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Abstract

Introduction

We describe a method for analyzing the within-household network dynamics of a disease

transmission. We apply it to analyze the occurrences of endemic diarrheal disease in Cam-

eroon, Central Africa based on observational, cross-sectional data available from household

health surveys.

Methods

To analyze the data, we apply formalism of the dynamic SID (susceptible-infected-diseased)

process that describes the disease steady-state while adjusting for the household age-struc-

ture and environment contamination, such as water contamination. The SID transmission

rates are estimated via MCMC method with the help of the so-called synthetic likelihood

approach.

Results

The SID model is fitted to a dataset on diarrhea occurrence from 63 households in Camer-

oon. We show that the model allows for quantification of the effects of drinking water con-

tamination on both transmission and recovery rates for household diarrheal disease

occurrence as well as for estimation of the rate of silent (unobserved) infections.

Conclusions

The new estimation method appears capable of genuinely capturing the complex dynamics

of disease transmission across various human, animal and environmental compartments at

the household level. Our approach is quite general and can be used in other epidemiological

settings where it is desirable to fit transmission rates using cross-sectional data.
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Software sharing

The R-scripts for carrying out the computational analysis described in the paper are avail-

able at https://github.com/cbskust/SID.

Introduction

Diarrhea often occurs as a symptom of an infection in the intestinal tract caused by a bacterial,

viral or parasitic organism. Such infections are typically spread through drinking water, con-

taminated food, or from animal-to-person and from person-to-person as a result of poor

hygiene [1, 2]. Most people who die from diarrheal diseases actually die from severe dehydra-

tion and fluid loss. Children who are malnourished or have impaired immunity as well as peo-

ple living with HIV are most at risk of life-threatening diarrhea. Indeed, diarrhea is one of the

primary killers of the young children worldwide, with an estimated 1.7 billion annual cases of

diarrhea among children under 5 resulting in over 500,000 deaths, the majority occurring in

low and middle income countries [3].

Although diarrheal disease is common across all economic settings, it has the most potential

to cause severe consequences when resources and medical care are limited or when co-mor-

bidities are present. Acute episodes of disease more quickly lead to dangerous dehydration,

while chronic gastrointestinal infection is now thought to be linked to environmental enteric

disorder (EED), which results in a chronically damaged gut, reduced immunity, and stunted

growth [4]. Loss of linear growth, particularly in a child’s first years of life, can have long last-

ing impacts on cognitive and motor development [5]. However, consequences of disease aside,

it remains unclear how differences in exposures and susceptibility play a role in the overall dif-

ference observed between children’s and adults’ diarrhea incidence.

In looking at household exposures to pathogens that may cause diarrhea, it appears that the

interaction with animals (whether pets, livestock, or wildlife) plays an important role [3, 4, 6].

However, the potential of childhood animal exposure to modulate immunity and allergies [7–

10] and of livestock ownership to improve nutrition and economic stability for families [4, 6]

means that the specific role of household animals in transmission of diarrheal disease is com-

plicated and needs to be clarified and better quantified with the help of a more mechanistic

model.

The investigation of mechanisms behind household transmission of pathogens that cause

diarrhea is not easy due to the complexity of the disease and its persistent endemic state in the

global human population [3]. In general, the disease may be caused by both human-specific as

well as zoonotic pathogens that have a variety of life cycles and the sheer number of potential

culprits makes determining the specific cause of all observed cases on any sort of large scale

practically impossible [3, 11]. In many developing countries (including most of Africa, see

[12]) the problem is additionally compounded by the fact that most of the health surveillance

programs operate with limited resources, and the data to assess transmission of diarrhea is

generally limited to demographics, reported incidence of diarrhea, and possibly some outcome

measures on households or individuals testing positive for a particular pathogen [11, 13].

Although such data may be used with the traditional mechanistic models to ascertain the role

of different pathogens and transmission pathways on incidence of diarrhea [14, 15], the tradi-

tional models have difficulty adjusting for the presence of unrelated, endemic baseline of diar-

rhea occurrences [16, 17].

Household transmission dynamics in diarrheal disease
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Our contribution

In this paper we propose a method of modeling transmission pathways of diarrhea using

symptoms occurrence data from individual households consisting of family members with dif-

ferent susceptibility (for instance, children and adults) in the environment subject to water-

borne pathogen contamination and possibly also other risks effecting baseline incidence rates.

Our approach is quite general and allows to adjust not only for these different causes of diar-

rhea, even with data of poor resolution, but also for a variety of confounders typically encoun-

tered in similar observational studies. The particularly relevant confounders in our setting are

the cases of non-symptomatic infectives and uninfected symptomatics. An example of a data-

set of interest, as obtained from a cross-sectional study of Cameroon households, is presented

in Table 1. The dataset is especially interesting as it matches the results of household drinking

water testing for pathogens with detailed household health survey and demographic data. For

the type of observational data in Table 1 we propose to first fit the household-level occurrence

model and then to apply parametric resampling technique akin to the synthetic likelihood (see,

e.g., [18, 19]) to obtain approximate distribution of the mean occurrence across households.

Due to some general approximation results for a wide class of counting processes (see [20]

chapter 11) we may assume here that the mean of the diarrhea occurrence is well-approxi-

mated by the stationary state of a certain system of ordinary differential equations (ODEs)

with additive normal noise. This main idea behind our proposed approach is summarized in

Fig 1.

Note that without the intermediate resampling step it is in general not possible to obtain

the estimates of the transmission dynamics simply from cross-sectional occurrence. However,

under the assumption of a constant risk (which is typically tacitly made in similar studies) we

may consider the observed cases of diarrhea as a statistical sample from a stationary disease

process. In this case, the ODEs parameters may be identified using the Bayesian inference tech-

niques with the help of an MCMC algorithm (see, e.g., [21]). Using this approach we are able

to obtain all relevant posterior estimates, including transmission rates and the expected count

of latent infections (infection present but no diarrhea symptoms) as well as disease-unrelated

occurrences (diarrhea symptoms present but no infection). Details of the analysis method are

provided in the next section. To our knowledge, ours is the first application of the synthetic

likelihood/resampling method to observational data on household diarrhea occurrence. We

hope that similar approaches can be applied to larger datasets and consequently help improve

current guidelines for treatment and intervention for diarrhea [2].

Materials and methods

Occurrence data and observed likelihood

To perform our analysis we use data from the observational study investigating the relation-

ship between household drinking water quality and diarrhea occurrence in Maroua,

Table 1. Example of several data records from the dataset of M = 63 Maroua households. Full dataset provided in S1 Data.

Household

Id

Water

Contamination

Adults

Sympt/Total

Juveniles

Sympt/Total

1 No 0/2 0/0

4 Yes 0/6 0/4

24 Yes 1/4 0/2

51 No 2/2 0/0

https://doi.org/10.1371/journal.pone.0206418.t001
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Cameroon. The data was described in [22] and more recently in [12]. Briefly, the study exam-

ined the relation between the occurrences of diarrhea and the presence of gastrointestinal

pathogens within home drinking water sources in four urban neighborhoods in Maroua, the

regional capital of northern Cameroon. For the purpose of the study diarrhea was defined as

three or more loose bowel movements (“selles molles” in French) per day.

Heads of household assented to participation in the study with the use of a verbal consent

script. In addition, other members of the household present for the survey assented to the sur-

vey and water sampling. Assent was recorded through use of a verbal consent script by the

technicians collecting samples and administering the survey. The protocol was approved by

the Ohio State University Institutional Review Board/ Human Research Protection Program

(Federal-wide Assurance #00006378 from the Office for Human Research Protections in the

Department of Health and Human Services: protocol 2010B0004). Within this ethical review

for the survey the protocol was approved for a waiver of signed consent forms due to the low

literacy of the population and cultural inappropriateness of obtaining signatures to record

consent.

Diarrhea occurrence data and water samples from home water storage containers were col-

lected from M = 63 households. Pathogen contamination was assessed using qPCR method,

targeting several potential zoonotic pathogens including Campylobacter spp., Shiga toxin pro-

ducing Escherichia coli (stx1 and stx2), and Salmonella spp. Microbial source tracking (MST)

targeted three different host-specific markers: HF183 (human), Rum2Bac (ruminant) and

GFD (poultry) to identify fecal contamination sources. For the purpose of our analysis below

the pathogen/MST levels in each household were encoded as binary outcomes (water contami-

nation present/absent) and combined with collected demographic information on the number

Fig 1. Synthetic inference based on some data Xobs and the SID likelihood PM
X ðθ̂ ). The count data X1, . . . XM

represents household level diarrhea cases among adults and juveniles under and contaminated (V = 1) and clean

(V = 0) environments and is used to fit the generative model (observed likelihood) ‘MðẐ Þ based on (1). The generated

pseudo-data XM
1
; . . .XM

n are then used to fit the SID model PM
X ðŷ Þ based on (2) and (3).

https://doi.org/10.1371/journal.pone.0206418.g001

Household transmission dynamics in diarrheal disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0206418 November 7, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0206418.g001
https://doi.org/10.1371/journal.pone.0206418


of household members, their age and the history of diarrhea symptoms within last 14 days.

Two neighborhoods tested positive for most pathogens/MST while the others only tested posi-

tive for one or two. As E.coli was found in all water samples, it was excluded from our contami-

nation criterion. Spatial variation of pathogens/MST existed between sources, storage

containers, and neighborhoods but was not included in the set of covariates for current analy-

sis due to small sample sizes of different spatial patterns. Differing population density and

ethno-economic characteristics could potentially explain and correct for the variation but for

the sake of simplicity we have not performed such analysis here. For illustration, several data

points from the Cameroon dataset are listed in Table 1 where the diarrhea occurrences are

recorded separately for adult and juvenile (under 15 years old) household members. The total

number of adults and juveniles in the water contaminated (resp. uncontaminated) households

was NJ(1) = 103 and NA(1) = 111 (resp. NJ(0) = 99 and NA(0) = 155).

Assuming that the data in Table 1 constitutes a sample from the cross-sections of a station-

ary distribution, each datapoint may be represented as a pair of occurrences of diarrhea (DJ,

DA) observed, respectively, in adult and juvenile compartments of random size (NJ, NA).

Because the mean and variance for the juvenile and adult compartments are approximately the

same, the independent Poisson distributions are assumed for their respective sizes. Given the

compartment sizes and the status of water contamination, the respective numbers of occur-

rences within compartments are assumed to follow binomial distributions with probabilities

pJ(V) and pA(V) where V 2 {0, 1} denotes the presence or absence of the water contamination.

Although we do not model it explicitly due to small sample sizes, we tacitly assume the func-

tional relationship between pJ(V) and pA(V). In summary, for the compartments of sizes NJ,

NA, and the number of symptomatic (diseased) individuals denoted by DJ, DA, and the house-

hold contamination status V, we assume the following generative model for the data

NJ � PoissonðlJÞ;DJ � BinomialðNJ; pJðVÞÞ

NA � PoissonðlAÞ;DA � BinomialðNA; pAðVÞÞ:
ð1Þ

Under the above model the likelihood-based inference may be now performed to estimate

the compartment- and contamination-specific vector of parameters ηV = (pJ(V), pA(V), λJ, λA)

for V 2 {0, 1}. For ease of notation, in what follows we suppress the subscript V when describ-

ing the parameters. Further details are provided in S1 Appendix. The numerical values of the

estimated parameters are given in the next section.

SID model and synthetic likelihood

The data in Table 1 is cross-sectional and cannot be immediately used to analyze the within-

household transmission pattern. Nevertheless, the generative representation via (1) allows for

valid statistical inference indirectly, using the idea of synthetic likelihood akin to that proposed

in [18]. Note that if we consider the sample from (1) as a set of independent realizations of

some stationary counting process, then, by a version of the central limit theorem, we could

expect its mean to approximately follow the normal distribution centered at a stationary solu-

tion of a certain ODE system (see [23] chapter 5). For the particular problem in hand, it is nat-

ural to take the ODE system to be one describing a compartmental SID (susceptible-infected-

diseased) model defined below. Accordingly, the fitted generative model (1) may be used to

generate n independent batches of M pseudo-data (denoted Xobs, see below) with correspond-

ing n averages (denoted XM
obs, see below) following a normal distribution with mean deter-

mined by the stationary SID system of ODEs.

In order to describe the SID model and introduce the required notation, denote the house-

hold-observed number of non-symptomatic and non-infected, adults (resp. juveniles) by SA

Household transmission dynamics in diarrheal disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0206418 November 7, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0206418


(resp. SJ), the non-symptomatic but already pathogen infected adults (resp. juveniles) by IA
(resp. IJ), and the symptomatic, or diseased, either infected or non-infected, adults (resp. juve-

niles) by DA (resp. DJ). The complete data for a given household with environment V 2 {0, 1}

comprises the vector X = (SJ, IJ, DJ, SA, IA, DA, V) although in practice (due to lack of symptoms

among I’s) only the vector Xobs with the aggregated counts of the non-symptomatic ~DA ¼

SA þ IA and ~DJ ¼ SJ þ IJ as well as DA, DJ and V is observable. Under these assumptions, the

Maroua data (cf. Table 1) may be considered as the set of M = 63 independent observations of

the random vector Xobs. We denote the empirical mean of Xobs based on M observations by

XM
obs and assume that it follows the normal distribution with mean given by the stationary com-

partmental SID model, as summarized in Table 2 and Fig 2. Since in the actual dataset only a

single vector XM
obs is available, we generate additional means vectors from the pseudo-data

using (1) as described above. As seen in Table 2, depending on the status of contamination

(V 2 {0, 1}), our SID model is parametrized by the vector θV of 12 (V = 0) or 14 (V = 1) param-

eters. As before, we suppress the subscript V in what follows and write

θ ¼ ðbJJ; bJA;V�J ; gJ; bAA; bAJ;V�A; gA; aJ ; nJ; dJ; aA; nA; dAÞ

to denote the appropriate rates of transmission and recovery/infection between different

model compartments and types.

As summarized in Table 2, for i, j 2 {A, J}, βij denotes the rate at which SM
i , through interac-

tion with IMj , converts into IMi ; Vϕi denotes the rate at which infected environment (V = 1) con-

verts SM
i into IMi (Vϕi = 0 for V = 0); αi denotes the rate at which SM

i converts into DM
i and δi is

the rate of the reverse conversion. Finally, νi denotes the rate at which IMi progresses to DM
i and

γi − νi denotes the rate at which IMi returns back to SM
i . The graphical diagram of all the transi-

tions and interactions in Table 2 is presented in Fig 2.

The corresponding ODE system describing the SID dynamics is presented in (A.2) in

S1 Appendix. Based on that system we may relate the generated pseudo-data to model parame-

ters as follows. Consider the average number of household asymptomatic individuals in adult

and juvenile groups and denote

~DM
A ≔ SM

A þ IMA and ~DM
J ≔ SM

J þ IMJ :

Solving the SID model ODE for its steady state we obtain, on one hand,

~DM
J ¼

gJ

bJJ IJ þ bJAIA þ V�J
þ 1

� �

IJ ≕ f θ1
1 ðIJ; IAÞ

~DM
A ¼

gA
bAAIA þ bAJIJ þ V�A

þ 1

� �

IA ≕ f θ2
2 ðIJ; IAÞ

ð2Þ

Table 2. The reaction network description of the SID model with two compartments (i, j 2 {A, J}). The graphical representation of the network is provided in Fig 2 and

the corresponding ODE system in (A.2) in S1 Appendix.

Rate Parameter Transition Rate Parameter Transition

βij (Si, Ij)! (Ii, Ij) Vϕi Si! Ii
αi Si! Di δi Di! Si
νi Ii! Di γi − νi Ii! Si

https://doi.org/10.1371/journal.pone.0206418.t002
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and, on the other,

~DM
J ¼

ðaJ � nJÞIJ þ dJDJ

aJ
≕ f θ3

3 ðIJÞ

~DM
A ¼

ðaA � nAÞIA þ dADA

aA
≕ f θ4

4 ðIAÞ:
ð3Þ

where the f’s are defined by their left-hand sides and we denote θ1 = (βJJ, βJA, VϕJ, γJ),
θ2 = (βAA, βAJ, VϕA, γA), θ3 = (αJ, νJ, δJ), and θ4 = (αA, νA, δA), so that θ = (θ1, θ2, θ3, θ4).

Note that the quantities ~DM
A and ~DM

J are derived from the pseudo-data XM
obs obtained by sam-

pling from the fitted model (1).

Parameter estimation

Due to a relatively small size M of the dataset, we do not attempt to evaluate the variable V
dynamically but instead consider two separate SID models for contaminated and uncontami-

nated environments (V = 1 and V = 0). In each case, in order to estimate the vector of parame-

ters θ as well as two hidden states (IA, IJ) based on the generated sample of n pseudo-averages

XM
obs, we employ an MCMC procedure. Its advantage is in being able to handle the latent

(unobservable) variables and in providing a simple and intuitive way of validating the final

model against observations in Table 1. The disadvantage is in a relatively high computational

overhead due to a somewhat complicated Metropolis-within-Gibbs algorithm [24] described

in Algorithm 1 below. Details on the forms of the conditional distributions are provided in

S1 Appendix. To ease notation, let θ−k denote the vector θ with its k-th component

removed (k = 1, . . ., 4). Recall that when V = 0 the ϕ parameter is 0 and hence is excluded from

from θ1 and θ2. We estimate parameters θ separately for V = 0, 1 via the following iterative

procedure.

Fig 2. The graphical representation of the SID model from Table 2 with marked two compartments J (juveniles) and A (adults). Solid lines denote

transitions within compartments. Dashed lines indicate transitions due to interactions (both within and across compartments) between susceptible (S)

and infected (I) individuals.

https://doi.org/10.1371/journal.pone.0206418.g002
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MCMC algorithm for SID model fitting.

1. Given the state of environment V 2 {0, 1} generate a collection ~dVðnÞ of n pseudo-data

points ð~dA
i ;

~dJ
iÞðVÞ, each of them being an average of M independent draws of the pair

ð~DA;
~DJÞðVÞ from (1) under fitted parameters Ẑ.

2. Initiate values of the rate vector θ as well as IA(V), and IJ(V), according to their prior distri-

butions (see S1 Appendix).

3. Using the Metropolis-Hastings (MH) step, conditionally on (IA, IJ)(V) and ~dVðnÞ, draw

sequentially samples from the conditional distributions of θk|θ−k, k = 1, . . ., 4. The form of

the proposal in MH step as well as the forms of the conditionals are given in (A.4)–(A.7) in

S1 Appendix

4. Using the MH step, conditionally on θ and ~dVðnÞ, draw independently from IA(V) and

IJ(V) using their conditionals as given in (A.8) and (A.9) in S1 Appendix.

5. Repeat step 3 and 4 until convergence.

In our analysis, we iterated the above MCMC procedure 40,000 times retaining every 10-th

iteration for V = 0 and 20-th iteration for V = 1, in order to ensure good chain mixing. We also

removed the first 20,000 iterations as a burn-in set and summarized the posterior statistics

based on the remaining iterations. To check for the robustness of our analysis with respect to

the amount n of the generated pseudo-data, we applied the MCMC algorithm above with

n = 50 and n = 100, however, since the results were virtually identical, we only report below on

the case n = 100. Although larger values of n could be also considered, this particular value

seems to strike a good balance between required MCMC precision and computational

overhead.

Model validation. The final step in our model estimation procedure was validation

against the observed data. This was done by comparing the posterior distributions of the

model generated data samples using estimated parameters with the actually observed values

from Xobs and looking for large departures from the posterior mode.

Software. The R-scripts for carrying out tour computational analysis described above

along with the Maroua dataset adapted from [22] are available at https://github.com/cbskust/

SID.

Results

The initial set of fitted parameters obtained for the generative model (1) based on the M = 63

Maroua households dataset is provided in Table 3. As can be seen from the entries in the table,

an interesting feature of this dataset appears to be that the probability of diarrhea in the juve-

nile compartment is decreased in the households with contaminated water environment

(V = 1). There may be several reasons for this finding which appears inconsistent with other

reported observational studies [25]. First, the survey data for juveniles may be less reliable than

for adults, particularly in young children who under our definition are also a part of the juve-

nile compartment. Second, it is known [26] that a substantial number of juvenile diarrhea

Table 3. Estimates in data generating model based on the observed likelihood (1). Estimates of λ are pooled across V values.

Water Contamination (V) pJ pA λJ λA
Yes (V = 1) 0.1262 0.1261 3.2063 4.2222

No (V = 0) 0.1414 0.0710 3.2063 4.2222

https://doi.org/10.1371/journal.pone.0206418.t003
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cases is, in fact, unrelated to the waterborne infections and the collected data may be simply

confounded with this unrelated process. Finally, it is also possible that the contaminated envi-

ronment offers some measure of immunity from diarrhea, perhaps due to non-specific activa-

tion of the immune system [26].

The numerical results of the MCMC-based fitting of θ for SID model under both V = 0 and

V = 1 are summarized in Table 4 where we list the posterior means, posterior standard devia-

tions, and 95% credible intervals (CIs) based on the generated n = 100 pseudo-data points and

2000 thinned posterior samples. Complementing the table entries, the full sets of marginal

densities and trace plots for the posterior distributions are provided, in S1–S4 Figs of the Sup-

porting Information.

Although we opted not to conduct the direct comparison of the parameter values in θ
between V = 0 and V = 1, one may somewhat informally perform such a comparison based on

the CI entries in Table 4. In general, if for a particular parameter in θ its CI bounds under

V = 0 are contained within the CI bounds under V = 1, or vice-versa, one would consider the

corresponding posterior distributions as statistically (i.e., for given data) equal. To facilitate

such analysis in Table 4 the parameters with statistical distinct posterior distributions are

entered in bold. From the entries in Table 4 it therefore follows that although the posterior dis-

tributions of the transmission rates βJJ and βAJ are statistically different between V = 0 and

V = 1, it is not so for the remaining rates βAA and βJA. Similarly, we find that although the aver-

age number of silent infections among juveniles under V = 0 and V = 1 (mean IMJ ð1Þ ¼ 2:2634

vs mean IMJ ð0Þ ¼ 1:6109) is not statistically different, this is not the case for the average num-

ber of silent infections among adults, despite the smaller absolute difference of their means.

(This particular finding appears to be due to the relatively large value of the posterior standard

deviation of IJ(1).) Similar comparisons may be also performed between the recovery rates.

Indeed, we find that while the recovery rate in the adult compartment is significantly slowed

down in the contaminated environment (mean δA(1) = 0.7880 vs mean δA(0) = 0.6314), the

rate in the juvenile compartment is not significantly changed.

Table 4. Summary of MCMC results based on n = 100 pseudo-households.

Water contaminated (V = 1) Water clean (V = 0)

Mean Std Dev 95% CI Mean Std Dev 95% CI

βJJ 0.4921 0.4212 (0.0296, 1.5966) 0.5275 0.4293 (0.0392, 1.6873)

βJA 0.4950 0.4224 (0.0348, 1.5245) 0.4677 0.3962 (0.0355, 1.5137)

ϕJ 0.5159 0.4227 (0.0233, 1.6213)

γJ 0.7700 0.5357 (0.0761, 2.1018) 0.7104 0.4933 (0.0795, 2.0047)

βAA 0.4829 0.3699 (0.0404, 1.3745) 0.4563 0.3699 (0.0317, 1.4145)

βAJ 0.5562 0.4443 (0.0298, 1.6465) 0.4748 0.3771 (0.0269, 1.4428)

ϕA 0.5318 0.4228 (0.0561, 1.7337)

γA 0.7847 0.5688 (0.092, 2.3176) 0.8219 0.5571 (0.0999, 2.1469)

αJ 0.4892 0.4824 (0.0651, 1.7999) 0.7266 0.4694 (0.1424, 1.8301)

νJ 0.1415 0.1409 (0.0131, 0.5821) 0.2318 0.1980 (0.0157, 0.7836)

δJ 0.9223 0.4685 (0.1324, 1.9421) 0.7711 0.5515 (0.0599, 2.2047)

αA 0.7269 0.5331 (0.1042, 2.1272) 0.8243 0.5424 (0.1194, 2.2096)

νA 0.1927 0.1728 (0.0144, 0.6356) 0.2192 0.1952 (0.0168, 0.7247)

δA 0.7880 0.5270 (0.0972, 1.9188) 0.6314 0.4654 (0.0605, 1.8727)

IMJ 2.2634 1.0453 (0.2444, 3.7829) 1.6109 0.4300 (0.6082, 2.2321)

IMA 3.3334 0.7008 (1.4657, 4.1644) 3.0352 0.6349 (1.4452, 3.7943)

https://doi.org/10.1371/journal.pone.0206418.t004
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From the view point of waterborne disease, the most interesting are perhaps the estimates

of the water contamination effects on the households diarrhea persistence in different com-

partments. In Table 4 our SID model quantifies the effect of water contamination (V = 1) in

the households on average as ϕA = 0.5318 and ϕJ = 0.5159. This indicates that despite the differ-

ences in the diarrhea prevalence patterns among juveniles and adults (see Table 3), the overall

effect of waterborne pathogens is quantitatively similar. Note that the simple estimates in

Table 3 which are based on the survey data (Table 1) and ignore the SID dynamics and asymp-

tomatic infections suggest otherwise (cf. also [12]). Note also that according to the SID model

the average number of infectious individuals (both pre-symptomatic and never-symptomatic)

is larger in the contaminated environment, with the observed difference being significant in

the adult compartment. Moreover, Eqs (2) and (3) for the specific values in Table 4 indicate

that remediating contaminated water environment in the household (moving from V = 1 to

V = 0) is likely to remove the symptomatic cases in the average adult compartment but not so

in the juvenile one. Finally, let us also note that the observed higher prevalence of diarrhea

among juveniles Table 3 in the clean environment may be explained on the basis of our SID

model by the higher transmission in the juvenile compartment (βJJ(0) is significantly greater

then βJJ(1)) and an increase in non-pathogen/ non-household diarrhea (increased αJ).
The results of model validation are shown separately for the A and J compartments in Fig 3

where the numerical values of the means of Xobs (vertical lines) are plotted along with the cor-

responding histograms of their posterior distributions obtained from the model with estimated

parameters. As seen from the plots, the observed values are within the reasonable range of the

posterior mode and hence may be considered in agreement with the fitted model. This also

implies that the CI bounds in Table 4 may be interpreted as plausible ranges of respective

parameter values consistent with the observed data. These ranges are quite wide indicating

somewhat large uncertainty, likely due to moderate sample size (M = 63).

Summary and discussion

In many observational disease studies we lack the ability to collect repeated measurements

over time, either due to cost or practicality considerations. Consequently, disease transmission

studies often have to rely on cross-sectional data containing latent variables and multiple con-

founders (e.g. latent infections or different disease susceptibility across population). For such

data we have proposed here a statistical method for direct analysis of the transmission rates

across different population compartments and different environmental risk factors. The ideas

for statistical analysis came from the consideration of stationary SID model based on differen-

tial equations and synthetic likelihood with MCMC algorithm for estimating parameters. The

proposed estimation method appears to be quite stable and capable of converging in a rela-

tively large parameter space (in our example we had up to 16 parameters) even when supplied

with only slightly informative prior distributions for moderate sample size.

Applying modern Bayesian approach to fit SID transmission model allowed us to better

account for the uncertainty of various model components (i.e., bias or lack of accuracy) as well

as the uncertainty of outcomes predictions (i.e., variance or lack of precision). It also allowed

us to naturally incorporate any additional information about the model parameters. For

instance, should some of the estimated compartmental diarrhea probabilities be fixed at spe-

cific values (say, based on prior studies) the fitting algorithm could easily incorporate this addi-

tional information. In such case one would expect to see both model’s precision and accuracy

to increase. We also note that in our example dataset the posterior marginal distributions of

the parameters were all unimodal, indicating that the model parameters were identifiable, that

is, their joint posterior distribution had a unique mode contained in the range of plausible
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parameter values given the observed data. In general, our proposed statistical approach may be

viewed as an alternative to a more traditional epidemiological disease risk analysis based on

the odds ratios, where the Cochran-Mantel-Haenszel (CMH) stratification method is typically

used to adjust for confounders.

The example dataset we have chosen was part or a larger study investigating possible links

between drinking water contamination and diarrheal diseases in urban environment of Cen-

tral/Sub-Saharan Africa [12, 22]. Although this particular study did not specifically examine

other factors associated with gastrointestinal infections (socioeconomic status, overall sanita-

tion, household education, storage, etc), they likely did contribute to the observed baseline

(not water-related) occurrence. However, our statistical analysis indicated that in our dataset

they constituted only a small minority of the observed symptomatic cases.

In order to better appreciate the possible implications of SID-type analysis for public health

policies and interventions, it is helpful to compare its results (Table 4) with the results from

initial, purely descriptive analysis of the Maroua dataset (Table 3) akin to that conducted previ-

ously in [22]. We note that since descriptive analysis in Table 3 is based on risks comparison

(i.e., the binomial probabilities) it provides only an aggregated measure of the water contami-

nation effect on the prevalence of diarrhea. It is not clear in particular what specific transmis-

sion pathways should be targeted for intervention in order to minimize the observed

Fig 3. Model validation. The distributions of the posterior means of the counts of asymptomatic individuals in juvenile (J) and adult compartments

based on the fitted SID model (2) and (3) vs the actual observed values from M = 63 Maroua households (cf. Table 1) marked by vertical lines.

https://doi.org/10.1371/journal.pone.0206418.g003
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occurrence (note that the juvenile risk is actually smaller in contaminated households). In con-

trast, the SID analysis in Table 4 provides (via Eqs (2) and (3)) an explicit numerical relations

between transition rates and occurrence, and therefore a comprehensive picture of competing

household transmission risks. Consequently, the SID analysis allows for a more detailed exam-

ination of how household occurrence risk is associated with the water environment and how it

is transferred across age compartments. Such information appears essential for developing

more targeted water intervention strategies beyond those that are currently recommended by

WHO (see, [2] Section 11.3) for reducing diarrhea risk.
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