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INTRODUCTION

Autism spectrum disorder (ASD) is commonly described
as a complex neurodevelopmental disorder that seriously

| Sijie Niu'?* | LiWang'

Abstract

Autism, or autism spectrum disorder (ASD), is a developmental disability that is
diagnosed at about 2 years of age based on abnormal behaviors. Existing
neuroimaging-based methods for the prediction of ASD typically focus on func-
tional magnetic resonance imaging (fMRI); however, most of these fMRI-based
studies include subjects older than 5 years of age. Due to challenges in the applica-
tion of fMRI for infants, structural magnetic resonance imaging (sMRI) has
increasingly received attention in the field for early status prediction of ASD. In this
study, we propose an automated prediction framework based on infant sMRI at
about 24 months of age. Specifically, by leveraging an infant-dedicated pipeline,
iIBEAT V2.0 Cloud, we derived segmentation and parcellation maps from infant
sMRI. We employed a convolutional neural network to extract features from
pairwise maps and a Siamese network to distinguish whether paired subjects were
from the same or different classes. As compared to T1w imaging without segmenta-
tion and parcellation maps, our proposed approach with segmentation and
parcellation maps yielded greater sensitivity, specificity, and accuracy of ASD pre-
diction, which was validated using two datasets with different imaging protocols/
scanners and was confirmed by receiver operating characteristic analysis. Further-
more, comparison with state-of-the-art methods demonstrated the superior effec-
tiveness and robustness of the proposed method. Finally, attention maps were
generated to identify subject-specific autism effects, supporting the reasonability of
the predictive results. Collectively, these findings demonstrate the utility of our uni-
fied framework for the early-stage status prediction of ASD by sMRI.

Lay Summary

The status prediction of autism spectrum disorder (ASD) at an early age is highly desir-
able, as early intervention may significantly reduce autism symptoms. However, current
methods for diagnosing young children are limited to behavioral assays. In this study,
we propose an automated method for ASD status prediction at the age of 24 months
that uses infant structural magnetic resonance imaging to identify neural features.

KEYWORDS
autism Spectrum disorder (ASD), deep learning algorithm, early-stage status prediction, infant
structural MRI, subject-specific autism attention

damages the sociality and communication ability of
patients. In particular, individuals diagnosed with ASD
struggle with communication and language. A recent
report from Centers for Disease Control and Prevention
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(Maenner et al., 2020) indicates that 1 in 54 children aged
8 years has been diagnosed with ASD in the
United States, with 4.3 times higher ASD prevalence
among boys than girls (29.7% vs. 6.9%). Diagnosis of
ASD at an early age is highly desirable, as early interven-
tion may significantly reduce autism symptoms
(Dillenburger, 2014). However, early diagnosis is chal-
lenging because of the lack of biomarkers to detect chil-
dren either with or at-risk of autism during the first
postnatal years of life. Diagnosis currently relies on
behavioral observations that arise after birth; conse-
quently, autism is not typically diagnosed until about
2 years of age in the U.S. (Pierce et al., 2019), when the
window of opportunity for effective intervention may
have already passed (Committee on Educational Inter-
ventions for Children with Autism; Board on
Behavioral, 2001). Thus, in order to accelerate ASD diag-
nosis, it is of great importance to identify imaging-based
biomarkers for early diagnosis and intervention that are
independent of behavioral diagnostic symptoms of
autism.

Recently, neuroimaging technology has been widely
employed in the field of brain disease analysis for condi-
tions such as ASD (Fortin et al.,, 2018; Li Wang
et al., 2018) and Alzheimer’s disease (Lian et al., 2019;
Liu et al., 2020). There are several commonly used
modalities for the study of brain diseases, including struc-
tural magnetic resonance imaging (sMRI), functional
MRI (fMRI), positron emission tomography (PET), and
diffusion tensor imaging (DTI). Researchers have lever-
aged characteristics of these modalities to explore
changes in brain function or structure related to brain
diseases. For instance, Saeed et al. (2019) proposed ASD-
DiagNet to classify subjects as ASD or normal control
(NC) using fMRI from subjects over 10 years of age.
Furthermore, Chen et al. utilized whole brain functional
connectivity networks from fMRI data as features to
classify subjects (12-18 years old) as ASD or NC (Chen
et al., 2016). By exploring the amygdala-centered func-
tional connectivity during explicit and implicit threat
processing, Chen et al. (2021) trained a linear kernel sup-
port vector machine (SVM) classifier to predict diagnos-
tic value of ASD. However, most of these fMRI-based
studies have focused on subjects older than 5 years of
age. The application of fMRI for infants poses chal-
lenges: (1) the imaging time of fMRI is relatively long,
for example, 40-55 min (Yale-Medicine, 2021); (2) for
infants, it is difficult to acquire fMRI data during a rest-
ing stage; and (3) the existing fMRI protocols are mainly
based on adult cohorts and cannot be easily adapted and
applied to infants (Zhang et al., 2019). By contrast, sMRI
has the following advantages: (1) it is faster, for example,
20-30 min (Yale-Medicine, 2021) and thus more reliable
than fMRI; and (2) there are many sSMRI imaging proto-
cols specifically designed for infants, for example, BCP
(Howell et al., 2019) and dHCP (Makropoulos
et al., 2018). Therefore, sMRI-based approaches have

increasingly received attention in the field of early status
ASD prediction. For example, based on the ratio of
extra-axial cerebrospinal fluid (CSF) volume to total
cerebral volume, Shen et al (2013) predefined a threshold
to distinguish ASD subjects from the NC group at the
age of 12-15 months. Furthermore, by combining extra-
axial CSF volume, brain volume, age, and sex, Shen
et al. (2018) constructed a RUSBoost classifier to predict
subjects as ASD or NC at 2-4 years of age based on
sMRI. In addition, Hazlett et al. (2017) investigated
abnormal early brain changes, such as hyper expansion
of the cortical surface area and overgrowth of the total
brain volume to distinguish ASD using infant sMRI.
Leveraging the ASD-related landmarks detected by a
landmark discovery algorithm (Zhang et al., 2016), Li
et al. (2018) proposed a multi-channel convolutional neu-
ral network (CNN) based on sMRI at the age of
24 months for ASD prediction. Additionally, Xiao
et al (2017) employed a random forest classifier and uti-
lized the regional average cortical thickness feature for
ASD prediction. Similarly, Conti et al. (2020) constructed
a linear-kernel SVM to explore possible ASD-specific
brain structural features, concluding that a set of cortical
thickness features can achieve the best predictive perfor-
mance. Previous studies indicate that autistic subjects
show volume differences compared with typically devel-
oping subjects, such as smaller cerebellum volume
(Rogers et al., 2013; Stoodley, 2014), larger amygdala
volume (Nordahl et al., 2020), or larger hippocampus
volume (Xu et al., 2020). These studies are unique in
identification of early biomarkers from sMRI, encourag-
ing further study to explore the relationship between
ASD and sMRI modality. However, prior investigation
based on SMRI has the following key limitations: (1) pre-
vious studies have always selected/extracted features from
intensity MRIs, ignoring potential meaningful features
for ASD prediction that could be identified from segmen-
tation and parcellation maps, such as the volume of spe-
cific brain structures (Nordahl et al., 2020; Rogers
et al., 2013); (2) most of the previous work has relied on
predefined biomarkers/landmarks, which are isolated to
subsequent learning-based approaches and may lead to
suboptimal predictive performance; and (3) the generali-
zation ability of previous work may suffer from data var-
iability related to different imaging protocols/scanners
(Fortin et al., 2017; Fortin et al., 2018). We hypothesize
that improved approaches could identify more reliable
imaging-based biomarkers from sMRI and potentially
increase the robustness of sSMRI-based ASD prediction.
In this study, to alleviate the limitations and improve
early diagnosis of ASD, we developed an end-to-end
data-driven automated method for ASD status prediction
at the age of 24 months based on sMRI. Instead of rely-
ing on intensity images directly (e.g., TIw images), we
employed segmentation and parcellation mapping to alle-
viate inter-site data heterogeneity. In addition, given the
different developmental patterns between males and
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females (Postorino et al., 2015), we integrated sex infor-
mation into our model. Specifically, we used a CNN to
extract features from segmentation and parcellation
maps, followed by a subject-specific autism attention
module to identify regions related to ASD. Finally, we
employed a Siamese network (Chopra et al., 2005) to cal-
culate the contrastive loss based on distances between
pairwise inputs (as defined by the data class), selected to
circumvent class-imbalance issues. Herein, we present an
overview of our method, including a dataset with
preprocessing steps, experimental implementation, and
details of the training and testing stages, as well as the
results of ablation studies and comparisons with state-of-
the-art methods. Notably, the results of cross-site experi-
mentation confirm the stable generalization ability of the
proposed approach. In addition to quantitative analyses
to evaluate the discriminative ability of our approach, we
present an attention map generated by our method to
improve the reasonability of the prediction. These results
verify the feasibility of this method for use as a quantita-
tive early predictive tool for ASD that has potential util-
ity independent of behavioral observation.

METHODS
Overview of the study design

Figure 1 illustrates the overall framework for our study.
Intensity inhomogeneity correction, skull stripping, seg-
mentation and parcellation were applied sequentially to
original raw intensity images, leveraging the publicly
available software iBEAT V2.0 Cloud (http://www.ibeat.
cloud/). The iBEAT V2.0 Cloud has successfully
processed more than 12,400+ infant brain images with
different protocols and scanners from 90+ institutions.
The segmentation and parcellation maps were used as
input for the deep learning-based predictive model

(including informative feature- and attention-guided Sia-
mese networks). Specifically, a Siamese network was used
as the main architecture to achieve early-status prediction
of ASD. It should be noted that the Siamese network is
one of the deep neural networks, but it is different from
traditional CNNs: the Siamese network is used to find
the similarity or dissimilarity of pairwise subjects by com-
paring their feature vectors, whereas traditional CNNs
directly classify a single subject as a specific category.
Additional definition of terms is provided in Table S1.
Our framework included parallel paths for the training
and testing phases. In the training phase, pairwise input
that was randomly selected from the training set was fed
into the network to optimize the weights of the model; in
the testing phase, the mean distance between a given test-
ing subject and all training subjects was calculated to dis-
tinguish whether the testing subject was from the ASD or
NC group.

The details of our informative feature- and attention-
guided Siamese network are shown in Figure 2. There are
three components in this network: the feature extraction
(FE) and fusion module, the subject-specific autism
attention module, and the Siamese distinguishing mod-
ule. Conventional methods directly utilize intensity
images or features/biomarkers extracted from intensity
images for the ASD screening; these parameters are
affected by high level inter-site data heterogeneity caused
by different imaging protocols/scanners. Therefore,
instead of directly relying on image intensity, segmenta-
tion and parcellation maps were employed for the predic-
tion of ASD. The infant-dedicated pipeline, iBEAT V2.0
Cloud, employs site-independent prior knowledge,
including an anatomy-guided CNN for segmentation/
parcellation. After segmentation and parcellation, a
CNN was employed to extract features from the segmen-
tation and parcellation maps. The extracted features were
further concatenated and fused. Subsequently, a subject-
specific autism attention module was used to identify
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§ 777777 Intensity % Pairwise Contrastive
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FIGURE 1 Overview of the study framework. Parallel paths were used to process raw data from a training set and a testing set from iBEAT
V2.0 Cloud. After optimization with the training set, the testing set was used to distinguish autism spectrum disorder and normal control groups
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FIGURE 2 The pipeline of the deep learning method for automatic autism spectrum disorder (ASD) diagnosis. (a) Segmentation and
parcellation maps were obtained from iBEAT V2.0 and applied as parallel attention paths. (b) Convolutional neural network was used for feature
extraction and fusion; (c) Subject-specific autism attention module was used to identify ASD-associated features; (d) Siamese classifier was used to
integrate sex information and develop a matrix for calculating the contrastive loss

regions related to ASD, followed by integration of sex
information. Finally, a Siamese network was deployed to
determine whether pairwise subjects were from the same
or different classes. More details about each of the three
modules are provided below.

Feature extraction and fusion module

Two CNNs were employed to separately extract features
from the segmentation and parcellation maps. Notably,
the feature extractors for the segmentation and
parcellation maps have identical structures but different
weights. In this way, the network is encouraged to learn
different features from the two maps. Next, the extracted
features were combined and further fused through three
convolutional layers. All convolutional layers used
3 x 3 x 3 kernels with zero padding, followed by batch
normalization and rectified linear unit activation. The
strider of the extraction layer (marked as blue rectangles)
was set as 1, while that of down sampling (marked as yel-
low rectangles) was set as 2 to enlarge the receptive field
and alleviate information loss. To minimize the number
of channels, the channel numbers of the last layer in the
FE and fusion module were set as 32 and
128, respectively.

Subject-specific autism attention module

The first FE and fusion module provides features
extracted from the segmentation and parcellation maps
for subsequent tasks. However, some features may be
redundant for the prediction task. Thus, based on the
method of Hu et al. (2020), a subject-specific autism
attention module was employed to identify regions

associated with ASD in an end-to-end manner. More spe-
cifically, the pairwise inputs (i.e., subject #1 and subject
#2) were separately fed into two parallel attention paths.
Each attention path consisted of a squeeze and excitation
(SE) block (Hu et al., 2020) and a channel-wise mean,
where the SE block was used to weight all features and
the channel-wise mean generated the attention map for
each subject. After the subject-specific autism attention
module, sex information was concatenated with the fea-
tures. Similar to the FE block, the two parallel paths of
the subject-specific autism attention module had the same
structure but different weights.

Siamese distinguishing module

Currently, most CAD systems for ASD prediction rely
on traditional classifiers, such as random forest (Katuwal
et al., 2018; Mostapha et al., 2015) and CNN (Fortin
et al., 2018; Saeed et al., 2019) classifiers. These models
usually directly classify the subjects as ASD or NC,
rather than considering the distance between intra-class
and inter-class variation. Instead, the Siamese network
was employed to construct a relationship matrix and cal-
culate the distance between ASD and NC using contras-
tive loss; thus, distances among the same class should be
small while distances between different classes should be
large. The contrastive loss was formulated as shown in
Equation 1,

L=(1-Y)(D)*+
Y{max(0,m— D)}*,D=| Gy(x1) — Gy(x2)| (1)

where x; and x; indicate the features from subject #1 and
subject #2 respectively, Gy represents the Siamese
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network, Y is the binary label of the pairwise inputs
(Y =0 if the inputs are from the same class and Y =1
otherwise), D is the distance between the outputs Gy (x;)
and Gy(x,), and m is the margin value, which is non-
negative and indicates the maximum contribution to the
final loss.

Similar to the subject-specific autism attention mod-
ule, the Siamese distinguishing module was composed of
two parallel paths corresponding to pairwise inputs
(i.e., subject #1 and subject #2, Figure 2). Each path of
the Siamese network included five fully connected layers,
followed by batch normalization and rectified linear unit
activation. There are two advantages of the Siamese net-
work compared with traditional CNNs. First, training
samples are enlarged for the Siamese network, as any
unique pairwise samples in the training set are meaning-
ful for the Siamese network. Second, the testing phase of
the Siamese network can be viewed as an ensemble sys-
tem, which may improve the accuracy of the prediction.

Our informative feature- and attention-guided ASD
prediction model was implemented in a single NVIDIA
GTX TITAN (12GB) GPU by the PyTorch framework.
In the training stage, the minibatch size was set as
2 (pairwise input) and 0.4 dropout was applied to each
fully connected layer in the Siamese network. Contrastive
loss and stochastic gradient descent with momentum
were used to optimize the weights of the model, where
the learning rate was initialized as le—3 with the cosine
annealing decay. In the testing stage, the distance
between the testing subject and each training subject was
calculated to distinguish whether they were from the
same class or different classes, and the mean distance
between the testing subject and all training subjects was
used as the result.

RESULTS

Models trained on one dataset with a set of
specific imaging parameters perform poorly at
other datasets with different imaging parameters

To evaluate the potential of infant SsMRI to be used as a
predictive method for ASD, we used two datasets that
were acquired by different scanners and imaging proto-
cols, as detailed in Table 1. They are available in the
National Database for Autism Research (NDAR)

(https://nda.nih.gov). Specifically, dataset A consists of
247 subjects from the Infant Brain Imaging Study (IBIS)
network (https://ibis-network.com) (Hazlett et al., 2017),
and dataset B consists of 35 subjects from the Autism
Centers of Excellence (ACE) (Hall et al., 2012). All
images were scanned from infants at about 24 months of
age without significant difference between the ages of the
ASD and NC groups (p-value >0.05). For both datasets
A and B, the infants were naturally sleeping with ear and
head protection when the images were acquired. Table 1
shows that there were large differences between the two
datasets in terms of scanners and imaging parameters,
resulting in different image contrasts/appearances/pat-
terns, as shown in Figure 3. These results emphasize that
models trained on one dataset with a set of specific imag-
ing parameters tend to perform poorly for other datasets
with different imaging parameters (protocols/scanners),
which is consistent with previous observations (Sun
et al., 2021).

Segmentation and parcellation maps improve the
robustness of the model for structural magnetic
resonance imaging neurological image
interpretation

Given the poor cross-institutional resolution of neural
images trained at a single site, we sought to develop a
unified framework that can be used across different sites.
All intensity images were preprocessed using intensity
inhomogeneity correction, skull stripping, segmentation
and parcellation, leveraging the publicly available soft-
ware iIBEAT V2.0 Cloud (http://www.ibeat.cloud). Each
infant brain image was segmented into three tissues
(i.e., white matter, gray matter, and cerebrospinal fluid)
and parcellated into 151 ROIs (133 ROIs in cerebrum
and 18 ROIs in cerebellum). All segmentation and
parcellation maps were linearly aligned to the infant atlas
(Shi et al., 2011) by the FLIRT method (Jenkinson
et al., 2002) and further cropped to an identical size to
facilitate the subsequent learning stage.

We first used a 10-fold cross-validation strategy for
dataset A to evaluate the performance of our model on a
single dataset. For each fold, nine-tenths of ASD subjects
and nine-tenths of NC subjects were used as a training
set, while the remaining cases were used as the testing set.
We compare the performance in terms of different

TABLE 1 Detailed information on the datasets used in our work
Category Number Sex (M/F) Age (months) Scanner TRITE (ms) Resolution (mm®)
Dataset A ASD 52 41/11 24.1 +£0.73 Siemens (3T) 2400/3.16 1.0 x 1.0 x 1.0
NC 195 109/86 24.3 +0.89
Dataset B ASD 22 18/4 25.1+£1.59 GE (3T) 6.496/2.796 0.9375 x 0.9375 x 0.9375
NC 13 4/9 24.6 £ 1.94
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FIGURE 3 Large inter-site data
heterogeneity for two infant subjects
acquired by different scanners. The left
subject from the Infant Brain Imaging
Study network was acquired by a Siemens
3T scanner, whereas the right subject
from Autism Centers of Excellence was
acquired by a GE 3T scanner. The large
inter-site data heterogeneity limits the
application of models trained on a dataset
with a set of specific imaging parameters
to other datasets with different imaging
parameters (protocols/scanners)
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FIGURE 4 Assessment of different combinations of T1w images, segmentation, and parcellation maps. The methods, each of which was trained
on dataset A, were evaluated in terms of sensitivity (SEN), specificity (SPE), and accuracy (ACC). The metric shows the performance of the model
trained with T1w intensity images (the first bars), a combination of intensity images, segmentation and parcellation maps (the second bars), and the

proposed segmentation + parcellation maps (the third bars)

combinations of Tlw images, segmentation maps, and
parcellation maps on dataset A, as shown in Figure 4.
The predictive performance was quantitatively evaluated
by three criteria: sensitivity (SEN), specificity (SPE), and
accuracy (ACC). The results demonstrate that training
the model with only Tlw images yielded 76.9% SEN,
81.5% SPE, and 80.6% ACC. With a combination of
Tlw images, segmentation and parcellation maps (the
second bar for each metric), there was about 4% improve-
ment in terms of SEN and more than 6% improvement in
terms of SPE and ACC, indicating that the segmentation
and parcellation maps are useful for distinguishing ASD
from NC subjects. Furthermore, when the model was
trained only with the proposed segmentation
+ parcellation maps (the last bar for each metric), more
than 9% improvement was achieved in terms of SEN,
SPE, and ACC. These results suggest that our method of
using segmentation + parcellation maps improves the
predictive performance of SMRI neurological images.
The utility of intensity images is limited because they
are often corrupted by imaging noise and artifacts (Wang
et al., 2019). Moreover, if test subjects are acquired with
different imaging protocols/scanners, the large inter-site
data heterogeneity presented in the intensity images

further degrades the performance. Therefore, to further
evaluate the effect of segmentation and parcellation in
improving the clarity of sMRI images from different
sources, we examined representative individual images
acquired at different sites. As shown in Figure 5 (the first
column), the varying noise and artifacts (e.g., motion and
Gibbs) across different subjects (from dataset A) confuse
the classifiers and affect the predictive performance.
Compared with the intensity images, the segmentation
and parcellation maps generated by iBEAT V2.0 Cloud
with the guidance of prior anatomy knowledge minimize
these artifacts (the second and third columns). Therefore,
these results suggest that the proposed segmentation
+ parcellation method minimizes potential artifacts cau-
sed by inter-site variability.

Integration of sex information improves the
predictive ability of the proposed infant
structural magnetic resonance imaging
interpretation method

After the first case of autism described in the 1940s, a
skewed sex ratio was demonstrated, indicating that
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Subject 1

Subject 2

Subject 3

Segmentation

Parcellation

FIGURE 5 TIlwimages, segmentation maps, and parcellations maps for three representative subjects from dataset A. The first column is the
T1w images affected by imaging noise and Gibbs artifacts. The second and third columns are the segmentation map and parcellation map,
respectively. The images in the last two columns were generated by iBEAT V2.0 cloud with the guidance of prior anatomy knowledge

autism is significantly more common in boys than girls
(Anello et al., 2009; Lai & Szatmari, 2020; Mottron
et al., 2015). Recent research (Fortin et al., 2018; Shen
et al., 2018) further indicates that sex information should
be factored into the analysis of autism. Therefore, we
explored how sex information affects our predictive
model. Sex information for the images was combined
with the features extracted from segmentation and
parcellation maps and was used as the input in a Siamese
network for the final decision. Table 2 shows the results
of experiments on dataset A with 10-fold cross-valida-
tion. The model trained without the sex information
achieved 84.6%, 90.3%, and 89.1% in terms of SEN,
SPE, and ACC; integration of the sex information
improved the predictive performance of our model, with
increases of 1.9% (to 86.5%) for SEN, 2.5% (to 92.8%)
for SPE, and 2.4% (to 91.5%) for ACC. To further evalu-
ate the robustness of our method, we applied the model
trained on dataset A to dataset B. As shown in Table 3
on dataset B, when trained with the sex information, the
proposed model showed a similar improvement in gener-
alization compared with the model trained without the
sex information. These findings indicate that sex informa-
tion improves the predictability of our approach.

To further examine the predictability of this method,
we performed receiver operating characteristic curve
(ROC) and area under the ROC curve (AUC) analyses
(Figure 6). For dataset A, the model trained without the
sex information (green) had an AUC of 87%; however,
the model trained with the sex information (orange) rev-
ealed improvement in both the predictive performance
and the discrimination capacity for distinguishing
between ASD and NC (AUC 91%). Similarly, for
dataset B, our model trained with the sex information
performed better than the model without the sex

TABLE 2 Comparison of the sensitivity (SEN), specificity (SPE)
and accuracy (ACC) for the analysis of dataset A without/with the sex
information

SEN SPE ACC
Proposed method without sex 0.846 0.903 0.891
Proposed method with sex 0.865 0.928 0.915

TABLE 3 Comparison of the sensitivity (SEN), specificity (SPE)
and accuracy (ACC) for the analysis of dataset B without/with the sex
information

SEN SPE ACC
Proposed method without sex 0.727 0.923 0.800
Proposed method with sex 0.818 0.846 0.829

information, though the difference was comparatively
less for this dataset (AUC 86% versus 85%). These results
verify that sex information is useful for qualifying the
screening of ASD and NC subjects.

The proposed approach for infant structural
magnetic resonance imaging outperforms other
state-of-the-art methods

To further evaluate the utility of the proposed method,
we directly compared it with two state-of-the-art
methods: the EA-CSF method (Shen et al., 2013) and the
EA-CSF-BAS method (Shen et al., 2018). The former
method utilizes predefined landmarks/biomarkers, that
is, the ratio of extra-axial cerebrospinal volume to whole
brain volume, to distinguish ASD and NC groups; while
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FIGURE 6 Receiver operating characteristic curves for datasets A and B with/without the sex information. Green lines represent models trained
without sex information, and orange lines represent models trained with sex information. (a) Was generated by 10-fold experimental cross-validation
of dataset A, while (b) was generated by applying the model trained on dataset A to dataset B directly

TABLE 4 Comparison of the proposed method with state-of-the-art methods for datasets A and B. “()” represents the p-value in comparison with

the proposed method
Dataset A Dataset B
SEN SPE ACC SEN SPE ACC
EA-CSF (Shen et al., 2013) 0.731 (0.0017) 0.759 (0.0012) 0.753 (0.0023) 0.636 (0.0042) 0.538 (0.0001) 0.600 (0.0014)
EA-CSF-BAS (Shen et al., 2018) 0.788 (0.013) 0.815 (0.0059) 0.810 (0.03) 0.773 (0.37) 0.538 (0.0001) 0.686 (0.0027)
Proposed method 0.865 0.928 0.915 0.818 0.846 0.829

the latter method considers additional factors, such as
age and sex. We implemented these two methods on
dataset A by the same 10-fold cross-validation as for our
method. For the EA-CSF method, we calculated the
ratio of extra-axial fluid to total cerebral volume (fluid:
brain) for each subject to determine which threshold best
predicted ASD. Similar to the results of Shen
et al. (2013), we determined that the ratio of fluid to
brain (0.14) obtained a peak sensitivity of 73.1% and a
peak specificity of 75.9% (Table 4, the first row). For the
EA-CSF-BAS method, we implement the RUSBoost
classifier using the RUSBoostClassifier package in
PyTorch. For optimal performance, the number of esti-
mators was set at 500, the learning rate was set at 1.0,
and the algorithm was set at SAMMER. The perfor-
mance in terms of SEN, SPE, and ACC was slightly
higher than that of the EA-CSF method (Table 4, the sec-
ond row). However, our proposed method performed
better than either of the other methods, achieving more
than 10% improvement in terms of the SPE and ACC for
dataset A (Table 4, the third row). A similar improve-
ment in performance was observed for dataset B,

although this dataset showed poorer performance across
the board (Table 4). Thus, these findings verify the supe-
rior robustness of our method relative to other state-of-
the-art methods.

Attention mapping of infant structural magnetic
resonance imaging images supports known
mechanisms of autism spectrum disorder

To further evaluate our method and explore the ROIs
related to ASD, we generated attention maps using a
subject-specific autism attention module (Figure 7). The
amygdala, hippocampus, and cerebellum were
highlighted by our method, which is consistent with the
results of previous studies (Nordahl et al., 2020;Rogers
et al., 2013; Stoodley, 2014). Specifically, abnormalities
of cerebellar function are known to result in specific
symptoms of ASD, such as deficits in cognitive and
motor behavior (Rogers et al., 2013; Stoodley, 2014).
Moreover, the amygdala and hippocampus have been
shown to differ between people with and without ASD,
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FIGURE 7 Attention maps generated by the proposed method. The amygdala, hippocampus, and cerebellum were identified by our method as
abnormal regions associated with autism spectrum disorder, shown in the first and second rows respectively. In the right panels, red and blue indicate

high and low discriminative power, respectively

with a smaller amygdala (Nordahl et al., 2020) or
enlarged hippocampus (Xu et al., 2020) being characteris-
tic of ASD. These results further support our method for
infant SMRI interpretation, thus verifying the reliability
of the proposed method.

DISCUSSION

In this study, we evaluated a novel method for infant
sMRI interpretation based on segmentation and
parcellation maps using two datasets. For the ablation
study, we first explored different combinations of T1w,
segmentation mapping, and parcellation mapping. The
results indicate that models trained with segmentation
and parcellation maps perform better than the model
trained with intensity images. Given the different devel-
opmental patterns between males and females, we further
evaluated the effect of integrating sex information into
our study. The model showed better performance when
trained with the sex information, indicating that sex
information is a vital factor in the study of autism. We
generated ROC curves to further evaluate the perfor-
mance, which verified that the model was more stable
when trained with the sex information, with improve-
ments of 4% and 1% in terms of the AUC for dataset A
and dataset B, respectively.

As further verification, we compared our method with
other state-of-the-art methods. The results indicate the
effectiveness of our method, which accurately predicted
more subjects for both the ASD and NC groups, with
higher SPE/SEN/ACC values. It should be noted that
these competing methods are based on predefined land-
marks/biomarkers. Such predefined markers may lead to
suboptimal predictive performance due to the isolation
between FE and the final decision. In contrast, our
method is performed in a fully automated and end-to-end

manner. Furthermore, the pairwise training strategy of
the Siamese network can better establish the relationship
between ASD and NC with a relatively small number of
subjects. Therefore, based on these advantages, our
method has greater potential to achieve better perfor-
mance compared with prior approaches. Results of the
trained models on dataset B support these findings and
further demonstrate the robustness of the proposed
method, indicating that the proposed framework may
have broader applicability for the clinical diagnosis
of ASD.

In addition to quantitative analysis, attention maps
are useful in identifying regions related to ASD. We gen-
erated an attention map using a subject-specific module
and identified three regions associated with ASD as
highlighted by the proposed method, including the amyg-
dala, hippocampus, and cerebellum, which is consistent
with the results of previous studies (Nordahl et al., 2020;
Rogers et al., 2013; Stoodley, 2014; Xu et al., 2020).
Compared with the EA-CSF method (Shen et al., 2013)
and EA-CSF-BAS method (Shen et al., 2018), each of
which employs predefined biomarkers, the attention map
captured by our proposed method provides data-driven
ROI identification, indicating the reasonability of the
predictive result.

Despite the promising results presented in this study,
our method has a number of potential limitations.
Chiefly, our approach depends upon a public infant
processing pipeline iBEAT V2.0 Cloud. In our study, the
segmentation and parcellation performed by the iBEAT
V2.0 Cloud improve the robustness of the predictive
model on multi-site datasets acquired by different proto-
cols/scanners. Specifically, histogram matching is firstly
employed before performing tissue segmentation in the
iIBEAT V2.0 Cloud, then an anatomy prior guided CNN
is applied for segmentation/parcellation. The anatomy
prior, for example, cortical thickness is within a certain
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range, is site-independent and thus makes the iBEAT
V2.0 Cloud robust with multi-site infant MRI data. Fur-
thermore, our work ignores specific features of the corti-
cal surface that precisely quantify early brain
development, for example, mean curvature, sulcal depth,
local gyrification, cortical thickness, surface area, and
deep sulcal landmarks, as well as their hemispheric asym-
metry and covariance networks. Integration of these
surface-based characterizations could further improve the
autism predictive performance. Another limitation is that
we only explore sex information its relation to ASD in
this study, we did not investigate other potentially rele-
vant information, such as intelligence quotients
(Yankowitz et al., 2020), ages (Shen et al., 2018), or other
non-imaging parameters. As an additional limitation, the
proposed method has only been validated on a small
number of 24-month-old subjects.

Though we demonstrated that the segmentation and
parcellation performed by the iBEAT V2.0 Cloud
improved the robustness of the predictive model for
multi-site datasets acquired by different protocols/scan-
ners, integration of a data harmonization technique, such
as ComBat (Fortin et al., 2017; Fortin et al., 2018), into
the iBEAT V2.0 Cloud might further improve its perfor-
mance. Our future work will be dedicated to further
improving our approach by dealing with multi-site data
heterogeneity in an end-to-end manner using Generative
Adversarial Networks (Goodfellow et al., 2020), which
can transform multiple distributions from multi-site
datasets to the same distribution for additional benefit in
the subsequent processing and learning. Future work will
also include integrating more surface-based characteriza-
tions, intelligence quotients, ages and other non-imaging
parameters into the framework for early-stage status pre-
diction. It would also be useful to explore relationships
between the areas highlighted in attention mapping and
their correlations with ASD. For example, we observed
that the amygdala and hippocampus hold more specific
information than other structures for predicting ASD,
which indicates that it may be worth exploring the rela-
tionship between these two regions relating to autism;
such relationships may serve as additional potential
markers for early detection of ASD. Future efforts by
our group will be targeted toward extending our methods
to subjects less than 24 months of age, such as 6 months
old, which is a meaningful age from a clinical perspective,
and will include more subjects from different scanners/
protocols to validate the robustness of the method.

In conclusion, the proposed method can be used to
distinguish early-stage ASD and NC subjects with multi-
ple scanners/protocols. With image processing by iBEAT
V2.0 Cloud, this method can directly and automatically
predict the status of a given subject by using
corresponding segmentation and parcellation maps.
Compared with previous methods, the proposed method
does not rely upon predefined landmarks/biomarkers,
which increases its efficiency and effectiveness.

Furthermore, results from attention mapping were con-
sistent with known effects of ASD, thus supporting the
prediction ability of the method. While the proposed
method has many benefits that suggest high potential for
clinical applicability, including enhanced discrimination
ability with favorable SPE/SEN/ACC, future refinement
efforts may further improve its performance.
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