321.362              | 2414.393           | 2470.429          | 2221.987          | 2269.547   | 2281.891                              | 2428.915           | 2343.6 2           | 443.111 2          | 440.583 24                              | 43.814 24              | 35.598            |
|                           | 55 2322.00<br>56 2327.66 | 07 2333.694<br>55 2339.491 | 2382.678<br>7390 305 | 1918.519             | 1745.746 | 1867.26  | 1 2029.36            | 3 1994.24             | 5 2365.838<br>7 7303 907 | 2289.483             | 2291.188<br>7706 949 | 2284.153   | 2342.536<br>2347.694  | 2434.34            | 2492.285          | 2221.885          | 2269.991   | 2282.88                               | 2450.396           | 344.419 2          | 449.044 2          | 465.576 24                              | 11.115 2               | 65 104            |
|                           | 57 2331.96               | 3 2344.196                 | 2394.68              | 1984.05              | 1794.072 | 1949.91  | 2109.12              | 2 2098.22             | 5 2401.145               | 2306.634             | 2301.28              | 2308.396   | 2350.753              | 2444.535           | 2502.514          | 2245.139          | 2290.585   | 2304.6                                | 2459.807           | 348.374 2          | 456.408 2          | 475.805 24                              | 21.105 24              | 68.535            |
|                           | 60 2341.10               | 11 2354.05                 | 2405.046             | 2032.033             | 1914.013 | 2019.224 | 1 2156.09            | 4 2171.26             | 1 2431.148               | 2337.628             | 2327.808             | 2335.776   | 2354.129              | 2448.831           | 2508.174          | 2249.844          | 2294.404   | 2308.828                              | 2484.766           | 375.344 2          | 482.902            | 2479.59 24                              | 25.913 24              | 72.934            |
|                           | 61 NA                    | NA                         | NA                   | 2053.011             | 1955.794 | 2043.616 | 5 2190.10            | 4 2212.13             | 9 2459.478               | NA                   | NA                   | NA         | A N                   | ∠ 4                | ∠ 4               | ∠<br>∀            | ۲<br>ح     | Z<br>Z                                | Z<br>Z             | ۸/<br>N/           | N N                | NA NA                                   | ΝA                     |                   |
|                           | 62 NA                    | AN                         | AN                   | 2063.674             | 1993.602 | 2057.270 | 5 2221.98            | 9 2254.8              | 2474.775                 | AN                   | NA<br>               | AN .       | Z :                   | ∠ .                | ∠ .               | Z .<br>4 ·        | ۷ .<br>۲   | Z :                                   | Z:                 | Z :                | 5                  | 479.048 24                              | 25.051 24              | 72.151            |
|                           | 64 NA                    | AN<br>AN                   | 7449 384             | 20/05/12/            | 20320202 | 2070 798 | 2238.21 S            | FL 22/22 C            | 2480.952                 | NA<br>NA             | NA<br>NA             | AN AN      |                       | 4 4                | 4 4               | < 2               | < <        |                                       | z z                | 7 N N              |                    | AN NA                                   | AN<br>AN               |                   |
|                           | 67 2392.01               | 4 2403.421                 | 2482.801             | 2116.523             | 2065.604 | 2103.15  | 2292.10              | 7 2360.7              | 3 2537.045               | 2378.862             | 2377.774             | 2380.919   | 2384.15               | 2486.033           | 2538.04           | 2272.543          | 2316.612   | 2331.063                              | 2510.1             | 2455.2 2           | 519.697 N/         | AN NA                                   | AN                     |                   |
|                           | 68 NA                    | NA                         | NA                   | 2139.589             | 2087.46  | 2128.28  | 5 2321.61            | 5 2394.47             | 5 2563.421               | 2403.574             | 2404.68              | 2406.314 1 | A N                   | A                  | A                 | A                 | 4          | A                                     | 2510.244           | 455.812 2          | 520.848 2          | 479.318 24                              | 25.382 24              | 72.442            |
|                           | 69 NA                    | NA                         | NA                   | 2144.821             | 2092.479 | 2136.79  | 3 2330.83            | 5 2410.17.            | 2570.148                 | 2407.926             | 2410.076             | 2410.271   | A N                   | Z<br>Z             | ∠ 4               | ∠<br>∀            | Ā          | A                                     |                    |                    | Ń                  | NA NA                                   | NA                     |                   |
|                           | 71 NA                    | AN .                       | AN                   | 2159.202             | 2105.436 | 2152.63  | 3 2344.64            | 6 2431.10             | 3 2578.976               | 2415.228             | 2417.306             | 2416.853 1 | 4                     | < .                | < .               | < .               | ۲ .<br>۲ . | A                                     | 2513.697           | 461.423 2          | 526.999 N/         | AN .                                    | AN                     |                   |
|                           | 75 NA                    | AN AN                      | NA<br>NA             | 2184.220<br>2194.869 | CE.U212  | 2181358  | 5 23/3./U            | 4 2486 91             | 2614 979                 | 2420.947<br>2427 494 | 2424./55             | 2422.429   | 4 4<br>4              | <u>4</u> 4         | 4 4               | A N N             | A A P      | N N N N N N N N N N N N N N N N N N N | 2 Z<br>4 4         | žŽ                 | 2 2                |                                         | AN<br>AN               |                   |
|                           | 78 NA                    | NA                         | AN                   | 2243.279             | 2163.635 | 2231.15  | 2400.03              | 3 2507.31             | 3 2623.293               | 2426.99              | 2431.982             | 2429.191   | . Z                   | . Z                | 2                 | A                 | A          | N                                     | : z                | ž                  | ž                  | NA NA                                   | AN                     |                   |

 Table 3

 Cumulative methane production in each digester (mg of C)

Day

97.962 235.944 294.913 363.869 598.08 619.494 4.353 5.064 16.385 431.916 490.333 575.721 636.345 654.248 688.805 683.123 689.772 686.287 706.029 NA NA NA 0.408 709. ٩N A A A 624.199 NA A A A A A A 673.868 603.476 58.68 182.664 233.953 290.764 363.231 503.643 535.803 573.421 NA 1 701.502 1 10.419 13.905 143.146 337 Metz b NA NA NA NA NA NA 726.3 767 NA NA NA NA NA NA A N N A N N N N 0.567 5.133 5.133 10.11 11.136 16.913 85.402 85.402 250.138 311.278 311.278 311.278 311.278 311.278 311.278 311.278 311.278 545.669 637.635 654.075 0 571.245 599.489 687.45 716.872 620.388 Metz\_a 737.8 NA NA 675.91 NA NA NA N N N N N N NA NA NA 763.708 N. 26.744 41.992 1137.801 179.502 234.355 294.35 294.36 294.81 494.81 525.574 560.625 586.915 586.574 606.625 666.625 0 720.969 2.204 1.406 752.604 ٨A ٨A MA ٧V NA NA NA NA NA A N N N NA NA NA NA NA NA NA AN NA NA NA NA 722.653 N, NA 814 NA NA 741.041 0 0.703 N 15.65 23.254 P 32.684 45.066 62.909 170.755 695.252 704.776 673.011 216.105 276.369 339.689 404.944 529.205 555.781 600.998 631.738 631.738 764.221 Eryz\_b ٩V ٩N NA A N A N 
 125.719
 629.978
 701.317
 703.686
 606.886
 62.93.74
 632.344
 66.2.699

 15.6333
 NA
 NA
 NA
 NA
 62.93.94
 652.344
 652.694

 194.341
 641.717
 711.577
 719.16
 NA
 NA
 NA
 NA
 NA

 222.42.47
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 222.437
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 222.437
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 221.435
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 31.1616
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 49.332
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 31.1616
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 59.3321
 NA
 NA
 NA
 NA
 513.224 543.816 566.977 586.753 631.626 613.861 653.78 NA NA NA 3 NA 112.814 h NA 712.814 h N 722.383 0.438 9.899 28.381 33.819 57.804 133.17 178.082 230.46 237.735 350.984 484.01 752.777 702 ٩N ٩V A N N N N N AN AN NA NA NA NA NA 694.811 0 0.521 2.323 3.75 187.339 231.192 393.086 435.594 487.672 523.849 550.114 550.114 7.321 31.848 90.265 118.289 152.122 711.132 Naz\_c 723 NA ₹ NA NA NA NA NA NA NA NA 0.53 0.53 3.783 6.222 12.03 38.013 102.392 352 685.648 701 715 NA ٩ 0 0.475 4.596 5.417 144 .218 11.987 34.12 5.417 ча NA NA NA 741.541 NA 665.14 NA NA NA NA NA NA 774.143 NA 694 NA 683 
 0
 0
 0

 14
 0.185
 2.736

 21.184
 2.736
 54.52

 21.184
 1.891
 NA

 54.52
 1.891
 NA

 27.345
 39.272
 25.800

 27.345
 39.2724
 25.800

 26.523
 331.139
 131.138

 366.523
 331.138
 480.54

 366.523
 53.803
 31.138

 366.523
 53.8138
 480.54

 51.3818
 480.54
 54.254

 66.398
 66.279
 56.723
 1.891 NA 8 738.969 q\_20 A A A A A -\_\_\_0 1.193 8.11 
 10.691
 93.27

 12.864
 233.109

 NA
 237.276

 NA
 377.276

 NA
 377.276

 Solution
 448.748

 25.585
 501.287

 30.654
 580.864

 NA
 602.815

 NA
 602.815
 109 14.672 93.27 663.203 681. 635.708 NA NA NA NA NA 655.086 NA 696.214 NA 0z\_a AN N 0 0.781 3.052 10.69: 12.86<sup>,</sup> NA NA NA ٨A AN NA 0 2.078 3.366 3.53 NA 4A NA 588.325 601.522 NA N NA N 691.662 14.327 18.647 522.922 556.534 Met\_b A NA 31.772 NA A NA A N ٨A 709.217 13.582 22.09 729.273 
 33
 32.73
 32.618
 M.
 <thM.</th>
 <thM.</th>
 M.
 <t 564.453 NA A N ٩V . A --0 1.084 1.486 н N 33.353 788.061 N 801.427 14.637 20.944 NA 1 NA 1 832.589 1 Ery\_c ۳A MA ₹ A A A A N A N ₹₹ 637.811 650.636 N/ 681.334 709.2 -- 0 1.682 16.659 21.701 h 24.908 28.22 NA NA NA NA 771.247 A N A N ₹₹ ₹¥ 0 4.262 5.35 12.2 13.785 679.351 694.144 657.34 740.181 A N A N N ₹¥ ¥ ¥ A N A N 0 0.363 4.212 9.012 12.626 623.003 632.685 672.72 N 692.607 A NA A NA 22.493 NA 23.642 NA 23.642 NA A NA 483.003 55 503.513 56 567.868 60 576.698 NA 1A NA A A A A A A A A 612.292 617.842 NA NA NA NA \_\_\_\_\_0 0.31 1.888 2.178 | 647.323 663.497 8.456 11.796 113.507 Na\_b A N N 633.844 137.903 8 659.796 181.194 11 684.338 218.272 13 A N NA NA 628.768 648.919 0 0.504 2.07 2.419 8.324 15.88 239.6 271.032 366.499 394.811 426.419 450.583 540.445 570.581 596.071 613.487 884 550.9 576.353 686.<sup>6</sup> NA Na\_a A N N A N N N AN N A N N 0 0.169 1.195 29.426 N NA 699.479 742.583 NA NA NA NA NA NA NA NA 11.521 21.576 717.568 769. NA NA NA NA NA ٩N AN NA ٨A AN AN ပိ N N N 36.522 0 1.767 13.228 16.445 I 48.343 83.435 96.529 120.103 146.406 177.532 286.043 324.235 374.235 374.235 374.235 828.032 604.763 19.675 28.166 628.7 638.51 688.765 165 619.134 670.301 651 0\_b 16.084 ΔA 710. 727. ٨A ΝA A N AN NA 
 8
 15.5.14

 11
 N
 23.8.5

 11
 N
 30.5

 11
 N
 20.20

 11
 N
 20.21

 11
 N
 20.21

 11
 N
 20.21

 11
 N
 20.22

 21
 1122.051

 22
 231.395

 235
 24.747

 236
 24.747

 25
 24.747

 26
 22.22

 212.25
 22.24

 212.264
 31.355

 22
 23.55.24

 23
 551.264

 26
 252

 28
 10.66.172

 29
 66.172

 20
 10.66.172

 21
 20.83

 22
 23.44

 23
 66.172

 <tr 42.781 67.722 81.575 100.304 120.304 147.87 247.47 247.47 284.59 331.395 331.395 331.395 331.395 331.395 572.944 591.764 572.944 591.764 606.824 5.563 6 NA 7 NA 4 NA

## Table 4

Cumulative carbon dioxide production in each digester (mg of C).

| Day | 0_;              | a (           | )_ь (      | D_c     | Na_a          | Na_b       | Na_c          | Ery_a       | Ery_b         | Ery_c         | Met_a         | Met_b      | Met_c   | Oz_a          | 0z_b          | Oz_c          | Naz_a     | Naz_b   | Naz_c   | Eryz_a         | Eryz_b        | Eryz_c  | Metz_a     | Metz_b     | Metz_c        |
|-----|------------------|---------------|------------|---------|---------------|------------|---------------|-------------|---------------|---------------|---------------|------------|---------|---------------|---------------|---------------|-----------|---------|---------|----------------|---------------|---------|------------|------------|---------------|
|     | 0                | 0             | 0          | 0       | 0             | 0          | 0             | 0           | 0             | 0             | 0             | 0          | 0       | 0             | 0             | 0             | 0         | 0       | 0       | 0              | 0             | 0       | 0          | 0          | 0             |
|     | 1                | 8.188         | 29.54      | 2.703   | 14.058        | 10.963     | 11.029        | 14.17       | 11.49         | 0.977         | 8.534         | 9.501      | 35.321  | 13.25         | 42.144        | 4.951         | 19.176    | 17.216  | 22.86   | 15.462         | 29.975        | NA      | 13.024     | 12.802     | 12.003        |
|     | 4                | 12.403        | 105.968    | 8.54    | 41.054        | 29.972     | 79.49         | 52.938      | 100.113       | 9.471         | 43.779        | 39.608     | 49.268  | 66.587        | 127.839       | 13.195        | 62.866    | 52.409  | 44.103  | 66.534         | 98.905        | 16.016  | 64.861     | 55.445     | 61.638        |
|     | 5                | 22.931        | 118.197    | NA      | 50.058        | 35.993     | NA            | NA          | 118.6         | NA            | 47.053        | 40.028     | NA      | NA            | 154.667       | NA            | 69.822    | 59.766  | 45.497  | 72.986         | 125.987       | NA      | 81.733     | 64.526     | 65.246        |
|     | 6 NA             | . 1           | NA I       | NA      | NA            | NA         | NA            | NA          | NA            | NA            | NA            | NA         | NA      | NA            | 181.014       | 9.127         | NA        | NA      | NA      | 88.974         | 149.713       | 8.753   | NA         | NA         | 68.37         |
|     | 7 NA             | · · · ·       | NA I       | NA      | NA            | NA         | NA            | NA          | NA            | NA            | NA            | NA         | NA      | 69.89         | 217.867       | NA            | 86.994    | 64.003  | 47.433  | 126.333        | 163.16        | 87.53   | 110.5      | 86.922     | 88.659        |
|     | 8                | 71.411        | 120.951    | 66.177  | 72.362        | 92.946     | 103.251       | 95.054      | 132.849       | 79.573        | 99.12         | 99.382     | 104.559 | 164.974       | 240.575       | 98.723        | 138.265   | 129.803 | 121.919 | 146.038        | 179.36        | 111.395 | 153.879    | 138.889    | 149.002       |
|     | 11 :             | 103.017       | 148.27     | 99.795  | 99.829        | 101.61     | 114.067       | 99.942      | 143.255       | 85.465        | 125.41        | 109.785    | 108.291 | 183.157       | 261.094       | 140.365       | 173.074   | 186.041 | 152.254 | 174.53         | 219.055       | 152.388 | 189.632    | 168.327    | 183.618       |
|     | 12 NA            | . r           | VA I       | NA      | NA            | NA         | NA            | NA          | NA            | NA            | NA<br>400 COT | NA         | NA      | 222.6/3       | 294.277       | 1/5.65/       | 194.943   | 191.323 | 1/4.403 | 209.575        | 244.257       | 184.223 | 220.762    | 197.972    | 217.992       |
|     | 13 .             | 123.352       | 165.106    | 114.426 | NA            | NA         | NA            | NA          | NA            | 115.973       | 139.627       | NA         | NA      | 251.154       | 321.06        | 206.015       | 212.757   | 211.746 | 194.996 | 235.437        | 277.894       | 212.86  | 244.485    | 221.052    | 244.725       |
|     | 14 NA            | 1 1 1 1 1 1 1 | 404 257    | NA      | NA<br>ADE COC | NA         | NA            | NA ADA CO   | NA<br>ACA DOD | NA            | NA            | NA         | NA      | 278.883       | 347.856       | 231.961       | 230.661   | 227.51  | 211.436 | 260.669        | 306.198       | 241.129 | 267.683    | 244.401    | 271.403       |
|     | 15 .             | 133.102       | 181.357    | 128.178 | 125.696       | 124.024    | NA            | 124.66      | 161.203       | 151.//1       | 149.232       | 140.288    | 150.244 | 299.469       | 3/2./44       | 255.898       | 235.974   | 244.733 | 228.741 | 284.376        | 330.161       | 267.977 | 290.008    | 268.414    | 292.965       |
|     | 10 .             | 161.02        | 206.208    | 151.222 | 137.537       | 133./01    | NA            | 130.859     | 1/1.695       | 100 571       | 1/6.81/       | 170.400    | 150.344 | 316.309       | 397.129       | 281.479       | 2/0./80   | 279.145 | 201.750 | 317.398        | 357.001       | 301.648 | 313.945    | 300.503    | 312.589       |
|     | 19 .             | 101 757       | 219.416    | 177 936 | NA            | NA         | NA            | NA          | NA            | 100.371       | 211 746       | 105 242    | NA      | 323.39        | 411.140       | 296.097       | 305.974   | 226 649 | 291.972 | 336.208        | 375.096       | 323.303 | 329.067    | 321.030    | 323.399       |
|     | 20 .             | 200.041       | 256.701    | 102 096 | NA            | NA         | NA            | 100 100 100 | 102 901       | 200.436       | 211.740       | 200 666    | 169 014 | 527.041<br>NA | 417.375<br>NA | 505.990<br>NA | 220 590   | 240.12  | 272 522 | 2547.330       | 200 77        | 242 097 | 242 220    | 240.206    | 226 972       |
|     | 21 .<br>22       | 205.041       | 230.113    | 208.07  | 151 272       | 1/15 262   | 127 212       | 156 650     | 192.091<br>NA | 224.380       | 223.381       | 217 703    | 174 711 | NA            | 424 559       | 314.64        | 325.305   | 340.12  | 323.559 | 362 327        | 396 326       | 342.567 | 342.723    | 346.645    | NA 530.873    |
|     | 22               | 223.33        | 212.575    | 200.07  | 166.066       | 145.202    | 157.212       | 169 206     | 209 167       | 241.004       | 247.044       | 217.705    | 100 722 | 224 027       | 424.330       | 221 756       | 245 609   | 250 /20 | 244 104 | 271 202        | 404 212       | 250 205 | 257 964    | 256 049    | 244 720       |
|     | 26               | 286 582       | 333 726    | 265.18  | NA 100.000    | NA NA      | NA NA         | NA          | NA            | 203.100       | 207.073       | 243.520    | 209 365 | NA NA         | NA            | NA            | NA        | NA      | NA      | NA             | 404.213<br>NA | NA      | NA 552.004 | NA 550.540 | NA NA         |
|     | 27 :             | 203 591       | 350 831    | 203.10  | 174           | 161 888    | 160.046       | 185 324     | 214 756       | 307 133       | 309.911       | 283.096    | 219 146 | NΔ            | NA            | NA            | 350 885   | 367 002 | 352 915 | 380 234        | 409 965       | 367 792 | NΔ         | NA         | NΔ            |
|     | 28               | 317 75        | 365 392    | 297.64  | NΔ 1/4        | NA 101.000 | NA            | NΔ          | NΔ            | 319 978       | 321 761       | 299 919    | 233 878 | NΔ            | NΔ            | NΔ            | NA        | NA      | NΔ      | NΔ             | 405.505<br>ΝΔ | NA      | NΔ         | NΔ         | NΔ            |
|     | 29 :             | 329 278       | 377 442    | 311.326 | 180 024       | 173 916    | 167.41        | 198.091     | 224.09        | 327.569       | 329 985       | 312 511    | 245 345 | 341 482       | 435 574       | 327 166       | 355 992   | 372 227 | 357 792 | 383 467        | 413 257       | 372 985 | 360 537    | 364 428    | 352 018       |
|     | 32               | 343.676       | 383.925    | 325,919 | 192.078       | 185.873    | 179.965       | 215.263     | 238.17        | 342,308       | 340.668       | 329.049    | 266.675 | NA            | NA            | NA            | 362.473   | 378.395 | 364.179 | 388.96         | 418.587       | 378.18  | NA         | NA         | NA            |
|     | 33 3             | 354.234       | 395.417    | 344.369 | 197.841       | 190.164    | 183.364       | 222.581     | 245.333       | 355.112       | 344.28        | 343.578    | 280.761 | 346.52        | 440.614       | 332.352       | NA        | NA      | NA      | NA             | NA            | NA      | 366.475    | 371.142    | 358.052       |
|     | 34 3             | 358.499       | 400.231    | 350.863 | NA            | NA         | NA            | 233.719     | 249.383       | 361.033       | NA            | 349.835    | 297.929 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 35 NA            | . 1           | NA I       | NA      | NA            | NA         | NA            | NA          | NA            | NA            | 353.491       | 352.932    | 312.951 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 36 3             | 364.636       | 406.336    | 358.144 | 217.363       | 202.797    | 203.675       | 249.089     | 266.099       | 370.002       | NA            | NA         | 324.125 | NA            | NA            | NA            | 370.624   | 384.909 | 372.188 | NA             | 424.714       | NA      | NA         | NA         | NA            |
|     | 39 3             | 372.436       | 413.58     | 364.939 | 234.239       | 217.069    | 219.833       | 270.764     | 284.551       | 376.633       | 362.691       | 362.722    | 343.347 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 41 3             | 374.335       | 417.596    | 371.312 | 251.406       | 228.232    | 235.376       | 292.534     | 302.186       | 383.451       | NA            | 367.373    | 362.339 | NA            | NA            | NA            | NA        | NA      | NA      | 399.155        | NA            | NA      | NA         | NA         | NA            |
|     | 42 NA            | . 1           | NA I       | NA      | 261.869       | 235.895    | 244.58        | 309.952     | 316.052       | 385.545       | 367.869       | NA         | 372.487 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 43 NA            | . 1           | A          | 375.278 | 276.374       | 247.197    | 258.576       | 322.827     | 332.163       | NA            | NA            | NA         | NA      | 356.174       | 452.258       | 343.552       | 375.032   | 389.849 | 378.19  | 402.9          | 430.726       | 382.36  | 379.772    | 381.817    | 369.454       |
|     | 46 NA            | . 1           | NA I       | NA      | 303.362       | 265.646    | 282.617       | 336.671     | 351.538       | 393.864       | 374.095       | 372.604    | 381.097 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 47 NA            | . 1           | NA I       | NA      | 317.022       | 280.291    | 299.141       | 349.199     | 368.989       | NA            | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 48               | 382.58        | 427.063    | 381.185 | 328.182       | 293.332    | 313.628       | 356.38      | 380.506       | 395.755       | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 49 NA            | . 1           | NA I       | NA      | 334.859       | 303.411    | 322.442       | 364.737     | 391.272       | NA            | 377.167       | 378.106    | 386.885 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 53 NA            | . 1           | NA I       | NA      | 349.348       | 326.608    | 336.971       | 375.329     | 405.072       | 405.47        | NA            | NA         | 395.858 | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | 393.072 | NA         | NA         | NA            |
|     | 54 3             | 391.644       | 434.316    | 392.064 | 354.249       | 341.831    | 346.898       | 381.301     | 414.294       | NA            | 385.66        | 385.86     | NA      | 364.209       | 461.669       | 352.361       | NA        | NA      | NA      | 413.771        | NA            | NA      | 388.124    | 390.392    | 378.095       |
|     | 55 NA            | . 1           | NA I       | NA      | 360.613       | 349.959    | 350.838       | 387.548     | 421.88        | 408.617       | NA            | NA         | 399.712 | NA            | NA            | NA            | 383.208   | 397.06  | 386.473 | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 56 NA            | . r           | NA I       | NA      | 361.005       | 355.268    | 355.469       | 391.567     | 429.596       | NA            | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 57 NA            | . 1           | NA I       | NA      | 364.955       | 359.082    | 357.616       | NA          | NA            | NA            | 393.534       | 385.867    | NA      | NA            | NA            | NA            | NA        | NA      | NA      | 415.439        | 439.885       | 397.743 | NA         | NA         | NA            |
|     | 60 NA            |               | NA I       | NA      | 368.94        | 367.41     | 363.537       | 400.515     | 438.272       | 417.412       | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 61 NA            | · .           | NA I       | NA      | NA            | 370.531    | NA            | 402.532     | 442.519       | NA            | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 62 NA            |               | NA I       | NA      | NA            | NA         | NA            | NA          | NA            | NA            | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 63 NA            | · .           | NA I       | NA      | NA            | NA         | NA<br>aco tro | NA          | NA            | NA<br>100 TOO | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 64 NA            | , r           | NA 570     | 394.758 | 373.165       | 378.525    | 368.469       | 410.115     | 452.358       | 423.783       | NA            | NA DOD DCD | NA      | NA            | NA            | NA<br>2C1 045 | NA        | NA      | NA      | NA             | NA            | NA      | NA         | NA         | NA<br>207.COC |
|     | 0/ 4<br>CONA     | +02.029       | 444.579    | 403.773 | 379.252       | 3/8.666    | 3/1./81       | 413.8       | 459.609       | 428.064       | 400.074       | 398.968    | 413.326 | 3/3.008       | 4/3.30/       | 361.945       | INA<br>NA |         |         |                |               |         | 404.304    | 400.241    | 387.080       |
|     | CO NA            | . r           | NA         |         | INA<br>NA     | INA<br>NA  | INA<br>NA     | 11/24       | N/A           |               |               |            |         |               | INPA<br>NIA   | NA NA         | INA<br>NA |         |         |                |               |         |            | NA NA      | NM NIA        |
|     | 09 INA<br>71 NIA |               | 10 A I     |         | NA<br>NA      | NA<br>NA   | NA<br>NA      | 110 E 4     | ACC 147       | 422 621       |               | NIA        | NA NA   | NA<br>NA      | NA NA         | NA NA         | NA NA     | NA NA   | NA      | 424.444        | 440.24        | 400 504 |            | N/A        | NA            |
|     | 74 NA            |               | 1 1        | NA      | NA            | NA         | NA            | 417.04      | 400.147       | +52.031<br>NA | NA            | NA         | NA      | NA            | NA            | NA            | NA        | NA      | NA      | -124.444<br>NA | 445.24        | +00.364 | NA         | NA         | NA            |
|     | 74 N/A           | · ·           | 10. 1      | NA      | 285 820       | 386 640    | 303 564       | NA          | NA            | NA            | NA            | NA         | NA I    | NA            | NA            | NA            | 380 665   | 403 174 | 201 001 | NA             | NA            | NA      | NA         | NA         | NA            |
|     | 78 NA            |               | ν. I<br>ΙΔ | NΔ      | NA NA         | 301 3/1    | NA            | 427 029     | 473 51        | 436 867       | NΔ            | NΔ         | NΔ      | NΔ            | NΔ            | NΔ            | NA NA     | NA NA   | NA NA   | NΔ             | NΔ            | NΔ      | NΔ         | NΔ         | NΔ            |
|     |                  |               |            |         |               | 551.541    |               | -27.050     | 475.51        | 455.607       |               |            |         |               |               |               |           |         |         |                |               |         |            |            |               |

Table 5Apparent isotopic factor ( $\alpha_{app}$ ) in each digester.

| Day | 0_a   | 0_b   | 0_c   | Na_a  | Na_b  | Na_c  | Ery_a | Ery_b | Ery_c | Met_a | Met_b | Met_c | 0z_a  | 0z_b  | 0z_c  | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 14  | 1.075 | 1.072 | 1.072 | 1.063 | 1.068 | 1.068 | 1.072 | 1.068 | 1.075 | 1.076 | 1.077 | 1.075 | 1.038 | 1.042 | 1.041 | 1.041 | 1.045 | 1.046 | 1.052  | 1.048  | 1.051  | 1.044  | 1.05   | 1.041  |
| 21  | 1.075 | 1.068 | 1.072 | 1.066 | 1.073 | 1.075 | 1.081 | 1.078 | 1.065 | 1.066 | 1.079 | 1.083 | 1.038 | 1.033 | 1.029 | 1.031 | NA    | 1.034 | 1.032  | 1.029  | 1.033  | 1.033  | 1.03   | 1.034  |
| 28  | 1.048 | 1.045 | 1.054 | 1.071 | 1.079 | 1.079 | 1.087 | 1.084 | 1.047 | 1.036 | 1.055 | 1.08  | 1.04  | 1.038 | 1.037 | 1.029 | 1.024 | 1.024 | 1.027  | 1.027  | 1.028  | 1.038  | 1.034  | 1.039  |
| 35  | 1.022 | 1.023 | 1.017 | 1.066 | 1.077 | 1.071 | 1.073 | 1.085 | 1.03  | 1.026 | 1.018 | 1.061 | 1.043 | 1.042 | 1.041 | 1.036 | 1.031 | 1.032 | 1.029  | 1.033  | 1.03   | 1.041  | 1.038  | 1.042  |
| 42  | 1.035 | 1.035 | 1.034 | 1.055 | 1.066 | 1.059 | 1.053 | 1.066 | 1.028 | 1.037 | 1.032 | 1.019 | 1.043 | 1.044 | 1.041 | 1.039 | 1.035 | 1.035 | 1.037  | 1.039  | 1.04   | 1.041  | 1.038  | 1.042  |
| 49  | 1.037 | 1.04  | 1.038 | 1.043 | 1.054 | 1.045 | 1.04  | 1.046 | 1.027 | 1.039 | 1.038 | 1.023 | 1.046 | 1.042 | 1.043 | 1.039 | 1.038 | 1.036 | 1.039  | 1.04   | 1.041  | 1.044  | 1.04   | 1.045  |

#### Table 6

Dissolved inorganic carbon (DIC) concentration in each digester (mgC/L).

0 b Na\_a Na\_b Na\_c Ery\_a Ery\_b Ery\_c Met\_a Met\_b Met\_c 0z\_a 0z\_b 0z\_c Naz\_a Naz\_b Naz\_c Eryz\_a Eryz\_b Eryz\_c Metz\_a Metz\_b Metz\_c Dav 0 a 0 c 1659.2 1602.4 1513.6 1663.2 1690.8 1702.8 1700 1687.2 1702.4 1691.2 1680 1804 1674.4 1652.4 1686.4 1664.8 1678.4 1657.6 1674.4 1673.6 1682.4 1670.8 1724 0 1668.4 6 1306.8 1308.8 1312.8 1331.2 1329.6 1356.8 1388.4 1371.6 1353.2 1316.4 1314.4 1294.4 1362 1323.2 1320.8 1286.8 1306 1278.8 1324.4 1253.6 1360.8 1309.2 1294 1291.2 13 1294.8 1294.4 1301.6 1368.4 1380.4 1419.2 1383.2 1400.8 1495.6 1360.8 1337.2 1358.4 1624 1567.6 1568.4 1543.6 1503.6 1454.8 1447.2 1446.8 1384 1540 1358.8 1520.4 20 1223.6 1250 1242 1429.6 1407.6 1400.8 1368.8 1370.8 1352.8 1286.8 1255.2 1310.4 1787.2 1948.4 1784 1744.8 1746.4 1710 1691.2 1713.2 1568.4 1788.8 1726.4 1754.8 27 1255.2 1320.8 1220 1198.8 1190 1193.6 1122 1134.4 1360.8 1484.8 1152.4 1055.2 1714.8 1732 1754.4 2115.2 2374 1694.8 1972.8 1699.2 1717.6 1771.6 1828.4 1820.8 34 2055.6 1320 1220.4 1255.6 1233.2 1277.2 1187.6 1127.2 1710 1804.4 1670.8 1203.6 1812 1804 1906.8 1758.4 1725.2 1765.6 1662.4 1871.6 1955.6 1741.6 1754.8 1711.2 1686.4 1273.6 1289.6 1090 898.4 996.8 989.2 700.8 1513.6 1834.4 2014.8 1197.6 1340.8 1299.2 1496.4 1720.4 1660.4 1631.6 1495.6 1403.2 1257.6 1104 1398.4 1386.8 41 48 1448.8 1578.8 1863.2 1252 1085.2 1289.2 1242.4 1044.8 1585.2 1474 1237.2 1563.2 1268.4 1449.2 1600.8 1521.2 1424.4 1422.4 1241.6 1502 1101.6 1172.4 1143.6 1546.4

 Table 7

 Dissolved organic carbon (DOC) concentration in each digester (mgC/L).

Na\_a Na\_b Na\_c Ery\_a Ery\_b Ery\_c Met\_a Met\_b Met\_c Oz\_a 0z\_b 0z\_c Naz\_a Naz\_b Naz\_c Eryz\_a Eryz\_b Eryz\_c Metz\_a Metz\_b Metz\_c Day 0\_a 0\_b 0 c 0 989.2 994.8 947.2 1004.4 1035.6 1016 1266.4 1359.2 1006 1282.8 1030 1091.6 1010.4 1063.2 1022.4 1005.6 1022 1026.8 1273.6 1229.6 1244 1004.4 915.6 1007.6 1235.2 1224.4 1256.8 1150.4 1180.8 1159.2 1393.6 1450.8 1364.8 1223.2 1220.8 1250.8 1043.6 1088.8 1122.8 1144.4 1142.4 1157.6 1376.8 1313.6 1340.4 1142.8 1165.6 1030 6 526 13 1343.6 1302.8 1357.6 1078 1122.8 1116.8 1402 1468 1688.8 1280.4 1259.6 1294 518.8 606.4 678.8 750.4 809.2 861.6 1059.2 998.4 1059.6 702 818 20 1402.8 1304 1337.2 1044.4 1087.2 1074.4 1389.2 1442.4 1377.2 1348.4 1406.4 1262.4 71.2 148.8 153.6 346.4 412.8 430.4 621.2 490 578.8 155.2 274.4 95.2 1527.2 222 446.8 327.2 399.6 57.6 27 1205.2 1055.6 1275.6 1224 1303.6 1326 1652 1620.8 1186 768.4 1365.6 1566.4 56.4 55.2 60 189.6 56.4 56 34 236.4 238 1567.6 1187.6 1284 1272 1697.6 1726.4 706.8 175.2 221.6 1407.2 33.2 38 43.6 93.6 107.6 112 335.2 279.6 359.2 41.2 36.8 28.4 41 69.2 58.8 94 1134.4 1156 1310.4 1443.6 1263.2 446 81.6 93.6 318.4 26.8 20.4 25.2 68.8 64 67.6 218 175.6 198.4 19.6 28.8 22 48 57.2 59.6 82.8 878.4 1276.4 1097.2 918.4 1180.4 362 48 45.6 205.2 20 21.6 25.6 56.4 45.6 55.6 147.6 158.8 142 18.4 17.2 22.4

**Table 8** pH values in each digester.

| Day | 0_a | 0_b | 0_c | Na_a | Na_b | Na_c | Ery_a | Ery_b | Ery_c | Met_a | Met_b | Met_c | 0z_a | 0z_b | 0z_c | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
|-----|-----|-----|-----|------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 0   | 8.2 | 8.2 | 8.2 | 8.2  | 8.3  | 8.2  | 8     | 8.1   | 8     | 8.3   | 8.3   | 8.3   | 7.9  | 8.2  | 7.5  | 8.2   | 8.2   | 8     | 8      | 8.1    | 8.1    | 8.3    | 8.2    | 8.2    |
| 6   | 7.4 | 7.3 | 7.3 | 7.2  | 7.2  | 7.2  | 7.2   | 7.3   | 7.3   | 7.2   | 7.2   | 7.2   | 7.1  | 7.1  | 7.1  | 7     | 7     | 7     | 7.2    | 7.2    | 7.2    | 7.1    | 7.2    | 7.2    |
| 13  | 7.2 | 7.2 | 7.2 | 7.1  | 7.1  | 7.2  | 7.2   | 7.2   | 7.2   | 7.2   | 7.2   | 7.1   | 7.5  | 7.4  | 7.4  | 7.2   | 7.1   | 7.1   | 7.4    | 7.3    | 7.3    | 7.4    | 7.2    | 7.4    |
| 20  | 7   | 7.1 | 7.1 | 6.9  | 6.9  | 6.9  | 7.1   | 7.1   | 7.1   | 7.1   | 7     | 7.1   | 7.5  | 7.5  | 7.5  | 7.3   | 7.2   | 7.3   | 7.5    | 7.5    | 7.5    | 7.5    | 7.5    | 7.5    |
| 27  | 7.3 | 7.4 | 7.3 | 7    | 7    | 7    | 7.2   | 7.2   | 7.4   | 7.5   | 7.3   | 7.1   | 7.6  | 7.6  | 7.7  | 7.4   | 7.4   | 7.4   | 7.7    | 7.7    | 7.7    | 7.7    | 7.7    | 7.6    |
| 34  | 7.8 | 7.8 | 7.8 | 7    | 7    | 7.1  | 7.3   | 7.2   | 7.8   | 7.8   | 7.8   | 7.3   | 7.7  | 7.8  | 7.7  | 7.4   | 7.5   | 7.5   | 7.8    | 7.8    | 7.8    | 7.7    | 7.7    | 7.7    |
| 41  | 7.7 | 7.8 | 7.8 | 7.2  | 7.1  | 7.1  | 7.4   | 7.2   | 7.7   | 7.8   | 7.9   | 7.7   | 7.7  | 7.7  | 7.8  | 7.5   | 7.5   | 7.5   | 7.8    | 7.8    | 7.8    | 7.7    | 7.7    | 7.7    |
| 48  | 7.7 | 7.9 | 7.9 | 7.5  | 7.3  | 7.3  | 7.7   | 7.5   | 7.9   | 7.8   | 7.9   | 7.8   | 7.8  | 7.7  | 7.7  | 7.7   | 7.7   | 7.6   | 7.8    | 7.9    | 7.8    | 7.7    | 7.7    | 7.7    |
|     |     |     |     |      |      |      |       |       |       |       |       |       |      |      |      |       |       |       |        |        |        |        |        |        |

in Fig. 5 using the mean values of the triplicates. Tables 9–11, and 12 provide data on the accumulation of acetic acid, propionic acid, butyric acid, and total volatile fatty acids (VFAs) over time in each digester, and Fig. 6 visually represents these datasets with the mean values of the triplicates.

The sequencing data has been deposited in the form of fastq.gz files in the European Nucleotide Archive. These files contain 16S rRNA gene sequencing data generated using the Ion Torrent PGM platform. The sequencing data captures information from two time points for each digester. The first time point corresponds to the peak of VFAs accumulation, focusing on the hydrolysis and acidogenesis processes (referred to as early degradation stage in the related research article). The second time point corresponds to the peak of biogas production, aiming at



Fig. 1. Experimental design.



**Fig. 2.** Cumulative total biogas,  $CH_4$ , and  $CO_2$  production (mg of C) over time (number of days) for different conditions. The data used are mean values of the triplicate digesters, and standard deviations are indicated with error bars. Vertical lines represent the sampling dates.



**Fig. 3.** Apparent isotope factor ( $\alpha_{app}$ ) of the biogas over time (number of days) for different conditions.  $\alpha_{app}$  is an indicator of the methanogenic pathway. It is commonly assumed that  $\alpha_{app}$  greater than 1.065 implies the hydrogenotrophic pathway as the dominant methanogenesis pathway, while  $\alpha_{app}$  less than 1.055 indicates acetoclastic methanogenesis as the prominent pathway [6]. The horizontal red and blue lines denote the thresholds for hydrogenotrophic and acetoclastic methanogenesis, respectively. The data used are mean values of the triplicate digesters, and standard deviations are indicated with error bars. Vertical lines represent the sampling dates.



**Fig. 4.** Dissolved inorganic and organic carbon (DIC and DOC) concentrations (mg of C/L) over time (number of days) for different conditions. The data used are mean values of the triplicate digesters, and standard deviations are indicated with error bars. Vertical lines represent the sampling dates.



Fig. 5. pH values over time (number of days) for different conditions. The data used are mean values of the triplicate digesters, and standard deviations are indicated with error bars. Vertical lines represent the sampling dates.

Table 9Acetic acid concentration in each digester (mgC/L).

|    |        |       |       |       | -     |       |       |       |       |       |        |       |       |       |       |       |       |       |        |        |        |        |        |        |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Da | / 0_a  | 0_b   | 0_c   | Na_a  | Na_b  | Na_c  | Ery_a | Ery_b | Ery_c | Met_a | Met_b  | Met_c | 0z_a  | 0z_b  | 0z_c  | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
| 0  | 27.2   | 27.3  | 28.4  | 88.5  | 53.1  | 44.1  | 26.1  | 28.4  | 26.4  | 26.6  | 55.1   | 57.1  | 48.6  | 41.5  | 43.7  | 31    | 67.6  | 36.6  | 28.6   | 27     | 30.8   | 49.4   | 49.7   | 23.4   |
| 6  | 414.8  | 446.5 | 446.5 | 4.6   | 36.9  | 20.7  | 421.5 | 335   | 369.5 | 444.7 | 417.3  | 396.4 | 402.9 | 377.3 | 406.1 | 46.4  | 81    | 10.1  | 342.5  | 410.3  | 352.2  | 422.2  | 486.9  | 508.6  |
| 13 | 701.7  | 717.2 | 742.6 | 548.1 | 563.2 | 540.7 | 504.8 | 499.2 | 554.2 | 781.7 | 737.7  | 701.9 | 257.1 | 337.7 | 386.8 | 424.3 | 502.3 | 523.3 | 569.2  | 538.1  | 576.5  | 416.1  | 541.6  | 288.4  |
| 20 | 1052.4 | 974.6 | 975.6 | 660.7 | 657.5 | 635.1 | 772.7 | 750.3 | 913.8 | 948.4 | 1058.7 | 888.7 | 0     | 0     | 0     | 109.2 | 193.6 | 211.8 | 218.9  | 99     | 220.7  | 9.7    | 80.9   | 0      |
| 27 | 886    | 738   | 966   | 868   | 914   | 940   | 1038  | 996   | 686   | 464   | 1068   | 1228  | 0     | 0     | 0     | 0     | 23.4  | 21.8  | 46.8   | 7.5    | 33.6   | 0      | 0      | 0      |
| 34 | 7      | 6.7   | 15.6  | 928   | 1076  | 966   | 1146  | 1126  | 200   | 0     | 6.7    | 1202  | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 5.6    | 0      | 0      | 0      |
| 41 | 6      | 4.9   | 6.1   | 812.6 | 754.8 | 782.1 | 288.6 | 607.1 | 61.2  | 2.3   | 3.6    | 45.7  | 3.7   | 2.2   | 2.3   | 3.5   | 3.4   | 4.3   | 13.3   | 1.4    | 7.2    | 2.9    | 2.9    | 3.2    |
| 48 | 4.2    | 5.4   | 5     | 337.5 | 723.8 | 423.8 | 243.8 | 207.9 | 37    | 2     | 3.2    | 4.3   | 1.3   | 1.9   | 1.8   | 5     | 4.8   | 3.6   | 2.6    | 1.3    | 3      | 1.8    | 1.3    | 2      |

 Table 10

 Propionic acid concentration in each digester (mgC/L).

| Day | 0_a   | 0_b   | 0_c   | Na_a  | Na_b  | Na_c  | Ery_a | Ery_b | Ery_c | Met_a | Met_b | Met_c | 0z_a  | 0z_b  | 0z_c  | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| 6   | 53.6  | 79.9  | 75.3  | 0     | 6.3   | 0     | 85.7  | 52.1  | 54.6  | 63.1  | 50.4  | 51.4  | 81.1  | 67.5  | 74.5  | 0     | 0     | 0     | 79.1   | 66.6   | 70.3   | 70.5   | 87     | 100.3  |
| 13  | 101.6 | 104.1 | 104.9 | 76.2  | 82.5  | 91.5  | 112.8 | 120.9 | 94.4  | 95.8  | 99.6  | 94.9  | 107.1 | 111.8 | 118.1 | 72.4  | 75.2  | 89    | 105.7  | 80.6   | 120.7  | 103.9  | 96     | 110.9  |
| 20  | 110.3 | 110.1 | 97.7  | 82.7  | 83.5  | 65.5  | 121.8 | 126.7 | 112.1 | 73.9  | 99.3  | 70.3  | 0     | 10    | 45    | 84    | 89.6  | 82.8  | 106    | 82.8   | 112.8  | 22.6   | 79.2   | 0      |
| 27  | 133.1 | 133.3 | 132.6 | 91.5  | 98    | 109.2 | 183.9 | 193.4 | 121.9 | 127.9 | 130.1 | 123.8 | 0     | 0     | 0     | 76.1  | 98.8  | 98.5  | 120.4  | 100.2  | 111.4  | 0      | 0      | 0      |
| 34  | 102.2 | 101.4 | 100.2 | 89.3  | 153.5 | 83.7  | 195.1 | 121.1 | 90.2  | 64.2  | 102.6 | 120.2 | 0     | 0     | 0     | 0     | 0     | 0     | 36.2   | 0      | 102.4  | 0      | 0      | 0      |
| 41  | 0     | 0     | 20.3  | 143.8 | 117.8 | 142.9 | 64    | 112.4 | 94.8  | 0.5   | 0     | 71.5  | 0.6   | 0.6   | 0.7   | 0     | 0     | 0     | 21.6   | 0      | 16.7   | 0.6    | 0.6    | 0.7    |
| 48  | 0     | 0     | 0     | 98.3  | 133.7 | 115.8 | 98.5  | 58.9  | 117.1 | 0.5   | 0.6   | 82.8  | 0.6   | 0.6   | 0.7   | 0     | 0     | 0     | 0      | 0      | 0.7    | 0.6    | 0.6    | 0.6    |

Table 11Butyric acid concentration in each digester (mgC/L).

| Day | 0_a   | 0_b   | Na_a  | 0_c   | Na_b  | Na_c  | Ery_a | Ery_b | Ery_c | Met_a | Met_b | Met_c | 0z_a  | 0z_b | 0z_c  | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 87.6  | 95.4  | 128.1 | 100  | 122.2 | 123.2 | 129.1 | 129.7 | 0      | 0      | 0      | 122.3  | 133.8  | 184.6  |
| 6   | 0     | 167   | 109.9 | 257.9 | 0     | 0     | 403.8 | 448.6 | 384.7 | 0     | 20.7  | 45.1  | 152.7 | 56.5 | 118.4 | 0     | 0     | 0     | 414.8  | 378.8  | 380.2  | 159.4  | 0      | 269.3  |
| 13  | 243.4 | 257.7 | 306.7 | 315.9 | 342.4 | 325.4 | 407.9 | 435.8 | 336.6 | 197.8 | 257.5 | 337.6 | 0     | 0    | 0     | 113.5 | 122.4 | 127   | 66.1   | 73.4   | 68.1   | 0      | 0      | 0      |
| 20  | 84.3  | 102   | 112.3 | 196   | 247.8 | 188.4 | 214.9 | 248.9 | 107.1 | 81.6  | 99.7  | 75.8  | 0     | 0    | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| 27  | 0     | 0     | 21    | 60    | 60    | 62.2  | 26.4  | 25.2  | 0     | 0     | 25    | 38    | 0     | 0    | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| 34  | 0     | 0     | 0     | 0     | 0     | 0     | 51.8  | 53.8  | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| 41  | 0     | 0     | 0     | 0     | 0     | 0     | 7.6   | 29.7  | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| 48  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
|     |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |       |       |        |        |        |        |        |        |

 Table 12

 Total volatile fatty acids (VFAs) concentration in each digester (mgC/L).

| Da | y 0_a  | 0_b    | 0_c    | Na_a   | Na_b   | Na_c   | Ery_a  | Ery_b  | Ery_c  | Met_a  | Met_b  | Met_c  | 0z_a  | 0z_b  | 0z_c  | Naz_a | Naz_b | Naz_c | Eryz_a | Eryz_b | Eryz_c | Metz_a | Metz_b | Metz_c |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 0  | 125.4  | 103.8  | 110.8  | 148.1  | 75.5   | 67.1   | 123.7  | 135.1  | 72.9   | 127.9  | 190.4  | 209.5  | 230.5 | 180.7 | 214.7 | 154.2 | 196.7 | 166.3 | 148.7  | 127.8  | 142.6  | 186.3  | 201    | 225.3  |
| 6  | 483.4  | 707.7  | 643.6  | 262.5  | 51.2   | 30.8   | 935.8  | 846.6  | 823.3  | 520.2  | 488.5  | 499.4  | 645.7 | 501.3 | 599   | 46.4  | 81    | 10.1  | 862.7  | 864.7  | 802.6  | 652.1  | 573.9  | 878.2  |
| 13 | 1066.2 | 1100.7 | 1175.5 | 951.6  | 999    | 969.5  | 1061.7 | 1099   | 997.2  | 1102.2 | 1120.6 | 1154.4 | 371.9 | 456.4 | 512.8 | 632.6 | 724.1 | 762.9 | 750.7  | 709.6  | 774.5  | 520    | 637.6  | 399.4  |
| 20 | 1247.1 | 1192.6 | 1197.1 | 960.1  | 1013.5 | 899.2  | 1160.8 | 1184.8 | 1141.3 | 1110.7 | 1264   | 1047.7 | 0     | 10    | 45    | 193.1 | 290.4 | 302.1 | 324.9  | 181.8  | 333.5  | 32.3   | 160.1  | 0      |
| 27 | 1019.1 | 871.3  | 1119.6 | 1045   | 1102.5 | 1124.9 | 1282.4 | 1254   | 807.9  | 591.9  | 1223.1 | 1389.8 | 0     | 0     | 0     | 76.1  | 122.2 | 120.3 | 167.2  | 107.7  | 145    | 0      | 0      | 0      |
| 34 | 109.2  | 108.1  | 115.8  | 1017.3 | 1229.5 | 1049.7 | 1399.7 | 1312.6 | 290.2  | 64.2   | 109.4  | 1322.2 | 0     | 0     | 0     | 0     | 0     | 0     | 36.2   | 0      | 108    | 0      | 0      | 0      |
| 41 | 6      | 4.9    | 26.5   | 958.8  | 875    | 927.7  | 362.5  | 754.4  | 156.3  | 3.1    | 4      | 117.6  | 4.4   | 2.8   | 3     | 3.5   | 3.4   | 4.3   | 35.2   | 1.4    | 24.3   | 3.5    | 3.5    | 4.2    |
| 48 | 4.5    | 5.7    | 5.4    | 435.8  | 857.4  | 541    | 342.3  | 268.3  | 154.4  | 2.6    | 4.1    | 87.5   | 2.2   | 2.8   | 2.8   | 5     | 4.8   | 3.6   | 2.9    | 1.5    | 4      | 2.4    | 1.9    | 2.6    |



**Fig. 6.** Acetic acid, propionic acid, butyric acid, and total volatile fatty acids concentrations (mg of C/L) over time (number of days) for different conditions. The data used are mean values of the triplicate digesters, and standard deviations are indicated with error bars. Vertical lines represent the sampling dates.

the methanogenesis process (referred to as late degradation stage in the related research article). In addition, 4 samples taken on day 0 were analyzed to characterize the initial microbial community (inoculum). Details are provided in Table 1.

## 3. Experimental Design, Materials and Methods

#### 3.1. Experimental design and sampling

The batch anaerobic digesters used in the study were 1 L glass bottles with a working volume of 700 mL. Each bottle was inoculated with 5.7 g of methanogenic sludge and fed 12.7 g of food waste, reaching a substrate-to-inoculum ratio of 7.9 g COD/1.8 g COD. This ratio was chosen to prevent excessive gas production that might lead to the rupture of the bottles. The inoculum came from a 60 L laboratory anaerobic bioreactor regularly fed with food waste at 35 °C and was centrifuged at 10,000 g for 10 min before use. The food waste was obtained from the institute's restaurant containing 0.45 g COD/g. All food waste was finely ground using a grinder and stored at -20 °C before use. In the first series of 12 digesters, 20 g/L of sodium chloride (Acros Organics), 400 mg/L of erythromycin (Acros Organics), and 5 mg/L of S-metolachlor (Honeywell) were added in triplicate, with three control digesters without any inhibitors. A second series of another 12 digesters was set up precisely as the first, but 15 g/L of zeolite (Siliz 24(R), Somez company, France) was introduced as a support material, directly in the batch digesters. All digesters were sealed with rubber septa and caps. A short, flexible tube was inserted into the hole at the center of the rubber septum, above which was controlled by a valve that switched to open and close to collect the produced biogas. All digesters were incubated in the dark at 35 °C without agitation.

8 mL of liquid samples were collected from each digester weekly using a syringe of 10 mL through the septa. The samples were distributed into 2 mL Eppendorf tubes and centrifuged at 10,000 g for 10 min at 4 °C. The supernatant and pellet samples were stored at -20 °C before analyses. 7 mL of gas samples were taken every week from the headspace using a glass syringe and stored in vacuum tubes (BD Vacutainer dry tubes) at room temperature before the isotopic composition analysis.

## 3.2. Biodegradation performance monitoring

Gas production and composition were measured using a differential manometer (Digitron 2082P, Margam, UK) and a micro gas chromatograph (CP4900, Varian, Palo Alto, USA) respectively, as described in [3]. Volatile fatty acid concentrations were quantified using ionic chromatography (ICS 5000+, Thermo Fisher Scientific) with an IonPAC ICE-AS1 column, as described in [3]. Dissolved organic and inorganic carbon (DOC and DIC) were measured according to the French standard NF EN 1484 using a TOC-L CPN analyzer (Shimadzu). Isotopic fractionation of methane and carbon dioxide ( $\delta$ 13CH4 and  $\delta$ 13CO2) was measured with a Trace Gas Chromatograph Ultra (Thermo Scientific) connected to a Delta V Plus isotope ratio mass spectrometer (Thermo Scientific) via a combustion interface GC III (Thermo Scientific), to calculate apparent isotopic fractionation as described in [3].

## 3.3. DNA extraction, amplification and sequencing

The total DNA was extracted from the pellet samples using the DNeasy PowerSoilPro Isolation Kit (QIAGEN) with the QIAcube Instrument following the manufacturer's instructions. The concentration of extracted DNA was quantified with Qubit 2.0 fluorometer using dsDNA kit (Invitrogen), and the purity was checked with Epoch 2 Microplate Spectrophotometer (Agilent BioTek).

The extracted DNA was used to amplify the V4-V5 hypervariable region of the 16S rRNA genes of bacterial and archaeal populations. Briefly, the IonAmplicon Library Preparation (FusionMethod) Protocol, Revision C, was employed [4]. Amplicons were prepared using primers 515F (5'-GTGYCAGCMGCCGCGGTA-3') and 928R (5'-CCCCGYCAATTCMTTTRAGT-3'). The forward primer was modified by adding a PGM sequencing adaptor (adaptor A: 5'-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3') and a barcode (5'-adaptor A-Barcode-515F-3'). The reverse primer was modified with the addition of a PGM sequencing adaptor (adaptor trP1: 5'-CCTCTCTATGGGCAGTCGGTGAT-3') (5'-adaptor trP1-928R-3'). The V4-V5 region was amplified following the Platinum Pfx protocol (Life Technologies). PCR products were cleaned using the Agencourt AMPure XP magnetic beads purification system (Beckman Coulter). Automated electrophoresis (2200 TapeStation with D1000 ScreenTape, Agilent Technologies) was incorporated to verify the quantity and size of the amplicons. All libraries were pre-diluted to 500 pM in molecular-grade water and pooled equimolarly. The pooled library was then diluted to 26 pM and processed on the Ion OneTouch 2 Instrument using the Ion PGM Hi-O View OT2 Kit to prepare template-positive Ion Sphere Particles (ISPs) containing clonally amplified DNA by emulsion PCR. These templated ISPs were quantified and enriched on the Ion OneTouch ES according to the manufacturer's instructions.

Sequencing was performed on Ion Torrent PGM (Life Technologies) using Ion 316 V2 chips and the Ion PGM Hi-Q View Sequencing Kit following the manufacturer's instructions.

## 3.4. Sequence read processing

Upon completion of sequencing, the sequencing instrument generated DAT files containing the raw traces of electrical signals. These raw traces were converted into single numeric values for each flow per well, resulting in 1.wells files. The information in the 1.wells files was then transformed into a sequence of bases using the BaseCaller, producing unaligned BAM (Binary Sequence Alignment/Map) files. The BAM files were subsequently converted to FASTQ format using the FileExporter plugin. Finally, the data were processed with Torrent Suite software to filter out low-quality and polyclonal sequence reads, ultimately yielding high-quality data in FASTQ format.

## Limitations

The outcomes are influenced by the type of sludge used to inoculate the digesters and may vary if a different inoculum is employed. Likewise, the composition of the waste introduced into the digesters also affects the results.

## **Ethics Statement**

The authors have read and follow the ethical requirements for publication in Data in Brief and confirm that the current work does not involve human subjects, animal experiments, or any data collected from social media platforms.

## Data availability

16S rRNA gene sequencing data (Original data) (ENA).

## **CRediT Author Statement**

Xiaoqing Wang: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Visualization, Writing – original draft; Vincent Dürr: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Validation; Angéline Guenne: Investigation, Data curation; Nadine Derlet: Investigation, Data curation; Chrystelle Bureau: Investigation, Data curation; Elodie Gittard: Investigation, Data curation; Laurent Mazéas: Supervision; Olivier Chapleur: Conceptualization, Methodology, Writing – review & editing, Supervision, Project administration, Funding acquisition.

#### Acknowledgements

This work was conducted as part of the STABILICS project supported by the National Research Agency (ANR-19-CE43-0003). Xiaoqing Wang's PhD fellowship was funded by the China Scholarship Council (CSC). The funders had no role in study design, data collection and analysis, publication decision, or manuscript preparation.

## **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### References

- X. Wang, V. Dürr, A. Guenne, L. Mazéas, O. Chapleur, Generic role of zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions: insights from degradation performance and microbial characteristics, J. Environ. Manag. 356 (2024) 120676, doi:10.1016/j.jenvman.2024.120676.
- [2] Generic role of zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions: insights from degradation performance and microbial characteristics, ENA, PRJEB65129, https://www.ebi.ac.uk/ena/browser/view/ PRJEB65129
- [3] L. Cardona, C. Levrard, A. Guenne, O. Chapleur, L. Mazéas, Co-digestion of wastewater sludge: choosing the optimal blend, Waste Manag. 87 (2019) 772–781.
- [4] C. Madigou, K. Lê Cao, C. Bureau, L. Mazéas, S. Déjean, O. Chapleur, Ecological consequences of abrupt temperature changes in anaerobic digesters, Chem. Eng. J. 361 (2019) 266–277.
- [5] S.D. Campuzano Zagal, et al., A comprehensive dataset for assessing the impact of ammonium salts and zeolite on anaerobic digestion performance, microbial dynamics, and metabolomic profiles, Data Br. 54 (2024) 110357.
- [6] S. Poirier, O. Chapleur, Influence of support media supplementation to reduce the inhibition of anaerobic digestion by phenol and ammonia: effect on degradation performances and microbial dynamics, Data Br. 19 (2018) 1733–1754.
- [7] S. Poirier, O. Chapleur, Inhibition of anaerobic digestion by phenol and ammonia: effect on degradation performances and microbial dynamics, Data Br. 19 (2018) 2235–2239.
- [8] E. Nordell, A.B. Hansson, M. Karlsson, Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids, Waste Manag. 33 (2013) 2659–2663.
- [9] L. Cardona, L. Mazéas, O. Chapleur, Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress, Chemosphere 262 (2021) 127932.
- [10] S. Poirier, S. Déjean, O. Chapleur, Support media can steer methanogenesis in the presence of phenol through biotic and abiotic effects, Water Res. 140 (2018) 24–33.
- [11] R. Conrad, Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Org. Geochem. 36 (2005) 739–752.