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Abstract

Objective

To look for abnormalities in circulating B-cell subsets in patients with rheumatic symptoms

of Whipple’s disease (WD).

Method

Consecutive patients seen between 2010 and 2016 for suspected inflammatory joint dis-

ease were identified retrospectively. Results of standardized immunological and serological

tests and of peripheral-blood B-cell and T-cell subset analysis by flow cytometry were col-

lected. Patients with criteria suggesting WD underwent PCR testing for Tropheryma whip-

plei, and those with diagnosis of WD (cases) were compared to those without diagnosis

(controls). We used ROC curve analysis to evaluate the diagnostic value of flow cytometry

findings for WD.

Results

Among 2917 patients seen for suspected inflammatory joint disease, 121 had suspected

WD, including 9 (9/121, 7.4%) confirmed WD. Proportions of T cells and NK cells were simi-

lar between suspected and confirmed WD, whereas cases had a lower proportion of circu-

lating memory B cells (IgD-CD38low, 18.0%±9.7% vs. 26.0%±14.2%, P = 0.041) and higher

ratio of activated B cells over memory B cells (4.4±2.0 vs. 2.9±2.2, P = 0.023). Among

peripheral-blood B-cells, the proportion of IgD+CD27- naive B cells was higher (66.2%±
18.2% vs. 54.6%±18.4%, P = 0.047) and that of IgD-CD27+ switched memory B cells lower

(13.3%±5.7% vs. 21.4%±11.9%, P = 0.023), in cases vs. controls. The criterion with the

best diagnostic performance was a proportion of IgD+CD27- naive B cells above 70.5%,

which had 73% sensitivity and 80% specificity.
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Conclusion

Our study provides data on peripheral-blood B-cell disturbances that may have implications

for the diagnosis and pathogenetic understanding of WD.

Introduction

Whipple’s disease (WD) is a rare, systemic, disease caused by the intracellular Gram-positive

bacterium Tropheryma whipplei (TW). This ubiquitous commensal organism [1] is transmit-

ted among humans via the oro-fecal route [2,3]. WD was first described in 1907. TW was iden-

tified by polymerase chain reaction (PCR) in small-bowel biopsies from patients with WD [4–

7] in 1991 and later in various samples including stool, saliva, and joint fluid [8, 9]. T. whipplei
is extraordinarily difficult and slow to grow in cultures. The prevalence of TW carriage is high-

est in adults, residents of rural areas, and exposed individuals such as homeless people and

sewer workers [2, 10]. In apparently healthy individuals, the prevalence of carriers identified

by PCR screening of stool and saliva was 1.5% to 7.0% and 0.2% to 1.5%, respectively [11–13].

The clinical spectrum of TW infection [14–18] includes classical WD, localized WD [19],

acute infection [20], asymptomatic infection, WD influenced by immunosuppression [21],

and T. whipplei-associated arthritis defined as chronic arthritis with a negative duodenal

biopsy but positive PCR test at a non-articular site [22]. The non-specific clinical presentation

and disease incidence that is too low to warrant routine PCR screening result in major diag-

nostic challenges. Thus, several years often elapse between symptom onset and the diagnosis

[14] of this treatable disease [15]. The reference standard for diagnosing classical WD is duo-

denal biopsy testing by PCR and periodic acid-Schiff- (PAS) staining [23]. In many of the

other forms, the diagnosis relies on PCR testing of saliva, stool, and/or joint fluid, which has a

good positive predictive value [8, 11].

Chronic WD and the immune system are closely linked. A contributor to the pathogenesis

of WD is the alternatively activated macrophage phenotype, which predominates in the duode-

nal mucosa and leads to persistent infection by making the macrophages unable to degrade

TW [24, 25]. Impaired interleukin (IL)-12 production [26, 27] responsible for decreased IFN-γ
production by NK and T cells has been reported in WD [28]. Regulatory T cells are involved

in the pathogenesis of WD [29]. Deficiencies in specific peripheral and mucosal T helper cell

type 1 (Th1) responses to TW have been reported in patients with WD [30]. The HLA

DRB1�13 and DQB1�06 may confer susceptibility to WD [31]. Finally, immunosuppressive

therapy may shorten the time from symptom onset to systemic chronic WD, and immunosup-

pressive therapy in patients with WD may increase the risk of immune reconstitution inflam-

matory syndrome [32].

To our knowledge, no studies have evaluated the potential role for B cells in WD. Techno-

logical advances have improved the phenotypic characterization of blood cells, and flow

cytometry is now widely used in patients with hematological, infectious, and systemic auto-

immune diseases [33–34]. Abnormalities in the peripheral-blood B-cell subset profile were

observed in systemic auto-immune diseases such as primary Sjögren’s syndrome in which

the ratio of activated B cells over memory B cells ratio is increased [35] and might serve as a

diagnostic aid. We noticed lymphocyte subset abnormalities similar to those seen in primary

Sjögren’s syndrome in patients whose symptoms suggested ankylosing spondyloarthritis (in-

flammatory low back pain) or rheumatoid arthritis (chronic polyarthritis). We then observed

the same abnormalities in patients with infectious rheumatic diseases due in particular to Bar-
tonella (cat-scratch disease) or TW.

B-cell subsets in Whipple’s disease
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We therefore designed the present study with the aim of describing peripheral-blood lym-

phocyte subsets, with special attention to B cells, in patients with WD, with rheumatic symp-

toms. We aimed to assess whether any abnormalities found were sufficiently characteristic to

help in diagnosing and monitoring WD.

Patients and methods

Participants

We retrospectively collected data on consecutive patients seen at our rheumatology depart-

ment between April 2010 and December 2016 for suspected inflammatory joint disease. All

patients underwent immunological and serological tests, and a peripheral-blood flow cytome-

try assessment of lymphocyte subsets (total T cells, NK cells, and CD19+ B cells) and B-cell

subsets (CD19+IgD+CD38hi, transitional, CD19+IgD+CD27-, naive, CD19+IgD+CD27+,

unswitched memory, and CD19+IgD-CD27+ switched memory B cells).

Ethics statement

This study was approved by the CPP Ouest IV ethics committee (2017. CE19). According to

the ethics committee recommendations, all data were fully anonymized for analysis and rheu-

matologists signed a written document which confirmed that all patients received information

and were not opposed to the use of their data for this study (non opposition form).

Identifications of patients with suspected (controls) and confirmed (cases)

Whipple’s disease

Within the population, we identified the subgroup of patients (n = 121) who underwent PCR,

systematically in stool and saliva, and depending of the symptoms in joint fluid, blood, duode-

num, Cerebro Spinal Fluid (CSF), testing for TW. Within this subgroup, we compared the

patients with definite diagnosis (cases) vs. no diagnosis (controls) of WD. All cases had at least

one clinical criterion suggesting WD, at least one positive PCR test for TW, an antibiotic ther-

apy response recorded by the physician as dramatic and including normalization of C reactive

protein and a confirmation of the diagnosis based on all data (exclusion of differential diagno-

sis) and more than one year of follow up by an independent group of physicians. The cases

were divided into three groups depending on whether they had classical WD, focal WD, or

chronic TW-associated arthritis (CTWA). Classical WD was defined as a duodenal biopsy pos-

itive by PAS staining or TW immunohistochemistry, or as both stool and saliva positive by

PCR plus a positive skin biopsy, or as blood positive by PCR. Focal WD was defined as joint

fluid positive by PCR but duodenal biopsy negative by PAS staining and immunohistochemis-

try. CTWA was chronic arthritis plus duodenal biopsy, stool, or saliva positive by PCR but

duodenal biopsy negative by PAS staining or immunohistochemistry and joint fluid negative

by PCR (non-classical WD) [22].

Lymphocyte subset analyses

Flow cytometry was used to assess the distributions of CD4+ and CD8+ T cells, NK cells, and

total CD19+ B cells(33). All antibodies were purchased from Beckman-Coulter (Hialeah, FL).

Phycoerythrin (PE)-cyanine 7 (PC7)-conjugated anti-CD19 monoclonal antibody (mAb)

(J4;119) was used to tag B cells; and fluorescein isothiocyanate-conjugated anti-IgD (IA6-2),

PE-conjugated anti-CD27 (LS198), and PC5-conjugated anti-CD38 (LS198) mAbs to distin-

guish among B-cell subsets [36]. In a second B-cell panel, anti-CD19 and anti-CD38 mAbs

were combined with PE-conjugated anti-CD24 (ALB9) mAb to identify CD19+CD38hiCD24hi

B-cell subsets in Whipple’s disease
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transitional and CD19+CD24+CD38+ mature B cells. The cells were categorized on an Epics

XL (Beckman-Coulter) fluorescence-activated cell-sorter (FACS). All details are summarized

in the Fig 1 and Figure A in S1 File.

PCR tests and biopsy

The 121 patients with suspected WD had 214 visits and underwent at least one PCR test for

TW on a variety of samples (stool; saliva; joint fluid; blood; cerebrospinal fluid; urine; and/or

biopsies of lung, skin, and/or duodenal mucosa). Real-time quantitative PCR (qPCR) tests for

repeated TW sequences were performed using specific oligonucleotide TaqMan probes(11) at

the bacteriology laboratory of the Marseille teaching hospital [37]. Sequencing was performed

when an amplified product was detected, followed by a confirmatory PCR test targeting a dif-

ferent TW sequence. Positive and negative controls were used routinely, and the quality of

extracted DNA was checked by human actin gene detection [38].

Statistical analysis

The data were analyzed using the Statistical Package for the Social Sciences (SPSS 25.0, Chi-

cago, IL). Absolute values were described as mean±SD (of number of cells by mm3 or percent-

ages) of circulating lymphocyte subsets. Associations between lymphocyte subset distributions

and WD were assessed by univariate analysis using Mann-Whitney test (comparison of con-

tinuous data) or Wilcoxon test (comparison of continuous data before and after treatment).

Logistic regression was performed to identify the subset most strongly associated with WD.

Subset distribution changes over time were then evaluated. p values smaller than 0.05 were

considered significant. Receiver operating characteristic (ROC) curves were plotted for B-cell

subsets at any time point to identify the cutoff associated with the best compromise between

sensitivity and specificity.

Results

Patient population

Between April 2010 and December 2016, 2917 patients had 3515 visits to our rheumatology

department for symptoms suggesting inflammatory rheumatism. Among them, 121 with sus-

pected WD underwent 214 PCR tests for TW. There were 62 (51.2%) men and 59 (48.8%)

women with a mean age of 52.5±15 years (range, 16–84 years). Of these 121 patients, 9 had

positive PCR tests for TW and were diagnosed with WD: 1 (11.1%) had classical WD, 4

(44.4%) focal WD, and 4 (44.4%) non-classical WD. Of the 112 other patients, 58 received

diagnoses of rheumatoid arthritis (n = 24), spondyloarthritis (n = 17), connective tissue disease

(n = 4), vasculitis (n = 6), sarcoidosis (n = 3), or other diseases (Lyme disease, sarcoma, or

polymyalgia rheumatica, n = 4) and 54 had no diagnosis.

Detailed features of the 9 patients diagnosed with Whipple’s disease (WD)

(Figure B in S1 File)

There were 7 (77.8%) males and 2 (22.2%) females with a mean age of 60.3±11.4 years and a

mean symptom duration of 8.5±7 years. Among them, 8 had previously received a diagnosis of

rheumatoid arthritis (n = 4, 44.4%), leukocytoclastic vasculitis (n = 1, 11.1%), undifferentiated

arthritis (n = 1, 11.1%), spondyloarthritis (n = 1, 11.1%), or calcium pyrophosphate dihydrate

deposition disease (n = 1, 11.1%). In the patient with no previous diagnosis, time since symp-

tom onset was only 2 years. In 5 (55.5%) patients, there was a history of treatment with syn-

thetic disease-modifying antirheumatic drugs or TNFα antagonists. Mean serum C-reactive

B-cell subsets in Whipple’s disease
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Fig 1. Gating strategy used for fluorescence-activated cell-sorter (FACS). The % of CD3 (CD3+CD19-), the % of CD4 (CD3+CD4+), the % of CD8

(CD3+CD8+) and the % of CD19 (CD3-CD19+) subsets were determined within the total lymphocyte population (gate A = Lympho). For the B cell

subsets, the % of CD24++CD38++ transitional B cells and the % of CD24+CD38+ naïve B cells were determined within the total lymphocyte

population (gate A = Lympho). The % of IgD+CD27- naïve B cells, the % of IgD+CD27+ unswitched memory B cells and the % of IgD-CD27+

switched memory B cells, and the % of IgD+CD38+/hi activated B cells and the % of IgD-CD38+/low memory B cells were determined within the B cell

subset (gate F = CD19+). For the NK cell subsets, the % of CD3-CD56+ NK lymphocytes and the % CD3+CD56+ NK-like lymphocytes were

determined within the total lymphocyte population (gate A = Lympho). The % of CD3-CD16++CD56+ naïve cytotoxic NK lymphocytes and the %

CD3-CD16+CD56++ active NK lymphocytes were determined within the NK lymphocyte population (gate O4 = CD3+CD56+).

https://doi.org/10.1371/journal.pone.0211536.g001
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protein was 36.5±24.3 mg/L (range, 0.4–82.9 mg/L), 3 patients had anemia, and 5 patients had

hypoalbuminemia.

All 9 patients received first-line hydroxychloroquine (400–600 mg/day) and doxycycline

(200 mg/day) treatment for WD, which was consistently effective in resolving the clinical and

laboratory abnormalities, with a response time of 10 days to 2 months. The doxycycline was

switched to intravenous ceftriaxone after 1 month in 1 patient and to trimethoprim-sulfameth-

oxazole because of an allergic reaction in another.

Of the 9 patients, 2 are still receiving treatment at the time of writing.

Lymphocyte subsets in the 9 patients with Whipple’s disease and in the

controls

Table 1 details the peripheral-blood lymphocyte subsets in each patient at baseline. Subset dis-

tributions were compared between the group of 9 patients with WD disease and the control

group of 112 patients seen for suspected inflammatory joint disease and having a suspicion of

WD but negative PCR tests for TW (Table 2). The proportions of total lymphocytes, CD4+ T

cells, CD8 + T cells, and NK cells were not different between cases and controls. The percent-

age of circulating IgD-CD38-/low memory B cells was significantly lower, and the ratio of

IgD+CD38+/hi activated B cells over IgD-CD38-/low memory B cells significantly higher in cases

compared with controls (4.4±2.0 vs. 2.9±2.2, P = 0.023). Studying CD27 expression showed

that the cases had a higher proportion of IgD+CD27- naive B cells (66.2%±18.2% vs. 54.6%

±18.4%, P = 0.047) and, among memory B cells, a lower proportion of IgD-CD27+ switched

memory cells (13.3%±5.7% vs. 21.4%±11.9%, P = 0.023) vs. controls.

We compared the 22 visits by the 9 patients with WD to the 3493 visits by the 2908 patients

without PCR testing for TW or with negative PCR testing for TW (Table 3). The differences

between the two groups were similar to those found at baseline. In addition, the lymphocyte

counts were lower in the patients with WD than without a diagnosis of WD.

Some patients with WD were receiving glucocorticoid (3 patients), methotrexate (5

patients) or TNFα antagonist (2 patients) therapy. These treatments may modify B-cell subset

distribution. However, in the controls, patients were taking the same treatments (20 received

glucocorticoids, 19 methotrexate, and 7 a biologic).

Changes in lymphocyte subset distribution in the 9 patients during

treatment for Whipple’s disease (WD)

Flow cytometry was performed before the diagnosis (i.e., probably after disease onset, as symp-

toms were present), at the diagnosis of WD, and during treatment in the 9 patients with WD.

Table 1. Peripheral-blood B-lymphocyte subsets at baseline of the 9 patients diagnosed with Whipple’s disease (WD).

Patients

1

Classical

WD

2

Non-classical

WD

3

Non-classical

WD

4

Non-classical

WD

5

Non-classical

WD

6

Focal

WD

7

Focal

WD

8

Focal

WD

9

Focal

WD

Total lymphocytes 730 2160 1060 1290 930 1530 1980 1160 1730

IgD-CD38-/low memory B cells, N/mm3 (%) 3 (7.8) 18 (11.2) 16 (22.2) 12 (13.0) 11(12.0) 19

(11.3)

25

(12.0)

14

(26.7)

50

(22.4)

IgD+CD27- naive B cells, N/mm3 (%) 11 (29.0) 144 (87.5) 46 (66.4) 65 (70.6) 78 (84.5) 147

(87.1)

152

(74.2)

36

(70.8)

137

(60.8)

Ratio of IgD+CD38+/hi activated B cells over

IgD-CD38-/low memory B cells

5.5 7.4 2.8 5.6 6.6 7.1 5.9 2.3 2,6

IgD-CD27+ switched memory B cells, N/mm3

(%)

3 (8.2) 10 (6.2) 11 (15.5) 12 (12.7) 9 (10.1) 9 (5.5) 34

(16.6)

5 (9.8) 41

(18.2)

https://doi.org/10.1371/journal.pone.0211536.t001
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No changes occurred in lymphocyte subset distribution (Table 4). Four patients had an evalu-

ation at the end of the treatment and there was not changes (Figure C in S1 File: example on

IgD-CD27+ switched memory B cells) despite the end of treatment by methotrexate (3

patients), TNF inhibitor (1 patient) and steroids (2 patients).

Relevance of the B-cell subset distribution to the diagnosis of Whipple’s

disease (WD)

Full B-cell distribution was evaluated at 198 visits. ROC curve analysis showed that the propor-

tion of IgD+CD27-naive B cells provided the best compromise between sensitivity and speci-

ficity for the diagnosis of WD. With a cutoff of 70.5%, the area under the curve was 0.83,

sensitivity was 73.0%, and specificity was 80.0% (Fig 2). If we limit the controls to patients

with autoimmune disease, results were quite similar (the area under the curve was 0.79).

Of 19 visits by patients with WD having all subpopulation evaluations, 14 (73.7%) were

associated with a proportion of IgD+CD27-naive B cells at or above the cut-off, versus 35

Table 2. Peripheral-blood B-cell subsets (mean±SD of the number by mm3 and %) in patients with Whipple’s disease, compared to controls with inflammatory dis-

eases but no Whipple’s disease among patient who had a suspicion of Whipple’s disease (at least one PCR).

Lymphocyte subset Whipple’s disease

9

No Whipple’s disease

112

P value

Total lymphocytes, N/mm3 1708±575 2147± 953 0.21

CD3 (%) 73.0±10.0 73.8±8.4 0.96

CD4 (%) 52.1±10.4 50.8±9.0 0.63

CD8 (%) 18.9±6.8 21.6±8.1 0.42

CD4/CD8 ratio 3.4±2.4 2.8±1.7 0.42

CD19 (%) 10.2±5.3 21.7±112.5 0.43

IgD+CD38+/hi activated B cells (%) 64.1±14.4 51.9±18.7 0.054

IgD-CD38-/low memory B cells (%) 18.0±9.7 26.0±14.2 0.041

ratio of IgD+CD38+/hi activated B cells over IgD-CD38-/low memory B cells 4.4±2 2.9±2.2 0.023

IgD+CD27- naive B cells (%) 66.2±18.2 54.6±18.4 0.047

IgD+CD27+ unswitched memory B cells (%) 8.5±9.4 12.4±11.6 0.17

IgD-CD27+ switched memory B cells (%) 13.3±5.7 21.4±11.9 0.023

CD24++ CD38++ transitional B cells (%) 1.0±1.7 1.2±2.1 0.98

CD24+ CD38+ mature B cells (%) 16.5±16.2 16.4±16.6 0.83

CD3- CD56+ NK lymphocytes (%) 8.2±9.9 6.4±5.1 0.98

CD3- CD16++CD56+ naive cytotoxic NK lymphocytes (%) 47.7±21.7 56.7±20.6 0.22

CD3- CD16+ CD56++ active NK lymphocytes (%) 10.5±14.6 10.8±12.5 0.93

CD3+CD56+ NK-like lymphocytes (%) 1.3±1.2 2.0±2.5 0.51

https://doi.org/10.1371/journal.pone.0211536.t002

Table 3. Peripheral-blood B-cell subsets (mean±SD) in patients with Whipple’s disease compared to controls with inflammatory disease but negative PCR tests for

Whipple’s disease, or without PCR tests for WD.

B-cell subset Whipple’s disease

22 visits

No Whipple’s disease

3493 visits

P value (Wilcoxon test)

Total lymphocytes, N/mm3 1575.9 ±474.10 2071.82±1086.99 0.005

IgD-CD38-/low memory B cells (mean of %) 16.8±5.99 24.14±13.22 0.001

Ratio of IgD+CD38+/hi activated B cells to IgD-CD38-/low memory B cells (mean of %) 4.61±1.85 3.69±4.66 0.001

IgD+CD27- naive B cells (mean of %) 72.33±12.97 59.03±18.67 <0.001

IgD-CD27+ switched memory B cells (mean of %) 12.89±5.01 19.03±11.38 0.006

https://doi.org/10.1371/journal.pone.0211536.t003
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(19.5%) of 179 visits by patients without WD (P<0.0001). Interestingly, the proportion of IgD

+CD27-naive B cells was not elevated in patients with Lyme disease, reactive arthritis, or septic

arthritis.

Discussion

In patients with WD and rheumatic symptoms, the distribution of peripheral-blood B-cell sub-

sets differed from that in controls with inflammatory joint disease. No differences were found,

in contrast, for total lymphocytes, T cells, or NK cells. The cases had lower proportions of cir-

culating IgD-CD38-/low memory B cells and, most notably, of IgD-CD27+switched memory B

cells. The ratio of IgD+CD38+/hi activated B cells over IgD-CD38-/low memory B cells was

higher in the cases, because of a higher percentage of IgD+CD27- naive B cells. The best diag-

nostic performance was obtained for an IgD+CD27- naive B-cell proportion at or above 70.5%.

Table 4. Comparison of peripheral-blood B-cell subsets (mean of %) before and after starting treatment for Whipple’s disease in 9 patients.

Before treatment During treatment P value

(Wilcoxon test)

IgD-CD38-/lowmemory B cells 20.48±7.56 15.78±5.49 0.31

Ratio of IgD+CD38+/hi activated B cells over IgD-CD38-/low memory B cells ( 4.09±2.49 4.47±1.42 1.00

IgD+CD27- naive B cells 72.18±10.27 65.74±17.64 0.87

IgD-CD27+ switched memory B cells 12.6±8.05 12.90±4.06 1.00

https://doi.org/10.1371/journal.pone.0211536.t004

Fig 2. ROC curves of the diagnostic performance of B-cell subset distribution for Whipple’s disease. The best curve was obtained with IgD+CD27- naive B cells (%).

https://doi.org/10.1371/journal.pone.0211536.g002

B-cell subsets in Whipple’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0211536 February 27, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0211536.t004
https://doi.org/10.1371/journal.pone.0211536.g002
https://doi.org/10.1371/journal.pone.0211536


The B-cell subset abnormalities documented in our study may provide diagnostic assistance,

in combination with the medical history, physical findings, and standard laboratory tests. Fur-

thermore, they may help to understand the pathophysiology of WD. In our population,

patients with other infectious diseases did not have the B-cell subset abnormalities seen in the

patients with WD.

WD is characterized by massive infiltration of TW in the duodenal mucosa, lack of duode-

nal inflammation, malfunction of antigen-presenting cells, and alternative activation of macro-

phages [24]. Dysregulation of T-cell functions are involved in the pathogenesis of WD. The

proportion of CD4+ T cells in peripheral blood and the lamina propria is reduced, and both T-

cell activation and the Th1 response are impaired, with diminished production of IL-2 and

IFN-gamma [30]. These deficiencies allow the establishment of chronic TW infection in sus-

ceptible patients [31]. Regulatory T cells are abundant in the duodenal mucosa and exhibit

enhanced activity in peripheral blood, leading to insufficient bacterial clearance [31]. However,

a primary T cell defect does not appear to be the cause for chronic WD [29]. Our patients did

not exhibit these previously described T-cell abnormalities; more specifically, they had no

decrease in the proportion of CD4+ T cells [30].

B-cell abnormalities reported previously in WD include serological alterations and changes

in duodenal mucosal B cells [39–40]. Thus, WD is associated with the HLA-DRB1�13 and

DQB1�06 genotypes [31], which may preferentially present antigenic epitopes to stimulate

humoral responses instead of cellular immune responses. More interestingly, it was recently

found that a single rare non-synonymous mutation with age-dependent incomplete penetrance

leading to IRF4 deficiency which can underlie WD. As IRF4 help B-cell development, a genetic

mechanism may explain why the lymphocyte subsets in our patients remained unchanged

(despite antibiotic, infection by TW remains and induces altered kinds of B cells) [41]. Another

hypothesis may be that the disease induced irreversible subset distribution abnormalities.

Our study has three main limitations. First, the number of patients was small. Second, at

the time of flow cytometry, some patients were receiving or glucocorticoid (4 patients), metho-

trexate (4 patients) or TNFα antagonist (2 patients) therapy. These treatments are known to

modify B-cell subset distribution [42, 43]. However, in the controls, patients were taking the

same treatments (20 received glucocorticoids, 19 methotrexate, and 7 a biologic). Third, the

controls were not healthy individuals but patients with inflammatory diseases such as Sjogren’s

syndrome, which are known to be associated with alterations in peripheral-blood B-cell subset

distribution [33, 35, 44].

To conclude, flow cytometry analysis of peripheral-blood lymphocytes in patients with

rheumatic symptoms and a diagnosis of WD showed alterations in B-cell subset distribution

compared to controls with inflammatory diseases, a clinical suspicion of WD, but negative

PCR tests for WD. Treatment for WD consistently induced a clinical response but did not

change the abnormalities in B-cell subset distribution. These abnormalities are not sufficiently

characteristic to serve as a diagnostic tool when considered alone but may provide guidance

when combined with other criteria. The B-cell subset abnormality associated with the best

compromise between sensitivity and specificity for diagnosing WD was a proportion of

IgD+CD27-naive B cells�70.5%. Our study provides the first data on peripheral-blood B-cell

subset alterations in WD and may suggest hypotheses regarding the role for immunological

abnormalities in this condition.

Supporting information

S1 File. Method for fluorescence-activated cell-sorter (FACS) (Figure A). Features of the 9

patients diagnosed with Whipple’s disease (WD) (Figure B). Lack of changes of IgD-CD27
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+ switched memory B cells in 4 patients who had evaluation before treatment, under treatment

and at the end of treatment (Figure C).
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Formal analysis: Maëlle Le Goff, Valérie Devauchelle-Pensec, Sandrine Jousse-Joulin, Marion

Herbette, Jean Michel Cauvin, Clara Le Guillou, Jacques Olivier Pers, Alain Saraux.

Funding acquisition: Alain Saraux.

Investigation: Divi Cornec, Dewi Guellec, Thierry Marhadour, Valérie Devauchelle-Pensec,

Sandrine Jousse-Joulin, Yves Renaudineau, Christophe Jamin, Alain Saraux.
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