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Abstract
Background  Colorectal cancer is a malignant tumor of the digestive system originating from abnormal cell proliferation 
in the colon or rectum, often leading to gastrointestinal symptoms and severe health issues. Nucleotide metabolism, which 
encompasses the synthesis of DNA and RNA, is a pivotal cellular biochemical process that significantly impacts both the 
progression and therapeutic strategies of colorectal cancer
Methods  For single-cell RNA sequencing (scRNA-seq), five functions were employed to calculate scores related to nucleo-
tide metabolism. Cell developmental trajectory analysis and intercellular interaction analysis were utilized to explore the 
metabolic characteristics and communication patterns of different epithelial cells. These findings were further validated 
using spatial transcriptome RNA sequencing (stRNA-seq). A risk model was constructed using expression profile data from 
TCGA and GEO cohorts to optimize clinical decision-making. Key nucleotide metabolism-related genes (NMRGs) were 
functionally validated by further in vitro experiments.
Results  In both scRNA-seq and stRNA-seq, colorectal cancer (CRC) exhibited unique cellular heterogeneity, with myeloid cells 
and epithelial cells in tumor samples displaying higher nucleotide metabolism scores. Analysis of intercellular communication 
revealed enhanced signaling pathways and ligand-receptor interactions between epithelial cells with high nucleotide metabolism 
and fibroblasts. Spatial transcriptome sequencing confirmed elevated nucleotide metabolism states in the core region of tumor tis-
sue. After identifying differentially expressed NMRGs in epithelial cells, a risk prognostic model based on four genes effectively 
predicted overall survival and immunotherapy outcomes in patients. High-risk group patients exhibited an immunosuppressive 
microenvironment and relatively poorer prognosis and responses to chemotherapy and immunotherapy. Finally, based on data 
analysis and a series of cellular functional experiments, ACOX1 and CPT2 were identified as novel therapeutic targets for CRC.
Conclusion  In this study, a comprehensive analysis of NMRGs in CRC was conducted using a combination of single-cell 
sequencing, spatial transcriptome sequencing, and high-throughput data. The prognostic model constructed with NMRGs 
shows potential as a standalone prognostic marker for colorectal cancer patients and may significantly influence the develop-
ment of personalized treatment approaches for CRC.
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Introduction

Colorectal cancer (CRC) stands as a prominent global 
health concern, responsible for the highest number of can-
cer-related fatalities across the world. It ushers in over one 

million fresh cases annually. In the United States alone, the 
year 2021 witnessed an estimated 104,000 individuals newly 
diagnosed with colorectal cancer, accompanied by a sober-
ing 53,000 new cases culminating in mortality. These statis-
tics collectively position CRC as the third most frequently 
diagnosed cancer and the primary contributor to cancer-
related fatalities (Sung et al. 2021). The 5-year relative 
survival rate of colorectal cancer patients is only 64%, and 
although existing treatments including chemotherapy and 
surgery have improved survival, however, distant metastasis 
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and drug resistance remain the main reasons for the poor 
prognostic outcome of colorectal cancer patients (Chen et al. 
2020). Colorectal adenocarcinoma is the main pathologic 
type of CRC, which is associated with age, dietary habits, 
and genetic disorders, and is significantly heterogeneous 
(Barresi et al. 2015). The exact molecular mechanism of car-
cinogenesis in colorectal cancer is currently uncertain, and 
timely diagnosis and treatment using reliable biomarkers can 
significantly improve survival (van der Geest et al. 2015).

A fundamental characteristic of cancer cells is their altered 
metabolism, which exhibits numerous distinctions from the 
metabolic patterns observed in normal cells. This phenom-
enon, known as metabolic reprogramming, plays a pivotal role 
in influencing the initiation and advancement of tumors (Zhang 
et al. 2021a). One of the critical facets of metabolic reprogram-
ming in cancer revolves around the production and utilization 
of nucleotide triphosphates. This metabolic shift is prevalent 
across various cancer types and genetic backgrounds. Impor-
tantly, many aggressive behaviors exhibited by cancer cells, 
such as unchecked proliferation, resistance to chemotherapy, 
evasion of immune surveillance, and the ability to metastasize, 
rely heavily on the upregulated nucleotide metabolism (Mullen 
and Singh 2023). The heightened demand for nucleotides is 
particularly pronounced in rapidly dividing cancer cells, which 
necessitate increased nitrogen utilization for the synthesis of 
essential nitrogen-containing molecules, including nucleotides. 
Disruptions in nucleotide metabolism within tumor tissues can 
thus fuel tumor growth and potentially impact interactions with 
the host immune system, thereby influencing the effectiveness 
of immunotherapies (Wu et al. 2022a).

Within the complex milieu of the tumor microenvironment, 
aberrations in nucleotide metabolism can significantly modify 
normal immune responses. This underscores the potential value 
of targeting nucleotide metabolism as a strategy to bolster immu-
notherapeutic interventions (Ishii and Akira 2008). Numerous 
investigations have demonstrated that tumor cells, in their quest 
for survival, can adapt their nucleotide metabolic pathways 
as they evolve drug resistance, thereby evading the intended 
effects of therapy (Zou et al. 2023). Conversely, irregularities in 
nucleotide metabolism can also serve as vulnerable points for 
therapeutic resistance. Through strategic interventions aimed at 
disrupting nucleotide metabolic pathways, it becomes possible 
to reverse the drug-resistant state of tumor cells and amplify 
the effectiveness of therapeutic agents (Mullen and Singh 2023; 
Tyagi et al. 2022). Notably, in preclinical animal models, thera-
pies specifically aimed at modulating nucleotide metabolism 
have yielded promising outcomes (Kohnken et al. 2015).

Even though single-cell sequencing has advanced tumor 
metabolism studies, our knowledge of nucleotide metabo-
lism in colorectal cancer is still restricted (Zhao et al. 2023). 
Colorectal cancer is known for its complex cellular compo-
sition and microenvironment, making nucleotide metabo-
lism effects intricate. To explore the role of nucleotide 

metabolism-related genes (NMRGs), we conducted single-
cell and spatial transcriptome sequencing to characterize 
the NMRG microenvironment in colorectal cancer. We also 
developed a prognostic model using bulk RNA sequencing, 
aiding clinicians in treatment decisions. We identified two 
new immunotherapy targets, ACOX1 and CPT2, validating 
them through bioinformatics and cellular experiments. These 
studies illuminate the regulation of nucleotide metabolism, 
providing a theoretical foundation for the development of 
future targeted and immunotherapeutic strategies.

Methods

Original research data source

The TCGA-COADREAD mRNA-seq data, clinical data, and 
single nucleotide mutation data were obtained from the UCSC 
Xena website (https://​xenab​rowser.​net/). Additionally, RNA-
seq data for colorectal cancer patients, along with correspond-
ing clinical information from the GSE17538 and GSE39582 
datasets, were retrieved from the Gene Expression Omnibus 
(GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). The 
TCGA cohort comprised 584 tumor patients with available 
survival information, whereas the GSE17538 and GSE39582 
cohorts, utilized as validation models, consisted of 232 and 579 
CRC patients with survival information, respectively. In the 
TCGA dataset, gene expression profiles were quantified using 
the transcript per million (TPM) estimation and subsequently 
transformed using a log2-based approach. The gene expression 
datasets underwent batch calibration and integration processes 
utilizing the “limma” and “sva” R packages (Leek et al. 2012). 
For single-cell RNA sequencing data of CRC, we accessed 
the GSE166555 cohort from TISCH (http://​tisch.​comp-​genom​
ics.​org/), comprising a total of 66,050 cells from both tumor 
and normal tissues (Uhlitz et al. 2021). Spatial transcriptome 
data for primary CRC were downloaded from The National 
Omics Data Encyclopedia (https://​www.​biosi​no.​org/​node/​
proje​ct/​detail/​OEP00​1756) (Wu et al. 2022b). A total of 882 
mRNAs with relevance scores exceeding 10 were identified by 
querying the GeneCard database (https://​www.​genec​ards.​org/) 
using the keyword “Nucleotide metabolism” (Supplementary 
table 1) (Rebhan et al. 1997).

Processing of scRNA‑seq data and calculation 
of nucleotide metabolism scores

The single-cell RNA sequencing (scRNA-seq) data were pre-
processed using the “Seurat” R package (Hao et al. 2021). 
The “PercentageFeatureSet” function was applied to assess 
the proportion of mitochondrial genes in the dataset. To 
ensure data quality and integrity, only genes expressed in a 
minimum of three cells were retained. Moreover, each cell 
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was required to express more than 200 genes but fewer than 
10,000 genes, with mitochondrial content constituting less 
than 20%. Subsequently, normalization of the scRNA-seq 
data was performed using the “NormalizeData” function.

Following normalization, the data were transformed into 
Seurat objects, and the “FindVariableFeatures” function was 
utilized to identify the top 2000 highly variable genes. Sub-
sequently, the “RunPCA” tool was employed for scaling and 
principal component analysis on this set of highly variable 
genes. Dimensionality reduction and visualization in 2D 
coordinates were achieved through Shared Nearest Neighbor 
(SNN) modular optimization and the t-distributed Stochastic 
Neighborhood Embedding (t-SNE) clustering algorithm. To 
identify marker genes specifically expressed in each cluster, 
Wilcoxon tests were conducted using the “FindAllMark-
ers” and “FindMarkers” algorithms, comparing various cell 
types. Additionally, various cell subgroups were annotated 
based on marker genes, incorporating insights from the orig-
inal article and annotations available in the TISCH database.

We analyzed 882 genes based on their expression profiles 
associated with nucleotide metabolism. To assess the enrich-
ment scores of colorectal cancer single-cell sequencing data, 
we employed five widely used algorithms: “AddModuleScore”, 
“AUCell”, “ssGSEA”, “singscore”, and “UCell”. “AddMod-
uleScore” is an algorithm integrated into the SingleR pack-
age (Tirosh et al. 2016), which computes enrichment scores by 
determining the average expression value of all genes within 
a given gene set and then scoring the gene sets based on this 
average value. This method involves calculating the average 
expression value for all genes in the gene set and partitioning 
the expression matrix into segments based on these average 
values. Control genes are randomly selected as background 
values from each partitioned segment. Single-sample gene set 
enrichment analysis, commonly referred to as “ssGSEA”, is uti-
lized to evaluate the extent of enrichment of a specific gene set 
within an individual sample or cell. “AUCell” is a tool in R for 
assessing the enrichment of a given set of genes in gene expres-
sion data from a single sample, aiding in the understanding 
of biological processes and disease mechanisms. The “UCell” 
method is employed for unsupervised cell type identification. 
It categorizes the cell type of specific cells without relying on 
past information or labels (Andreatta and Carmona 2021). 
“singscore” quantifies the activity level of a specific biological 
function or process within a single sample or cell, serving as a 
method for evaluating the cellular state.

We constructed single-cell pseudotime trajectories for epi-
thelial cells utilizing the “Monocle” R package (Borcherd-
ing et al. 2019). To explore crucial genes implicated in cell 
development along these trajectories, we applied the BEAM 
algorithm. Furthermore, we leveraged the functionalities of 
the “CellCall” R software package, a valuable tool for unveil-
ing intricate signaling profiles by integrating both intracellular 
and intercellular events (Zhang et al. 2021b).

Processing CRC spatial transcriptome sequencing 
data and inferring cellular spatial interactions

Spatial transcriptome data analysis was conducted using the 
R package Seurat. This involved normalizing unique molec-
ular identifier (UMI) counts, scaling the data, and identify-
ing the most variable features using “SCTransform”. Subse-
quently, downscaling and unsupervised cluster analysis were 
performed using “RunPCA”. For cluster analysis, default 
parameters were utilized, focusing on the 30 most significant 
principal components. Additionally, the “SpatialFeaturePlot” 
function was employed for subgroup and gene visualization. 
The “scMetabolism” R package serves as a valuable tool for 
single-cell metabolic analysis. Its primary function is to quan-
tify and visualize metabolic activities at single-cell resolution. 
Researchers can utilize “scMetabolism” to investigate meta-
bolic differences between different cells, identify metabolic 
signatures associated with specific cell types or conditions, and 
visualize metabolic data (Wu et al. 2022b). Scanpy is a Python 
toolkit designed for single-cell RNA sequencing data analysis. 
It offers a wide range of features including data preprocess-
ing, visualization, clustering, and differential gene analysis 
for studying gene expression at the single-cell level. In con-
trast, stLearn, based on Scanpy, focuses specifically on spatial 
transcriptome data analysis. It combines gene expression and 
image information to understand the relationship between cell 
location in a tissue and gene expression patterns. RCTD is 
a computational method aimed at parsing transcriptome data 
from different cell types or populations within complex bio-
logical samples. Its primary objective is to extract the gene 
expression profiles of each cell type or population from mixed 
transcriptomic data, facilitating the understanding of cellular 
composition, function, and interactions in biological research. 
MISTy is a machine-learning-based interpretable multi-view 
framework tailored for parsing highly multiplexed intercellular 
relationships in data. It provides researchers with a means to 
analyze spatial transcriptomic data without the need for cell 
type annotations, aiding in the comprehension of patterns and 
mechanisms of cell interactions (Tanevski et al. 2022). MISTy 
has been implemented as an R package called mistyR, accom-
panied by detailed documentation and instructions (https://​
saezl​ab.​github.​io/​mistyR/).

Construction of prognostic models and calculation 
of risk scores

The TCGA cohort was utilized as the training set, while the 
GSE17538 and GSE39582 datasets were combined to form the 
GEO cohort, serving as the validation set. Based on the dif-
ferential genes obtained from single-cell sequencing, univari-
ate Cox regression analysis was performed using the “survival” 
software R package to identify prognostic genes with statistically 
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significant p < 0.05. Subsequently, lasso and multifactorial step-
wise regression analyses were conducted to further evaluate 
genes and risk variables highly associated with prognosis.

Each CRC patient was assigned a risk score based on the 
coefficients derived from multivariate analysis. The TCGA 
and GEO cohorts were then divided into high-risk and low-
risk groups based on the median risk score. The computation 
of the risk score followed the equation:

Here, h0(t) represents the baseline risk function, indicat-
ing the risk when all independent variables are 0, and exp 
denotes the increment of risk at time t over what it would be 
if the independent variables were 0. The coefficients a1, a2, 
..., an correspond to the regression coefficients of the Cox 
model, while x1, x2, ..., xn represent the respective independ-
ent variables (gene expression values), observed at time t. 
The Cox model forms the basis for this computation.

Furthermore, survival curves were generated using the 
Kaplan-Meier method to predict the prognosis of CRC 
patients, with the log-rank test employed to determine sta-
tistical significance. The predictive model's validity was 
assessed using receiver operating characteristic (ROC) 
curves, with performance deemed satisfactory when the area 
under the curve (AUC) value exceeded 0.65.

Nomogram construction and raw data for mutation 
analysis

To compute the probability of overall survival (OS) at 1, 3, 
and 5 years, we constructed a column-line graph incorporat-
ing risk score, age, and clinical stage as independent prog-
nostic factors. Additionally, consistency index analysis and 
decision curve analysis (DCA) were conducted to further 
evaluate the utility of the column chart in conjunction with 
clinical characteristics alone.

Riskscore = h0(t) ∗ exp
(

a1 ∗ x1 + a2 ∗ x2 +⋯ + an ∗ xn
)

Somatic mutations observed in high-risk and low-risk 
cohorts of colorectal cancer were calculated using the 
“maftools” R package. Mutation Annotation Format (MAF) 
files were generated using data sourced from the TCGA 
database. Furthermore, we explored the relationship between 
risk scores and tumor mutation burden (TMB), presenting 
the findings through visualization with the “ggplot2” pack-
age in R. Microsatellite instability raw data were extracted 
from the cbioportal database (http://​www.​cbiop​ortal.​org/). 
We depicted the mutation landscape and immune infiltra-
tion scores in a visual format using the “ComplexHeatmap” 
R package. This comprehensive analysis aimed to provide 
insights into the relationship between risk scores, somatic 
mutations, tumor mutation burden, microsatellite instability, 
and immune infiltration in colorectal cancer.

Estimation of the immune microenvironment

The estimation of tumor mesenchymal and immune cell 
abundances, as well as tumor purity in colorectal cancer, 
was derived from TCGA expression profiling data using 
the R software package “Estimate” (Yoshihara et al. 2013). 
Additionally, data on the composition and abundance of 
immune cells in the CRC tumor microenvironment were 
obtained from the TIMER 2.0 database (http://​timer.​cistr​
ome.​org/), which provides results from seven assessment 
methods. The relative abundance of various immune cell 
types and immune-related activities in each sample was cal-
culated using single-sample gene set enrichment analysis 
(ssGSEA). Enrichment analysis was conducted utilizing 
Metascape (Zhou et al. 2019). Furthermore, 114 metabolic 
pathways from previous literature were quantified using 
Gene Set Variation Analysis (GSVA) (Rosario et al. 2018). 
Metabolic pathways from the KEGG database were also 
quantified using GSVA. Moreover, the Tumor Stem Cell 
Index, obtained from a previous study, was utilized to quan-
tify the stemness of tumor samples (Liu et al. 2022a). These 
comprehensive analyses aimed to provide insights into the 
tumor microenvironment, immune cell composition, meta-
bolic pathways, and stemness characteristics of colorectal 
cancer samples.

Prediction of immunotherapy and chemotherapy

Xu et al. have curated a web resource containing a collec-
tion of genes associated with cancer and the immune cycle 
(Xu et al. 2018). Additionally, Mariathasan's research has 
identified a list of genes known for their favorable responses 
to anti-PD-L1 drugs (Mariathasan et al. 2018). To explore 
potential correlations between these gene profiles and risk 
scores, we utilized the GSVA method to quantify both sets 
of genes. Visualization of these relationships was achieved 
using the “ggcor” R package. Furthermore, we investigated 

Fig. 1   Classification of Cell Subpopulations and Gene Expression 
Scores Related to Nucleotide Metabolism in Colorectal Cancer. (A-
D) t-SNE plots depicting diverse samples, tissue origins, cell clusters, 
and cell subpopulations, color-coded for clarity. (E) Heatmap illus-
trating the relative expression of marker genes within eight distinct 
cell subpopulations. Genes with high expression are represented in 
red, while those with low expression are displayed in blue. (F) His-
togram displaying the distribution of cell types across different sam-
ples. (G) Expression patterns of commonly used marker genes for 
cellular annotation within these cell subpopulations. (H) Bubble 
plots demonstrating the enrichment scores of nucleotide metabolism-
related genes per cell type in colorectal cancer. (I) t-SNE plots illus-
trate the enrichment scores of nucleotide metabolism-related genes 
for each cell type, with darker shades of green indicating higher 
scores. (J) The discrepancy in enrichment scores of nucleotide 
metabolism-related genes for each cell type between cancer and nor-
mal tissues. ns, Not significant; * p< 0.05; ** p< 0.01; *** p< 0.001; 
**** P< 0.0001

◂
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the relationship between these four model genes and 51 
immune-related genes, presenting our findings in a circu-
lar heatmap (Thorsson et al. 2019). For the assessment of 
immune escape likelihood in tumor samples, we employed 
TIDE (Tumor Immune Dysfunction and Exclusion), a com-
putational framework accessible at http://​tide.​dfci.​harva​
rd.​edu/. Immunophenoscores (IPSs) were computed using 
z-scores for gene expression across four major categories, 
allowing for the assessment and comparison of potential 
responses to Immune Checkpoint Inhibitors (ICI) between 
groups. Higher scores indicate greater immunogenicity. To 
predict responsiveness to immunotherapy, we examined 
immunophenotypes (IPS) associated with CRC in The Can-
cer Immunome Atlas (TCIA) database (https://​tcia.​at/​home) 
(Charoentong et al. 2017). Moreover, we utilized the “pRRo-
phetic” R software package to determine the half-inhibitory 
concentration (IC50) of conventional chemotherapeutic 
drugs for treating colorectal cancer (Geeleher et al. 2014). 
These comprehensive analyses aimed to provide insights 
into potential therapeutic responses and immune character-
istics associated with CRC, facilitating personalized treat-
ment strategies.

Cell culture and knockdown of ACOX1 and CPT2

We acquired the NCM460 normal cell line and CRC cell 
lines (RKO, HCT116, SW620, and HT29) from the Ameri-
can Type Culture Collection (ATCC). These cells were cul-
tured in RPMI-1640 medium (Gibco, ThermoFisher, USA) 
supplemented with 10% fetal bovine serum (FBS) (Hyclone, 
USA) and maintained in a humidified incubator at 37°C with 
5% CO2.

To silence the ACOX1 and CPT2 genes, we purchased 
Small interfering RNAs (siRNAs) from GenePharma 
(Shanghai, China). Real-time PCR was performed using Taq 
Pro Universal SYBR qPCR Master Mix (Vazyme, China) 
on the Applied Biosystems 7300 Real-Time PCR System. 
The siRNA sequences and primer sequences for ACOX1 and 
CPT2 are shown in Supplementary Table 2.

For transwell invasion assays, 1×10^5 cells in 500 μl of 
FBS-free medium were seeded into the upper chamber of 
24-well chambers/microfilters coated with Matrigel (BD, 

Franklin Lakes, NJ, USA). The lower chamber was filled with 
medium containing 10% FBS for 48 hours. Noninvasive cells 
on the upper side of the chamber were removed with a cotton 
swab, and invasive cells were fixed in 4% paraformaldehyde 
and stained with crystal violet solution. Stained cells were 
imaged, and the best six fields of view were randomly selected 
for analysis, with each experiment repeated three times.

Cells from each group were seeded in 96-well culture 
plates at a density of 3×10^3 cells per well, with three rep-
licate wells for each group. Cell culture supernatants were 
collected at 0 h, 24 h, 48 h, and 72 h after seeding. Cell 
viability was assessed using the Cell Counting Kit-8 (CCK-
8) assay kit (Sigma-Aldrich, USA) following the manufac-
turer's instructions. After incubation at 37°C with 5% CO2 
for 1 hour, the optical density (OD) at 450 nm was meas-
ured using a microplate reader (Bio-Rad, USA), and the cell 
growth curve was generated.

Immunohistochemical validation of experimental findings

The CRC tissue microarray (HCol-Muc060CS-01) used in 
this study was obtained from Shanghai Xinchao Biotechnol-
ogy Co. It consisted of 60 CRC tissue samples and their corre-
sponding adjacent non-cancerous tissues from 15 male and 15 
female patients with a mean age of 66 ± 12 years. The com-
pany's Ethics Committee (Ethics Code: SHYJS-CP-1407013) 
approved the experimental protocol. Informed consent for the 
use of tissue samples was obtained from the China Human 
Genetic Resources Management Office. Our study was 
conducted in accordance with the Declaration of Helsinki 
(revised 2013). The experimental protocol consisted of several 
steps. First, the tissue microarrays were processed for baking, 
dewaxing, and antigen extraction. Second, ACOX1 and CPT2 
primary antibodies (Proteintech Cat# 10957-1-AP/26555-
1-AP, 1:2000) were added to the microarrays and incubated 
at 4 °C overnight. The chip was then contacted with the sec-
ondary antibody for 45 minutes at room temperature before 
staining with DAB and restaining with hematoxylin.

Statistical Analysis

All statistical analyses were performed using R version 4.1.3 
and Python version 3.9. Prognostic values were computed, 
and patient survival in distinct subgroups within each data-
set was compared through Kaplan-Meier survival analyses, 
along with log-rank tests. For data that did not adhere to a 
normal distribution, the Wilcoxon test or Kruskal-Wallis test 
was applied. For variables demonstrating a normal distribu-
tion, two-tailed t-tests or one-way ANOVA were employed 
to evaluate the clinical characteristics of subgroups with 
quantitative differences. Spearman correlation analysis was 
utilized to calculate correlation coefficients. A significance 
level of p < 0.05 was adopted in all statistical analyses.

Fig. 2   Cell Developmental Trajectory Analysis and Cell Commu-
nication Analysis. (A) Cell trajectory and pseudo-time analysis for 
malignant cells. (B) Heatmap illustrating the expression patterns of 
40 genes related to nucleotide metabolism that exhibit differential 
expression during cell development. Low expression is represented in 
blue, while high expression is depicted in red. (C) Bubble diagram 
showcasing the activity analysis of signaling pathways across vari-
ous cell types. (D) Circle diagram visualizing the strength of ligand-
receptor interactions between different cell types. (E) Identification of 
highly ranked ligand-receptor pairs and their associated transcription 
factors between epithelial cells and fibroblasts. (F) Assessment of 
ligand-receptor strength between diverse cell types

◂
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Results

Enrichment score of nucleotide metabolism‑related 
genes in scRNA‑seq

Twelve samples were obtained for the study of colorec-
tal cancer heterogeneity and to assess differences between 
tumor and normal samples using single-cell sequencing 
data. Following the identification of 2000 highly vari-
able genes, we employed principal component analysis 
(PCA) for dimensionality reduction, focusing on the top 
20 principal components (PCs). Subsequently, 30 clusters 
were generated, and known marker genes were referenced 
to annotate cellular subpopulations. Visualization using 
t-distributed Stochastic Neighbor Embedding (t-SNE) 
illustrated distinct samples, tissue types, clusters, and 
annotated cellular subpopulations (Fig. 1A-D). The relative 
expression of marker genes, calculated as Top5, in each 
cellular subpopulation was depicted through a heatmap 
(Fig. 1E). Furthermore, Fig. 1F displays the percentage 
distribution of different cell types across the 12 samples. 
Violin plots were utilized to showcase the expression pat-
terns of common marker genes in each cell type (Fig. 1G). 
Subsequently, we evaluated the level of nucleotide metabo-
lism in scRNA-seq data based on the expression of 882 
nucleotide metabolism-related genes. Using five common 
algorithms (AddModuleScore, UCell, GSVA, AUCell, 
and singscore), we scored gene sets to assess nucleotide 
metabolism. Figs. 1H and 1I demonstrate that nucleotide 
metabolism scores (NMS) were relatively higher in epi-
thelial and myeloid cells. Additionally, we compared NMS 
across various cell types in tumor and normal samples, 
revealing that NMS in cells such as myeloid cells, fibro-
blasts, T/NK cells, and epithelial cells was relatively higher 
in tumors (Fig. 1J). Furthermore, a differential analysis 
was conducted for epithelial cells in the tumor and normal 
tissues, identifying a total of 102 NMRGs with expression 
differences in both settings (Supplementary Table 3).

Analysis of cellular interactions in scRNA‑seq

Cell trajectory analysis provides valuable insights into cellular 
differentiation relationships, developmental trajectories, and 
changes in tumor immune cell dynamics at single-cell resolu-
tion. In our study, we utilized the “monocle” R package to 
determine cell trajectories and pseudotime distributions of 
epithelial cells in tumor tissues, identifying a total of five cell 
states in epithelial cells during development, with cluster 5 cor-
responding to the end state of cell development (Fig. 2A). The 
heatmap in Fig. 2B illustrates the expression patterns of the 
top 40 nucleotide metabolism-related genes with the highest 
differential expression at various stages of epithelial cell devel-
opment, highlighting, for instance, the predominantly high 
expression of ACOX1 at the end of epithelial cell develop-
ment. We classified epithelial cells into nucleotide metabolism 
(NM) high and NM low groups based on the median value of 
Nucleotide Metabolism Score (NMS) in all epithelial cells in 
tumor tissues. Bubble plots were then utilized to visualize the 
results of signaling pathway activity analysis (Fig. 2C), reveal-
ing, for instance, enhanced Notch signaling pathway activity in 
epithelial cells with high nucleotide metabolism scores, par-
ticularly with fibroblasts. From a molecular pathology perspec-
tive, the accumulation of DNA mutations, particularly in mol-
ecules within the Notch signaling pathway, plays a crucial role 
in malignancy development (Meurette and Mehlen 2018). The 
circled graph in Fig. 2D demonstrates the strength of ligand-
receptor signaling between different cell types, with epithelial 
cells exhibiting higher nucleotide metabolism scores show-
ing stronger cellular communication with fibroblasts. Further 
analysis revealed intensified ligand-receptor pair relationships 
between high-scoring epithelial cells and fibroblasts, exempli-
fied by the TGFA-EGFR interaction (Fig. 2E). The abnormal 
activation of the TGF-α/EGFR autocrine loop, observed in 
many malignant tumors, underscores its close association with 
tumorigenesis and progression (Tang et al. 2016). Finally, we 
inferred the existence of ligand-receptor relationships and 
corresponding transcription factors (TFs) between epithelial 
cells and fibroblasts with higher nucleotide metabolism scores 
(Fig. 2F), shedding light on potential regulatory mechanisms 
underlying cellular interactions in the tumor microenvironment

Characterization of nucleotide metabolism in spatial 
transcriptome sequencing

We employed SCTransform's approach to correct for spatial 
sequencing depth and conducted a series of normalization 
processes, resulting in the identification of 14 distinct cellular 
subpopulations in space following dimensionality reduction 
clustering (Fig. 3A). Notably, subpopulations 1, 3, 4, and 11 
were predominantly situated in the tumor core of colorectal 
cancer, as depicted in the original representation of the spatial 

Fig. 3   Characterization of nucleotide metabolism in the spatial tran-
scriptome of CRC. (A) Spatial representation illustrating the identifi-
cation of 14 clusters through stRNA-seq. (B) Bubble plot displaying 
the expression levels of genes related to nucleotide metabolism within 
distinct clusters. Red signifies high expression, while blue indicates 
low expression. (C) Bubble chart presenting the metabolic intensity 
across various clusters. (D) Spatial depiction of pyrimidine metabo-
lism intensity. (E) Spatial visualization of purine metabolic intensity. 
(F) Spatial representation of the 11 cellular clusters identified using 
Python. (G) Spatial map showcasing the developmental trajectory of 
clusters 1 through 8. (H) An algorithm is used to identify the predom-
inant distribution of different cell types within the CRC spatial map 
using RCTD. (I) Extrapolation of spatial clustering of different cell 
types based on MISTy. (J) Projection of spatial correlations among 
different cell types based on MISTy

◂
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transcriptome. Bubble plots showcasing the expression pat-
terns of the top 20 nucleotide metabolism-related genes with 
the largest expression differences are illustrated in Fig. 3B. 
The metabolic activity of different cell subpopulations was 
further analyzed using the “scMetabolism” R package. Sub-
populations 1, 3, 4, and 11, located in the core region of the 
tumor, exhibited close associations with purine and pyrimi-
dine metabolic activities (Fig. 3C). This metabolic activity 
enrichment was primarily observed in the core region of the 
tumor, as depicted in Figs. 3D and 3E. Subsequently, employ-
ing Python's Scanpy and stlearn packages, we conducted cell 
developmental trajectory analysis on spatially resolved cell 
subpopulations. Following normalization and clustering of 
spatial transcriptome data, a total of 11 distinct cell subpopu-
lations were identified (Fig. 3F). Intriguingly, cluster 1, situ-
ated in the core region of the tumor, exhibited differentiation 
towards cluster 8 in the peripheral region of the tumor, as 
observed in the trajectory analysis (Fig. 3G). Furthermore, 
we employed the RCTD method to back-convolute annotated 
cell types from single-cell data to spatial data, inferring the 
predominant cell types at each spatial location. Epithelial 
cells with high nucleotide metabolism scores were primarily 
located in the core region of the tumor, whereas those with 
low scores were predominantly concentrated in the peripheral 
region of the tumor (Fig. 3H). Finally, according to MISTy's 
results, epithelial cells with higher nucleotide metabolism 
scores showed congruence of clustering and higher corre-
lation of spatial interactions with fibroblasts in the internal 
space (Fig. 3I, J).

Construction of a prognostic model related 
to nucleotide metabolism

To leverage the potential of nucleotide metabolism-related 
gene signatures for clinical decision support, we utilized 102 
expression-differentiated NMRGs to develop prognostic mod-
els for colorectal cancer. These models were constructed using 
both high-throughput sequencing data and microarray data. 
Our methodology involved utilizing a training set consisting 
of 584 CRC samples with available survival data from the 
TCGA dataset to construct prognostic risk models. Addition-
ally, we employed 232 and 579 CRC patient samples with sur-
vival information from the GSE17538 and GSE39582 cohorts 
for external validation. Initially, we conducted a Univariate 
Cox analysis to identify five NMRGs significantly influencing 
OS in CRC patients (Fig. 4A). To address the risk of overfit-
ting and refine the gene selection for OS prediction, LASSO 
regression analysis was performed, resulting in the selection 
of four candidate genes from the initial five (Fig. 4B and C). 
Subsequently, stepwise multifactorial Cox analysis identified 
ACOX1, ALDOB, CPT2, and TKT as independent prognostic 
factors. The risk score was then calculated by summing the 
expression levels of individual genes, each weighted by their 

corresponding regression coefficients (Fig. 4D). Patients were 
stratified into low-risk and high-risk groups using the median 
score as the cutoff point. Survival analyses conducted for both 
the TCGA-trained group and the GEO-validated group con-
sistently demonstrated that patients in the high-risk category 
exhibited poorer OS compared to those in the low-risk group 
(Fig. 4E-H). Additionally, high-risk patients displayed worse 
progression-free survival (PFS) (Supplementary Figure 1A). 
Furthermore, receiver operating characteristic curves illus-
trated the strong predictive capability of the risk score for OS 
in the TCGA cohort, as depicted in Fig. 4I. The risk plots pro-
vided detailed survival outcomes for individual patients across 
the TCGA cohort, as well as the GSE17538 and GSE39582 
cohorts (Fig. 4J-L). These findings underscore the potential 
clinical utility of our prognostic models based on nucleotide 
metabolism-related gene signatures, offering valuable insights 
for personalized treatment strategies in CRC patients.

Validation of clinical features and construction 
of nomograms

Considering the robust correlation observed between our 
nucleotide metabolism-based risk model and adverse prog-
nosis, we sought to assess the potential of our 4-NMRG sig-
nature as an independent prognostic predictor in colorectal 
cancer patients. In the TCGA cohort, we conducted univari-
ate Cox analysis, revealing that the risk score could serve 
as an independent prognostic indicator, surpassing other 
common clinical characteristics (such as age, grade, stage, 
and histologic type) (Fig. 5A). This trend persisted even 
after multifactorial analysis, further establishing the risk 
score as the most reliable independent predictor within the 
cohort (Fig. 5B). Consistent with these findings, in the GEO 
external validation cohort, the risk score demonstrated its 
potential as an independent prognostic indicator for patients 
(Supplementary Figure 1B, C). To enhance the clinical util-
ity of our risk model and aid clinicians in making informed 
decisions, we developed a nomogram for predicting 1-, 3-, 
and 5-year survival rates for CRC patients based on cor-
relations between clinicopathologic features and risk scores 
(Fig. 5C). The risk score displayed a greater impact on OS 
prediction, underscoring the superior prognostic potential of 
our 4-NMRG-based risk model. Calibration curves affirmed 
the accuracy of the nomogram’s predictions (Fig. 5D), while 
the area under the curve (AUC) at 3 years significantly 
outperformed other clinicopathologic features (Fig. 5E). 
Decisions Curve Analysis curves at 3 years (Fig. 5F) and 
C-index values (Fig. 5G) consistently demonstrated that our 
constructed nomograms and risk scores provided the high-
est net benefit, surpassing traditional models, thus wielding 
more substantial influence on clinical decision-making. We 
further illustrated associations between risk groupings, clini-
cal characteristics, and the expression of our four modeled 
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genes using heatmaps. Chi-square tests revealed significant 
associations between risk groupings and patient Stage and 
histologic type. Interestingly, all four model genes exhib-
ited higher expression in the low-risk group (Fig. 5H), and 
the high-risk group displayed more advanced Stage staging 
(Fig. 5I). These analyses reinforce the reliability of the risk 
score and nomogram as a clinical predictive scoring system.

Mutational landscape and microsatellite instability

The efficacy of immunotherapy often varies greatly among 
patients with different tumors, and in addition to factors 
related to tumor type, pathological stage, and immune infil-
tration, genetic mutations may also affect the efficacy of 

immunotherapy. The waterfall plot in Fig. 6A illustrates the 
somatic mutation spectrum of CRC patients, where the most 
frequent form of mutation in these genes is missense muta-
tion. Figure 6B includes statistical plots of various muta-
tion classifications, summary plots of base alterations, box 
plots of the various mutation classifications in the samples, 
statistical plots of the 10 genes with the highest number of 
mutations, plots of the number of mutation counts included 
in each sample, and the sample percentage profile. We exam-
ined the distribution of the most commonly mutated genes 
in CRC in risk score subgroups (Fig. 6C). Patients in the 
high-risk score subgroup exhibited higher tumor mutation 
load (TMB) relative to patients in the low-risk score sub-
group (Fig. 6D, E). Next, we categorized patients into four 
groups based on median TMB values and median risk scores 

Fig. 4   Calculation of Risk Scores Associated with Nucleotide 
Metabolism and Development of Prognostic Models. (A) Forest 
plot presenting the five prognostic genes identified through univari-
ate Cox analysis. (B) Profiles of LASSO coefficients. (C) Ten-fold 
cross-validation for selecting tuning parameters in the LASSO 
model. (D) Results of multivariate Cox analysis for model genes 
and their corresponding coefficients. (E-H) Kaplan-Meier survival 

curves for overall survival (OS) of patients categorized into low-
risk and high-risk groups in the TCGA cohort, the complete GEO 
cohort, the GSE17538 cohort, and the GSE39582 cohort. (I) Area 
under the curve (AUC) values for risk scores at 1, 3, and 5 years in 
the TCGA cohort. (J-L) Distribution of scores among low-risk and 
high-risk groups in the TCGA cohort, the GSE17538 cohort, and the 
GSE39582 cohort, along with patient survival data
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(high-TMB+ high-risk score, high-TMB+ low-risk score, 
low-TMB+ high-risk score, and low-TMB+ low-risk score), 
and the results showed that patients with high-risk scores 
and low mutations had the relatively worst OS (Fig. 6F). 
When the DNA mismatch repair function is aberrant, rep-
lication errors occurring in the microsatellites result in 
microsatellite instability (MSI). Microsatellite instability 
is categorized into Microsatellite High Instability (MSI-H), 
Microsatellite Low Instability (MSI-L), and Microsatellite 
Stable (MSS) based on degree. Compared to the MSI-low 
group, the MSI-high group in CRC had a greater risk score 
(Fig. 6G, H).

Prediction of immune infiltration and biological 
mechanisms

The tumor microenvironment (TME) is a critical determi-
nant of patient clinical outcomes and therapeutic response. 
Tumor-infiltrating lymphocytes (TILs), comprising vari-
ous cell types such as effector, regulatory, and inflamma-
tory cells, engage in complex interactions mediated by 
cytokines and soluble factors. Additionally, tumor cells 
themselves release immunosuppressive cytokines, influ-
encing immune cell recruitment within the microenviron-
ment. Consequently, the composition of cells and their 
interactions with cytokines in the TME collectively shape 
the anti-tumor immune response (Xie et al. 2022).

In this study, we explored the immune landscape of both 
high and low-risk score groups using various algorithms 
(Fig. 7A). To delve deeper into the relationship between 
risk scores and immune-related functions, we evaluated 
the enrichment scores of different immune cell subpopu-
lations and functions using the ssGSEA approach. Our 
findings revealed that the high-risk score group exhibited 
heightened infiltration scores of immune cells and elevated 
immune pathway scores (Fig. 7E). We employed the “esti-
mate” method to estimate tumor purity by calculating stro-
mal and immune cell ratios across different risk groups 

(Fig. 7B). Considering the significant impact of immune 
checkpoint molecules on tumor immunotherapy, we ana-
lyzed the expression of immune checkpoint genes within 
distinct risk score subgroups, revealing higher expression 
levels across almost all immune checkpoints in the high-
risk score group (Fig. 7C). A heatmap depicted immune 
checkpoint genes, immune scores, immune cell infiltration, 
and tumor microenvironment scores across various risk 
score groups (Fig. 7D).

Furthermore, we investigated the correlation between 
the RNA stemness score (RNAss) and the risk score, 
uncovering a notable negative correlation (Fig. 7F). This 
suggests that CRC cells with lower risk scores exhibit 
more prominent stem cell characteristics and lower levels 
of cell differentiation. These findings imply that patients in 
the high-risk score group may have a less favorable prog-
nosis, accompanied by heightened immune activity, likely 
indicative of an immunosuppressive tumor microenviron-
ment in colorectal cancer. This could potentially result in 
a reduced response rate to immunotherapy.

Moreover, our risk score signature demonstrated a 
strong positive correlation with various tumorigenic 
pathways, including epithelial-mesenchymal transition, 
angiogenesis, and NF-KB signaling pathways (Fig. 8A). 
Notably, we observed significant distinctions in nucleo-
tide metabolism-related pathways between the risk groups 
(Fig. 8B). Differentially expressed genes (DEGs) between 
the two nucleotide metabolism-related risk subgroups 
were enriched in hormone metabolism and metabolism-
related diseases (Fig. 8C). In terms of the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) terms derived from Gene Set Enrichment Analy-
sis (GSEA), we noted distinct enrichment patterns between 
the low-risk and high-risk groups. Specifically, the low-
risk group exhibited enrichment in nucleotide metabo-
lism and nitrogen metabolism, while the high-risk group 
showed significant enrichment in JAK-STAT and tumor 
necrosis factor (TNF) signaling pathways (Fig. 8D).

Prediction of the effects of immunotherapy 
and chemotherapy

Tumor immunotherapy, particularly immune checkpoint 
inhibitors (ICBs), has transformed cancer treatment by acti-
vating T-cells, reversing CD8 T-cell depletion, and stimu-
lating immune cells to recognize and eliminate tumor cells. 
However, the effectiveness of ICB is limited to a subset of 
tumor patients, with many not experiencing long-term benefits 
(Xiong et al. 2023). To deepen our understanding of how risk 
scores influence immunotherapy, we utilized TIDE and IPS 
scores to evaluate patients with tumors and regional lymph 
nodes, assessing their potential for an immunocompetent 
response. This approach aimed to more effectively identify 

Fig. 5   Independent Prognostic Analysis of Risk Scores and Clinico-
pathologic Factors in the TCGA Cohort. (A, B) Univariate and mul-
tivariate Cox regression analyses of clinicopathologic variables and 
risk scores for overall survival (OS) in the TCGA training cohort. (C) 
Integrated nomograms combining age, grade, and stage for the pre-
diction of OS at 1, 3, and 5 years in colorectal cancer patients. (D) 
Calibration curves for the nomograms. (E) Area under the curve 
(AUC) values for risk scores and clinical characteristics at 3 years 
in the TCGA cohort. (F) Decision curve analysis (DCA) curves for 
risk scores, nomogram scores, and other clinical characteristics. (G) 
Assessment of predictive performance using C-Index for different 
clinical characteristics, nomogram scores, and risk scores. (H) Heat-
map displaying the expression profiles of the four model genes and 
clinical characteristics associated with subgroups, as determined by 
the chi-square test. (I) Distribution of clinical stages within various 
score subgroups. ns, Not significant; * p< 0.05; ** p< 0.01; *** p< 
0.001; **** P< 0.0001
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suitable candidates for immunotherapy, recognizing that the 
efficacy of immunotherapy can vary depending on the level 
of immune infiltration, often influenced by tumor progression. 
Expanding on these findings, we explored the feasibility of 
a prognostic model for predicting the response to immune 
checkpoint blockade (ICB) in colorectal cancer patients.

The violin plot in Fig.  9A illustrates the relationship 
between IPS and risk groups, with higher IPS values indicat-
ing an improved likelihood of responsiveness to PD-1 and 
CTLA-4 inhibitors. Notably, individuals in the low-risk group 
exhibited superior immune responses to immune checkpoint 
inhibitors, particularly CTLA-4 inhibitors. Since the immune 
microenvironment modulates ICB responses, we conducted 
an in-depth analysis of the correlation between risk scores and 
ICB response characteristics. Our findings revealed a signifi-
cant positive correlation between the risk score and protea-
some and APM_signal while displaying a significant negative 
correlation with other ICB response attributes. Furthermore, 
the risk score exhibited substantial and meaningful associa-
tions with key stages of the tumor immune cycle, including 
cancer cell antigen release (step 1), cancer antigen presenta-
tion (step 2), initiation and activation (step 3), and immune 
cell infiltration into the tumor (step 4) (Fig. 9B).

To further investigate variations in immune responses 
among different subgroups, we conducted correlation analy-
ses involving 12 model genes and classical immune-related 
genes (Fig. 9C). Higher tumor TIDE prediction scores are 
associated with reduced responsiveness to immune check-
point blockade (ICB) and diminished patient survival. Our 
findings revealed that individuals in the high-risk score 
group demonstrated elevated dysfunction and exclusion 
scores, along with relatively higher TIDE scores, as depicted 
in Fig. 9D. Lastly, we explored the relationship between 
risk scores and the IC50 values of three clinically utilized 
chemotherapeutic agents. Our findings showed a significant 
negative correlation between risk scores and the IC50 val-
ues of cisplatin, imatinib, and doxorubicin (Fig. 9E). Taken 
together, these results suggest that individuals in the low-risk 
group may be more likely to benefit from both immuno-
therapy and chemotherapy.

ACOX1+ and CPT2+ tumor cells may serve 
as prognostic influencers and targets 
for immunotherapy

A total of four nucleotide metabolism-related genes 
(ACOX1, ALDOB, CPT2, and TKT) were incorporated into 
our risk model. The spatial maps illustrate the expression 
patterns of these four genes (Fig. 10A, F, Supplementary 
Figure 2A, C). In our scRNA-seq analysis, we categorized 
epithelial cells into two groups: those expressing the four 
genes (expression-positive) and those not expressing them 
(expression-negative). Utilizing the ssGSEA algorithm, we 

estimated the abundance of these cells in the TCGA dataset 
based on marker genes specific to the positively express-
ing epithelial cells. For survival analysis, we determined 
the optimal cutoff value and subsequently divided the CRC 
patients from the TCGA dataset into two groups.

Patients with higher proportions of ACOX1+ and CPT2+ 
epithelial cells exhibited relatively more favorable prognosis 
and a higher likelihood of responding effectively to immuno-
therapy (Fig. 10B, G). Conversely, patients with higher propor-
tions of TKT+ epithelial cells had a relatively better prognosis. 
However, the difference in cell proportions between patients 
who did or did not produce an effective immune response, as 
indicated by TIDE analysis, was not statistically significant 
(Supplementary Figure 2B). Although patients with a higher 
proportion of ALDOB+ epithelial cells also demonstrated 
a relatively better overall survival, the log-rank test results 
showed no significant difference between the two groups (Sup-
plementary Figure 2D). These findings suggest that ACOX1 
and CPT2 expression-positive epithelial cells might serve as 
protective factors for colorectal cancer patients.

The Reverse Cell Type Delineation (RCTD) method was 
employed to back-convolute well-annotated cell types from 
the single-cell data into spatial data (Fig. 10C, H). Interest-
ingly, the extrapolation of cell communication relationships 
in space revealed that ACOX1-negative expressing epithelial 
cells exhibited stronger cellular interactions with fibroblasts 
compared to ACOX1-expressing positive epithelial cells 
(Fig. 10D, E). Similarly, CPT2-negative expressing epithe-
lial cells also displayed enhanced cellular communication 
with fibroblasts (Fig. 10I, J).

We evaluated the expression of ACOX1 and CPT2 in 80 
pairs of colorectal cancer tissues and adjacent normal tissues 
using IHC methods. Our results showed that ACOX1 and 
CPT2 were significantly downregulated in colorectal cancer 
tissues compared with normal tissues, as shown in Fig. 11A. 
Finally, we compared the expression levels of ACOX1 and 
CPT2 in normal intestinal epithelial cells and four CRC cell 
lines by PCR assay and found that the expression levels of 
ACOX1 and CPT2 genes were significantly down-regulated 
in tumor cells (Fig. 11B). These results strongly support 
the potential of ACOX1 and CPT2 as biomarkers for CRC 
diagnosis and prognosis. Subsequently, the expression lev-
els of ACOX1 and CPT2 were evaluated after 5 days of 
transfection using qRT-PCR to validate the effect of siRNA 
knockdown of ACOX1 and CPT2 in RKO and HCT116 cell 
lines (Fig. 11C). Based on the knockdown efficiency, we 
chose the No. 1 and No. 2 siRNA knockdown cell lines for 
ACOX1-related functional experiments, whereas the No. 2 
and No. 3 siRNA knockdown cell lines for CPT2-related 
functional experiments.

Subsequently, CCK-8 cell experiments showed that the 
knockdown-induced reduction of ACOX1 and CPT2 sig-
nificantly enhanced the proliferation of RKO and HCT116 
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cell lines (Fig. 12B). Tumor cells transfected with si-
ACOX1 and si-CPT2 also exhibited enhanced migration 
and invasion in transwell assays (Fig. 12A). Together, 
these findings suggest that ACOX1 and CPT2 are onco-
genes for colorectal cancer.

Discussion

Nucleotide metabolism is central to tumor development, with 
increased synthesis of NTPs and dNTPs in tumor cells (Ma 
et al. 2021). This metabolic feature, a potential therapeutic 

Fig. 6   Mutational Landscape and Microsatellite Instability in CRC 
Samples. (A) Overview of the mutation landscape in 542 CRC sam-
ples. (B) Detailed breakdown of mutation types, with missense muta-
tions being the most common. Single-nucleotide polymorphisms 
(SNPs) constituted the majority of mutations, with C>T mutations 
occurring most frequently. Horizontal histograms present the top 
10 mutated genes in CRC. (C) Mutation status and tumor mutation 
load (TMB) of the 20 genes with the highest mutation frequency 
across different risk subgroups. (D) Comparison of TMB among 

different subgroups. (E) Correlation analysis between risk scores 
and TMB. (F) Survival disparities among four subgroups: H-TMB+ 
high-risk score, H-TMB+ low-risk score, L-TMB+ high-risk score, 
and L-TMB+ low-risk score. (G) Differences in risk scores of CRC 
patients in three subgroups based on microsatellite instability: micro-
satellite high instability (MSI-H), microsatellite low instability (MSI-
L), and microsatellite stable (MSS). (H) Percentage of MSI classifica-
tions for patients in high-risk and low-risk groups
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target, significantly affects cancer cell behavior, including 
proliferation, immune evasion, metastasis, and resistance 
to therapy. The elevated nucleotide levels are essential for 
DNA replication, repair, transcription, ribosome biosynthe-
sis, and post-translational protein glycosylation—processes 
often dysregulated in cancer (Xia et al. 2021). Oncogenic 
driver genes, known to upregulate nucleotide biosynthesis, 
emphasize the metabolic phenotype's role in cancer initia-
tion and progression post-oncogene activation. The relation-
ship between NUDT5 and nucleotide metabolism in cancer 
is particularly noteworthy. NUDT5, an ADP-ribose pyroph-
osphatase, is vital for hydrolyzing ADP to regulate cellular 
functions, influencing key cellular processes. Zhang et al. 
found that reduced NUDT5 expression in HeLa cells leads 
to G1 cell cycle arrest and induces apoptosis in fibroblasts 
and RNA oxidation (Zhang et al. 2021c).

Nucleotide synthesis in cancer cells occurs through 
two main pathways: the de novo and recycling pathways 
(Koundinya et al. 2018; Wang et al. 2019). The de novo 
pathway involves a series of energy-intensive enzymatic 
reactions that convert small precursors into nucleotides. 
Conversely, the recycling pathway efficiently converts 
nucleosides or nucleobases into NMPs via phosphoryla-
tion or phosphoribosyltransferase reactions, with fewer 
steps. The unique mechanisms of purine and pyrimidine 
nucleotide synthesis in tumor cells are key for evading 
inhibitors targeting de novo synthesis. Early anti-tumor 
agents included nucleotide synthesis inhibitors, which 
remain crucial in cancer treatment (Dutta et al. 2023). 
In therapy-resistant tumors, targeting nucleotide synthe-
sis pathways beyond one-carbon metabolism has proven 
effective. For example, 5-FU is fundamental in treating 
advanced colorectal cancer, and gemcitabine is used in 
pancreatic cancer, both by disrupting nucleotide synthe-
sis to counter resistance mechanisms (Panieri and San-
toro 2016). Lately, nucleotide synthesis has become a 
focal point in cancer research, frequently identified as a 
cancer cell vulnerability in extensive genomics, chemical 
screens, and metabolomics studies. This renewed interest 

is propelling impactful preclinical research, laying the 
groundwork for current clinical trials and drug develop-
ment (Shi et al. 2023).

Single-cell sequencing and spatial transcriptomics are 
essential tools in colorectal cancer research, providing 
detailed insights at the cellular level. Single-cell sequencing 
allows for in-depth analysis of transcriptomic and genomic 
profiles, illuminating tumor heterogeneity and immune cell 
dynamics (Aran 2023). The integration of m6A modifica-
tion analysis with single-cell transcriptomics has recently 
revealed important cellular subpopulation regulators and 
improved treatment response prediction in CRC patients 
(Gao et al. 2022). Moreover, single-cell sequencing is vital 
for exploring the tumor microenvironment and enhancing 
our understanding of immunotherapy (Qi et al. 2022). When 
paired with spatial transcriptomic techniques, these meth-
ods facilitate the study of cell-cell interactions across tissue, 
offering a comprehensive view of cellular spatial distribution 
and functionality within tumor contexts (Zhang et al. 2022). 
The progress in these technologies has greatly deepened 
our knowledge of CRC pathogenesis and is instrumental in 
advancing precision medicine and innovative therapeutic 
strategies.

Utilizing advanced single-cell sequencing and spatial 
transcriptomics, our study meticulously profiled nucleo-
tide metabolism-related genes in colorectal cancer to dif-
ferentiate between tumor and normal tissues. This approach 
aimed to elucidate the impact of nucleotide metabolism on 
CRC progression and its implications for immunotherapy. 
We identified considerable variability in gene expression 
at the single-cell level, revealing the complexity of nucleo-
tide metabolism in CRC. Spatial transcriptomic analysis 
further revealed distinct expression patterns across cellular 
subpopulations and microenvironments. The heterogeneity 
observed suggests that diverse cell types may profoundly 
affect nucleotide synthesis and function, highlighting nucle-
otide metabolism as a promising therapeutic target in CRC.

Colorectal cancer samples exhibited significantly higher 
expression levels of genes related to nucleotide metabolism 
compared to adjacent cell types. This suggests elevated 
nucleotide metabolic activity within tumor tissues, as 
nucleotides and deoxyribonucleotides serve as substrates 
for cell growth and proliferation, with altered metabolism 
potentially associated with nucleotide synthesis (Elia and 
Haigis 2021). Previous studies have demonstrated height-
ened activation of key enzymes involved in pyrimidine 
nucleotide synthesis and salvage pathways, such as thymi-
dylate and thymidylate kinase, in tumor cells, particularly 
in metastatic tumors (Zhang et al. 2014). Integrating this 
nucleotide metabolism signature into the spatial transcrip-
tome via deconvolution revealed elevated scores associated 
with nucleotide metabolic signatures at the core regions of 
colorectal cancer tumors. While our current findings do not 

Fig. 7   Analysis of the immune microenvironment and immune-
related functions in different risk-scoring subgroups of the TCGA 
cohort. (A) Evaluation of variations in immune infiltration across risk 
score subgroups employing seven different algorithms. (B) Assess-
ment of differences in immune scores and stromal scores calculated 
via ESTIMATE for distinct risk score subgroups. (C) Examina-
tion of variations in immune checkpoint expression within different 
risk score subgroups. (D) Heatmap displaying distinctions in tumor 
microenvironment (TME) score, immune checkpoint expression, and 
immune cell infiltration among diverse risk subgroups. (E) Radar 
chart depicting variations in immune cell infiltration and immune-
related pathways assessed via ssGSEA among patients in different 
risk groups. (F) Correlation analysis between cancer RNA stemness 
score (RNAss) and risk score. ns, Not significant; * p< 0.05; ** p< 
0.01; *** p< 0.001; **** P< 0.0001

◂
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Fig. 8   Biological characteristics of different risk score groups in the 
TCGA cohort. (A) MsigDB-based GSVA analysis describing the 
biological properties of the two nucleotide metabolism-related score 
groups. (B) Metascape-based enrichment analysis of differentially 
expressed genes between the two risk-scoring groups. (C) t-SNE plots 

of both GO and Reactome terms describing the differences in nucleo-
tide metabolic pathway activities in the two risk-scoring groups. (D) . 
GSEA of GO and KEGG terms for the risk signature. ns, Not signifi-
cant; * p< 0.05; ** p< 0.01; *** p< 0.001; **** P< 0.0001
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conclusively establish heightened nucleotide metabolism 
levels at the core of colorectal cancer, there appears to be 
an association between metabolic communication and one-
carbon metabolism within the tumor microenvironment 

and colorectal cancer development. Leveraging spatial 
transcriptomic techniques, we further integrated the expres-
sion profiles of nucleotide metabolism-related genes with 
specific cell types and tissue structures, revealing spatial 

Fig. 9   Prediction of the effects of immunotherapy and chemotherapy. 
(A) Comparison of the relative distributions of immunization scores 
(IPS) in the high-risk scoring group and the low-risk scoring group. 
(B) The relationship between risk scores, ICB response traits, and the 
various stages of the tumor-immunity cycle. (C) Heatmap of modeled 

gene-immunity gene correlations. (D) Differences in TIDE between 
CRC patients in the high-risk scoring group and those in the low-risk 
scoring group. (E) Correlation of risk scores with IC50 values for cis-
platin, imatinib, and doxorubicin. ns, Not significant; * p< 0.05; ** 
p< 0.01; *** p< 0.001; **** P< 0.0001
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heterogeneity in nucleotide metabolism within the colo-
rectal cancer microenvironment (Han et al. 2021). Notably, 
our observations, both at the single-cell sequencing and spa-
tial data levels, indicate robust cellular crosstalk between 
epithelial cells and fibroblasts, with the latter exhibiting 
higher scores in nucleotide metabolism. Prior research has 

elucidated how tumor cells communicate with fibroblasts via 
the release of exosomes, impacting tumor proliferation and 
invasiveness (Zheng et al. 2020). Additionally, the interac-
tion between cancer cells and tumor-associated fibroblasts 
(CAFs) influences tumor growth and invasion (Beatty et al. 
2011). In the tumor microenvironment, cellular commu-
nication between tumor cells and fibroblasts may involve 
the release and exchange of nucleotide metabolites, thereby 
affecting cell growth, differentiation, and metabolic status.

Nucleotide metabolism plays a pivotal role in immu-
nosuppression in colorectal cancer, affecting immune cell 
function, infiltration, and immune checkpoint suppression, 
which facilitates tumor immune evasion. To tackle this, we 
created a new risk-scoring system that utilizes nucleotide 
metabolism-related biomarkers to predict therapy outcomes 
and stratify risk in CRC patients from TCGA and GEO data-
sets. Patients were categorized into high and low-risk groups 
based on their gene expression patterns, with those in the 
high-risk group showing worse prognoses, increased TMB, 
and more TIIC infiltration. Our signature's predictive power 
for patient survival was confirmed across both training and 
validation cohorts, establishing its potential as an independ-
ent prognostic indicator in CRC.

Our research indicates that high-risk group patients 
exhibit an immunosuppressive tumor microenvironment 

Fig. 10   ACOX1 and CPT2 are protective genes in CRC patients. 
(A) Spatial map demonstrating the expression of ACOX1 in colo-
rectal cancer. (B) Kaplan-Meier survival curves of OS for patients 
in the ACOX1+ epithelial cells high and low expression groups. 
The proportion of ACOX1+ epithelial cells in patients producing 
different immune responses. (C) Spatial maps of different cell types 
were obtained by the algorithm of reverse convolution. Included 
here are ACOX1 expression-positive and expression-negative epi-
thelial cells, endothelial cells, myeloid cells, mast cells, fibroblasts, 
and T/NK cells. (D, E) Heatmaps and network diagrams to predict 
the strength of communication between different cell types based on 
the stlearn method. (F) Spatial map demonstrating the expression 
of CPT2 in colorectal cancer. (G) Kaplan-Meier survival curves for 
OS in patients in the CPT2+ epithelial cells high and low expression 
groups. The proportion of CPT2+ epithelial cells in patients who pro-
duced different immune responses. (H) Spatial maps of different cell 
types were obtained by an algorithm of reverse convolution. Included 
here are CPT2 expressing positive and expressing negative epithelial 
cells, fibroblasts, T/NK cells, endothelial cells, myeloid cells, and B 
cells. (I, J) Heatmaps and network diagrams of the strength of com-
munication between different cell types were extrapolated according 
to the method of stlearn

◂

Fig. 11   Expression of ACOX1 and CPT2 in CRC. (A) Immunohis-
tochemical staining results showed the protein expression levels of 
ACOX1 and CPT2 in colorectal cancer tissues. (B) Compared with 
human intestinal epithelial NCM cell lines, ACOX1 and CPT2 were 

expressed at lower levels in CRC cell lines. (C) Relative expression 
of ACOX1 and CPT2 in CRC cells transfected with si-RNA or nega-
tive control (NC) was detected by RT-qPCR. ns, Not significant; * p< 
0.05; ** p< 0.01; *** p< 0.001; **** P< 0.0001
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(TME) in colorectal cancer, which is characterized by weak-
ened immune surveillance, reduced immune cell infiltration, 
an abundance of immunosuppressive cells, and disrupted 
immune checkpoint pathways, all of which promote tumor 
immune evasion and progression. The elevated TME scores 
in these patients are associated with increased risk, align-
ing with previous studies that have shown mesenchymal and 
immunological scores to rise with disease advancement, 
signaling a poor prognosis in CRC (Zhang et al. 2017). 
High-risk colon cancer patients also demonstrate increased 
activity of immune checkpoint molecules such as PD-1 and 
CTLA-4, which hinder T-cell function and their capacity to 
target cancer cells. This is further supported by enrichment 
analysis showing a propensity for tumor invasion and metas-
tasis in high-risk individuals, linked to the deregulation of 
JAK-STAT and TNF pathways. These pathways exacerbate 
the inflammatory environment within the TME of high-risk 
patients, suppressing the generation of anti-tumor inflamma-
tory factors and thereby promoting tumor growth and spread. 

This comprehensive analysis of the CRC TME underscores 
the complexity of immune interactions and their critical role 
in disease progression and patient outcomes.

Higher Tumor Mutational Burden (TMB) often leads to 
more tumor neoantigens, potentially enhancing immune 
response and making tumors more recognizable by the immune 
system, which could improve responses to immunotherapy 
(Zhang et al. 2023a). Microsatellite Instability-High (MSI-H), 
prevalent in colorectal cancer, indicates a DNA repair defi-
ciency, increasing mutational load and tumor immunogenicity, 
with immunotherapy showing better outcomes in MSI-H CRC 
patients (Li et al. 2023). However, our study found that despite 
high TMB and MSI-H, the immunotherapy response in the 
high-risk CRC group was unexpectedly poor. We discovered a 
negative correlation between risk scores and positive immune 
checkpoint blockade (ICB) signals and a positive correlation 
with a suppressed tumor immune cycle. To gauge the immune 
status and guide therapy, we used "Tide" and "IPS” metrics. A 
high Tide level suggests a low immunotherapy response due to 

Fig. 12   Functional experiments of ACOX1 and CPT2 in CRC. (A) 
Transwell assay showed that down-regulation of ACOX1 and CPT2 
expression promoted the migration and invasion ability of CRC 
cells. (B) CCK8 assay showed that the proliferation ability of CRC 

cells with reduced expression of ACOX1 and CPT2 was significantly 
enhanced compared with the NC group. ns, Not significant; * p< 
0.05; ** p< 0.01; *** p< 0.001; **** P< 0.0001
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a weak immune attack on tumor cells, while a higher IPS score 
indicates a more active immune system, potentially leading 
to better immunotherapy outcomes. Our findings link lower 
risk scores to higher immunotherapy response rates and bet-
ter prognoses. Even with high TMB or MSI-H, CRC patients 
might develop immune evasion strategies, such as increased 
immune checkpoint expression, reduced tumor antigen pres-
entation, and immune cell suppression by tumor-associated 
macrophages and Tregs, which could limit immunotherapy 
efficacy. Combining chemotherapy with immunotherapy is a 
key strategy in CRC, with chemotherapy potentially boost-
ing immunotherapy by reducing tumor load and immunosup-
pression. Our study's finding of increased chemotherapeutic 
sensitivity in the low-risk group suggests that combining cis-
platin with immunotherapies could enhance treatment benefits, 
possibly by stimulating CD8+ T cells and strengthening the 
anti-cancer immune response.

Our study meticulously utilized single-cell sequencing 
to pinpoint ACOX1 and CPT2 as pivotal oncogenes in the 
nucleotide metabolism of colorectal cancer. Underexpres-
sion of ACOX1, observed in Oral Squamous Cell Carcinoma 
(OSCC) and linked to tumor growth inhibition, suggests its 
role in tumor suppression, supported by its association with 
tumor formation in breast and pancreatic cancers (Zhou et al. 
2021; Shen et al. 2020). The stability of ACOX1 is governed 
by DUSP14, which, through dephosphorylation, enhances 
ACOX1 degradation, thereby potentially accelerating CRC 
progression. This degradation leads to increased palmitoyla-
tion of β-linker proteins, furthering CRC advancement (Zhang 
et al. 2023b). CPT2, essential for fatty acid metabolism, is 
significantly downregulated in CRC, contributing to stem cell 
characteristics and oxaliplatin resistance. This downregula-
tion triggers higher ROS levels, activates the Wnt/β-cyclin 
pathway, and boosts glycolysis, enhancing CRC cell stemness 
and chemoresistance (Li et al. 2021; Liu et al. 2022b). Delv-
ing into ACOX1 and CPT2's regulatory mechanisms prom-
ises to illuminate CRC's pathogenesis and pave the way for 
innovative treatments. Our results indicate that CRC cells 
with higher ACOX1 and CPT2 expression tend to have bet-
ter prognoses and increased sensitivity to immunotherapy. 
Knockdown experiments reinforced that diminished ACOX1 
and CPT2 expression contribute to malignancy, influencing 
proliferation, apoptosis evasion, and tumor invasiveness. In 
essence, our research emphasizes ACOX1 and CPT2's crucial 
roles in CRC development and their potential as therapeutic 
targets.

Our study conducted a comprehensive analysis of nucle-
otide metabolism gene expressions in colorectal cancer 
using single-cell sequencing and spatial transcriptomics. It 
revealed expression disparities among cellular subpopula-
tions, underscoring nucleotide metabolism's role in tumor 
immune evasion and drug resistance. Focused on these gene 
expressions, we developed a risk score model predictive of 

CRC patient survival and associated with immunotherapy 
and chemotherapy responses, gene mutations, and the tumor 
microenvironment. The study also identified ACOX1 and 
CPT2 as significant prognostic markers in CRC, suggesting 
their potential as targets for immunotherapy.

Conclusion

This study utilized single-cell sequencing and spatial tran-
scriptomics to analyze nucleotide metabolism-related gene 
expressions in colorectal cancer, uncovering cellular subpopu-
lation-specific variations. The research elucidated the intricate 
relationship between nucleotide metabolism, CRC's immune 
evasion, and drug resistance, leading to the creation of a pre-
dictive risk score model for patient survival. This model cor-
relates with immunotherapy response, chemotherapy effec-
tiveness, gene mutations, and the tumor microenvironment, 
highlighting its clinical significance. Additionally, ACOX1 
and CPT2 were identified as potential prognostic indicators 
for CRC, indicating their potential as therapeutic targets. 
These insights advance our knowledge of CRC pathogen-
esis and could guide the development of tailored treatment 
approaches.
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