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Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on a
single-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study,
our main purpose is to explore and investigate the effects of visual attention on a tactile P300 BCI. Approach. We designed a
conventional tactile P300 BCI where vibration stimuli were provided by five stimulators and two of them were fixed on target
locations on the participant’s left and right wrists. Two conditions (one condition with visual attention and the other condition
without visual attention) were tested by eleven healthy participants. Main Results. Our results showed that, when participants
visually attended to the location of target stimulus, significantly higher classification accuracies and information transfer rates
were obtained (both for p <0.05). Furthermore, participants reported that visually attending to the stimulus made it easier to
identify the target stimulus in random sequences of vibration stimuli. Significance. These findings suggest that visual attention has

positive effects on both tactile P300 BCI performance and user-evaluation.

1. Introduction

A brain-computer interface (BCI) provides a new pathway
between the brain and an external device to achieve direct
control and communication [1]. The first BCI system was
developed by Vidal in the 1970s [2]. In the decades since,
BCIs based on electroencephalography (EEG) recordings
have been increasingly frequently explored as they are safe
and relatively cheaper than BCIs based on other neuro-
imaging technologies. The EEG is recorded from sets of
electrodes placed on the scalp and comprises a time series of
electropotentials generated in the cerebral cortex [3]. The
selection of electrode positions and their quantity generally
depends on the aims of the study, the ultimate aim of which
is, typically, to achieve optimal system performance. The
acquired brain signals (e.g., the EEG data) from the selected

channels are usually processed through the following steps:
preprocessing, feature extraction, feature selection, and
classification. These processes seek to identify the intention
of the user in order to generate corresponding commands.
Finally, these commands can be used for practical appli-
cations including, but not limited to, wheelchair navigation
[4, 5], character speller [6, 7], and robotic arm manipulation
[8, 9].

The brain activities that are most frequently used to
control BCI systems include event-related potentials (ERP)
[10], steady-state evoked potentials [11], and event-related
desynchronization (ERD) [12] and event-related synchro-
nization (ERS) [13]. In an ERP-based BCI, the induction of
the ERP is achieved by presenting a predictable sequence of
stimuli with one or more rarely, randomly occurring (un-
predictable) stimuli interleaved amongst the predictable
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stimuli. The users are instructed to effectively discriminate the
stimuli by means of counting the number of rare stimuli
occurrences (presenting at a low frequency and referred to as
the “target stimuli”), while ignoring other nontarget stimuli.
The P300 is one of the positive components of the ERP and
occurs around 300 ms after a target stimulus presentation [14].

Early BCI systems were primarily based on stimuli that were
presented visually. For example, the first visual P300 BCI was
reported by Farwell and Donchin in 1988 [15] and used a 6 x 6
letters matrix, which was displayed to participants as stimuli on
a computer screen. Following on from this work, some re-
searchers took measures to pursue better system performance,
an effort which led to, amongst other work, an influential study
in which traditional visual letters were replaced with faces [16].

However, the standard visual P300 BCIs depend on gaze
control and are not suitable for visually impaired individ-
uals. Consequently, the auditory and tactile P300 BCIs were
gradually explored as alternative solutions. Hill et al. [17]
first proposed an auditory P300 BCI in which the auditory
stimuli were composed of deviant and standard tones. The
feasibility of primary tactile P300 BCI was demonstrated by
Brouwer and Van Erp [14]. In their study, motors providing
vibration stimuli were situated at different locations around
the participant’s waist. The effects of the number of motors
and the stimulus onset asynchrony (SOA) on classification
performance were also investigated.

Our study focuses on the tactile P300 BCI. Researchers
have attempted to apply tactile stimulation to various parts
of body, such as chest [18], fingers [19], back [20], and head
[21]. In addition, in order to improve the performance of
tactile P300 BCIs, multisensory BCI systems have also been
proposed. For example, Brouwer et al. combined tactile
stimuli with visual stimuli to construct a visual-tactile bi-
modal P300 BCI [22], and Yin et al. proposed an auditory-
tactile bimodal P300 BCI [23]. Both of them found that BCI
with bimodal stimuli obtained higher classification perfor-
mance compared to that with unimodal stimuli.

In this study, we investigate whether visual attention by the
BCI user has any effects on the tactile P300 BCI performance
and on the usability of the BCI (as assessed by user-evaluation).
A conventional tactile P300 BCI was designed in which vi-
bration stimuli were delivered respectively to participant’s left
wrist, right wrist, abdomen, left ankle, and right ankle. The
participant was asked to distinguish the stimulus on the left
wrist or right wrist from other stimuli. Two conditions were
tested by participants: one condition used visual attention
(called the VA condition) and the other did not use visual
attention (called the NVA condition). Notably, in the NVA
condition, the participants were required to silently count the
number of target vibration appearances only by spatial at-
tention. While in the VA condition, in addition to the counting
tasks, the participants also had to pay visual attention to the
target vibration location all the time from the short target
vibration cue until the target cue moved to another location.

2. Materials and Methods

2.1. Participants. A total of eleven healthy adults from East
China University of Science and Technology in Shanghai,
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China (including 4 females and 7 males, aged from 22 to 26)
participated in this study; they were designated P1, P2, ..,
P11. All participants had normal or corrected-to-normal
vision and intact tactile sensation (self-reported). Impor-
tantly, none of them were trained before. In order to achieve
the aim of the study, the experimental procedure and the
required tasks were explained in detail before any of the
individuals participated. Moreover, each participant signed a
written consent form prior to the study, which was approved
by the local ethics committee.

2.2. Stimuli and Procedure. The vibrotactile stimuli were
provided by g.VIBROstims, the main unit of which was DC
motors that produced the vibrations. As shown in Figure 1,
the motor was hidden in a cylindric casing, which was placed
on the participant’s body by adhesive plaster. The
g.VIBROstims were driven by a g.STIMbox (g.tec medical
engineering GmbH, Schiedlberg, Austria), which was con-
nected to the computer via USB and was controlled by a
Simulink block (Matlab 2015b). Based on a previous re-
search, the stimulus duration was set to 200ms and the
interstimulus interval (ISI) was set to 400 ms [22].

For both conditions, each participant sat in a chair in
front of a monitor and the vibration stimulators were placed
on the left wrist, right wrist, abdomen, left ankle, and right
ankle, which ensures sufficient spatial distance to achieve
distinguishability between individual stimuli. Figure 2 shows
the placements of vibration stimulators on each participant’s
body. Compared to the abdomen, left ankle, and right ankle,
the left and right wrists are easier for visual attention. In
addition, if participants pay visual attention to the abdomen,
left ankle, or right ankle, it will bring larger movements of
the head or eyeball. So only the left and right wrists were
selected as the target stimulus positions where the stimu-
lators were marked in red. The rest of the stimulators were
never selected as target stimulus positions and only were
used as standard stimulus positions for reducing the
probability of the target stimulus presentation, in which the
stimulators were marked in black. Each participant’s task
was to silently count the number of times the target vibration
was presented and avoid unnecessary body movements. In
particular, for the VA condition, besides the counting tasks,
the participants were also asked to give visual attention to the
target stimulus positions. The positional conversion of visual
attention and the stimulus location that the participant
needed to attend to both depended on a particular target
vibration cue. To prevent head or eye movement caused by
positional shift of visual attention, before carrying out each
condition, the participants were asked to place their left and
right hands on a desk and their left and right wrists were
simultaneously shown in the field of view. Furthermore, the
participants were told to immediately switch visual attention
in accordance with the target vibration cue. Conversely, for
all participants, there was no visual attention to the target
stimulus positions during presentation of the NVA
condition.

Each condition required participants to complete a
corresponding experiment, and they should be done on the



Computational Intelligence and Neuroscience

/

/

FiGure 1: The vibrotactile stimulator.
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FiGUure 2: The placements of the vibration stimulators on each
participant’s body.

same day. The order of two experiments was random. In our
study, six participants chose to do the VA condition exper-
iment first. In order for the participant to maintain sufficient
energy to complete each experiment, there would be an in-
terval between the two experiments, the length of which
depended on the individual. Each experiment contained an
offline phase and an online phase (see Figure 3). In the offline
phase, three runs were included and each run consisted of five
blocks (i.e., five target selections). Prior to each block, the
target vibration cue was presented for 1.5s. There were 10
trials per block and all trials within a block had the same
target. In each trial, five vibrations occurred randomly. To
mitigate for fatigue, each participant could take a short break
between oftline runs. Furthermore, a long break was used to
allow participants to prepare for the following online phase.
The length of time of both breaks depended on the indi-
viduals. In the online phase, only one run was involved, but
there were 20 blocks (i.e., 20 target selections). The number of
trials per block (1) was variable, which was automatically
determined based on an adaptive strategy [24], and each trial
also was composed of five vibrations.

2.3. EEG Acquisition. For each participant, EEG data was
recorded at a sampling rate of 256 Hz with a g.USBamp
(high-pass and low-pass filters set at 0.1 Hz and 30Hz; a

notch filter set at 50 Hz) and a g.EEGcap (Guger Technol-
ogies, Graz, Austria). EEG electrodes were positioned
according to the international 10-20 system. In our study,
fourteen wet active Ag-AgCl electrodes (Fz, FC1, FC2, C3,
Cz, C4, CP3, CP1, CP2, CP4, P3, Pz, P4, and Oz) were
selected. In addition, FPz was selected as the ground elec-
trode and the right mastoid (A) was selected as the reference
electrode. As shown in Figure 4, the black circles mark the 14
EEG recording electrodes, while the gray circles mark the
ground electrode (FPz) and reference electrode (A). The
impedances of these electrodes were below 10kQ and EEG
waveforms from all channels remained relatively stable at
the start of each experiment.

2.4. Feature Extraction and Classification. In each experi-
ment, an 800ms data segment was extracted after each vi-
bration stimulus presentation. This resulted in a total of 750
data segments, including 150 targets and 600 nontargets,
extracted from the offline phase of the experiment. Each EEG
data segment was filtered into the frequency range 0.1-30 Hz
by a 3" order Butterworth band-pass filter and then down-
sampled from 256 Hz to 36.6 Hz by selecting every seventh
sample. Therefore, a spatiotemporal feature vector was formed
with a dimensionality of 14 x 29 (14 channels and 29 sample
points). In this case, 750 such feature vectors were collected as
calibration data for each condition. Moreover, winsorizing was
adopted to remove interference signals resulting from muscle
activity, eye blinks, or eye movement. Firstly, the 10th and 90th
percentiles for each sample were computed; secondly, the
values of each sample lying less than the 10th percentile or
more than the 90th percentile were replaced with the 10th or
the 90th percentile, respectively [25, 26].

Bayesian linear discriminant analysis (BLDA) was chosen
to build the classifier model for online validation. This ap-
proach has been widely employed in an increasing number of
P300 BCI systems due to its superior classification perfor-
mance [27, 28]. The classification rule can be defined as

m=p(BXX" +1' (@) Xt, 0

!
y=mx,

where m denotes the discriminant vector, two hyper pa-
rameters o and f are the inverse variance of prior distri-
bution and noise, X denotes a matrix containing feature
vectors, and t denotes the regression targets, which is reg-
ulated for class 1 in N/N; and for class 2 in —N/N, (where
N, is the number of features from class 1, N, is the number
of features from class 2, and N is the total number of features
from both classes). The variable y denotes the output of the
classifier, and x denotes the new input feature vector.

For online classification and recognition in our study,
five spatiotemporal feature vectors were obtained from five
vibrations (i.e., five stimulus positions) during each single
trial. These were then input into the classifier to calculate
whether their probability distributions belong to the target
class. Finally, the stimulus position with the maximal
probability distribution was identified and reported as the
classification result.



Offline phase (3 runs)

1 run (5 blocks)

1 block (10 trials)

1 trial (5 vibrations)

Computational Intelligence and Neuroscience

Online phase (1 run)

1 run (20 blocks)

1 block (n trials)

1 trial (5 vibrations)

FIGURE 3: The procedure of each experiment.

FiGURe 4: The configuration of all selected electrode positions.

2.5. Performed Analysis. In this paper, in order to investigate
whether visual attention had any effects on the tactile P300
BCI performance, we analyzed both the offline and online
data recorded during presentation of the VA and NVA
conditions. For the offline data recorded during presentation
of the VA and NVA conditions, the ERP amplitudes and the
r-squared values were used to show how ERPs differed
between the two conditions. The definition of r-squared
values is as follows:

2
X NN, 'mean(Xl) - mean(X,) )
N, +N, std (X, UX,) ’

where N; denotes the features of each class and X; denotes
the number of samples (i=1, 2).

In addition, we explored the amplitude (i.e., the peak
value) and latency (i.e., the peak time) of the N200, P300, and
N400 ERPs at different electrode sites averaged across 11
participants for each condition. Apart from these, the mean
amplitude of the P300 ERP at electrode Cz for each par-
ticipant was also analyzed. For the purpose of comparing the

offline performance differences between the two stimulation
conditions, the offline classification accuracy and raw bit rate
(i.e., information transfer rate) were both averaged across
the 11 participants across 1-10 trials [29], and the offline
classification accuracies, based on single trials, for the 11
participants were calculated. We also analyzed the contri-
butions of the N200, P300, and N400 ERPs to the classifi-
cation accuracy, as well as the single-target classification
accuracy for the 11 participants with each stimulation
condition. To further make a comparison of the online
performance differences between the NVA and VA condi-
tions, based on online data, the online classification accu-
racy, raw bit rate, and required average number of trials used
to classify each position were calculated.

Before carrying out any statistical comparison between data
obtained from these two conditions, we first tested the nor-
mality of the data (one-sample Kolmogorov-Smirnov tests).
For the data that were observed to be normally distributed, we
used paired-samples f-tests to estimate the significance of the
differences, while for the data that was not observed to be
normally distributed, a nonparametric test was needed.
Therefore, we chose a Wilcoxon signed-rank test to make a
comparison [26, 30]. The significance level was set to p < 0.05.

2.6. Subjective Feedback. The feedback from participants can
provide further information that allows us to investigate the
effects of visual attention on user-evaluation when using a
conventional tactile P300 BCI. Consequently, we conducted
a questionnaire survey after each participant completed the
corresponding experiments for the two conditions. The
questions were delivered in Chinese (the first language of all
11 participants). The English translations of the questions
are as follows:

(1) Which condition did you feel was more difficult to
use? Please give scores to both conditions on a scale
of one to five. The higher the score, the more difficult
you feel the condition was to use.

(2) Which condition made you feel more tired? Please
Y
give scores to both conditions on a scale of one to
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five. The higher the score, the more tired you felt as a
result of using this condition.

3. Results

3.1. ERPs. Figure 5 shows the grand averaged ERPs when
attending to the targets and the nontargets over all 11
participants, for each of the 14 electrode sites. Figure 6 shows
the r-squared values of the ERPs from 0 to 1000 ms, averaged
over all 11 participants. It can be observed that the VA and
NVA conditions had similar ERP components (see Fig-
ure 5), but the feature difference between targets and
nontargets in the VA condition was larger than that in the
NVA condition (see Figure 6).

Table 1 shows the mean peak values and peak times of
the N200, P300, and N400 ERPs at different electrode sites
averaged over all 11 participants. For the N200 and P300
ERPs, the most negative peak and the most positive peak
were, respectively, observed to occur between the
100-250 ms and 250-400 ms. The most negative peak of the
N400 ERP was observed to occur from 400 ms to 650 ms
after the stimulus [31]. This result shows that the N200 ERP,
recorded from electrode Pz and evoked by the VA stimu-
lation condition, had a higher absolute mean peak value and
a shorter peak duration than the ERP evoked by the NVA
condition. The same result was observed in the case of the
N400 ERP. Similarly, the P300 ERP had a higher absolute
mean peak value and a shorter peak duration when recorded
from both electrodes Pz and Cz during the VA stimulation
condition, compared to the NVA condition.

Figure 7 shows the mean amplitude of the P300 ERP, for
each participant, recorded from electrode Cz. The mean
amplitude was averaged from each ERP peak point +25ms
[27, 32]. The result of paired-samples t-tests showed that the
mean amplitude of the P300 ERP at electrode Cz during
presentation of the VA condition was significantly larger
than during presentation of the NVA condition (#=2.736,
p <0.05)).

3.2. Offline Performance. Figure 8 shows the mean offline
performance averaged over all 11 participants across 1-10
trials. The offline classification accuracy (see Figure 8(a)) and
raw bit rate (see Figure 8(b)) were calculated from 15-fold
cross-validation. The offline classification accuracy and raw
bit rate of the VA condition were both significantly higher
than those of the NV A condition. Figure 9 shows the single-
trial classification accuracy of each participant using the
offline data for each of the two stimulation conditions. The
results of paired-samples t-tests showed that the VA con-
dition achieved significantly higher single-trial classification
accuracy than that achieved with the NVA condition
(t=4.641, p<0.05).

Figure 10 shows the contributions of the N200 (peaking
between 150 ms and 300 ms), the P300 (300 ms and 450 ms),
and the N400 (450 am and 700 ms) ERPs to offline classi-
fication accuracy for each participant. It can be seen that all
the time windows were crucial in achieving the classification
results. The results of paired-samples t-tests showed that the

contributions of these three ERPs to offline classification
accuracy in the VA condition were all significantly higher
than those in the NV A condition (N200: t=3.472, p <0.05;
P300: t=4.539, p <0.05; N400: t = 2.380, p < 0.05). Figure 11
shows the offline single-target classification accuracy for
each participant. Most participants achieved higher classi-
fication accuracy with the left wrist than that with the right
wrist for each stimulation condition (see the left panel of
Figure 11, 7 out of 11 participants for the VA condition; see
the right panel of Figure 11, 8 out of 11 participants for the
NVA condition). The results of paired-samples ¢-tests
showed that the VA condition achieved significantly higher
single-target classification accuracy than that achieved with
the NVA condition (target at left wrist: £=4.993, p <0.05;
target at right wrist: t=5.418, p <0.05).

3.3. Online Performance. Table 2 shows the online classifi-
cation accuracy, average number of trials, and raw bit rate
for each participant in the two stimulation conditions. The
classification accuracy and raw bit rate of the VA condition
were significantly higher than those of the NVA condition
(t=8.484, p<0.05 for classification accuracy; t=7.667,
P <0.05 for raw bit rate). Moreover, the average number of
trials of the VA condition was significantly less than that of
the NVA condition (t=-3.688, p <0.05).

3.4. Participant Evaluation. Table 3 shows the scores given
by the 11 participants to the two questions for each con-
dition. Compared to the NVA condition, the VA condition
obtained lower scores in terms of both the degree of diffi-
culty and the tiredness resulting from using the stimulation
condition for all the participants. This demonstrated that all
11 participants felt the NVA condition to be more difficult
and tiring than the VA condition. The result of a non-
parametric Wilcoxon signed-rank test showed that there
were significant differences between the two conditions in
both the degree of difficulty (p<0.05) and the degree of
tiredness (p <0.05).

4. Discussion

In the current study, we designed a conventional tactile P300
BCIL, in which five tactile stimulators were spatially dis-
tributed over a participant’s left wrist, right wrist, abdomen,
left ankle, and right ankle. Only the left and right wrists were
selected as target stimulus positions and the rest were used as
standard stimulus positions. Junichi Hori et al. have re-
ported that the frequency of each stimulus should be con-
sistent to prevent the P300 ERP occurring in response to the
nontarget stimuli with some participants [33]. Therefore, the
standard stimuli in our study were placed on three different
body positions as a solution to this problem. In order to
explore whether visual attention had effects on this tactile
P300 BCI, the VA and NVA conditions were setup and
tested by 11 participants. In each trial of the two conditions,
five stimulators vibrated randomly and the participant
performed a counting task to count the target stimulus
onsets. At this time, the targets and nontargets could be
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F1GURE 5: The grand averaged ERPs for the target and nontarget stimuli averaged across all 11 participants for each of the 14 electrode sites.
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FIGURE 6: The r-squared values of the ERPs from 0 to 1000 ms, averaged over all 11 participants.

TaBLE 1: The mean peak values and peak times of the N200, P300, and N400 ERPs at different electrode sites averaged over all 11

participants.
ERP Peak value (uV) Peak time (ms)

VA condition NVA condition VA condition NVA condition
N200_Pz -2.34 -2.26 193.89 207.74
P300_Pz 2.12 1.62 341.97 348.37
P300_Cz 3.80 2.77 316.76 332.39
N400_Cz -5.23 —4.44 535.51 539.06
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FIGURE 8: The mean offline performance averaged over all 11 participants across 1-10 trials. (a) The classification accuracy. (b) The raw bit

rate.

endogenously discriminated based on their location. In
contrast to the NVA condition, the participants using the
VA condition were also instructed to pay visual attention to
the position of the target vibration. It is worth noting that
there are only tactile stimuli without visual stimuli in the VA
condition, so it is still categorized as a unimodal BCL. It is
different from the visual-tactile bimodal BCI designed by
Brouwer et al., in which both tactile and visual-tactile stimuli
are provided and the visual stimulus reflects the same tap
pattern as presented by the tactor [22]. The presentation of
visual stimuli requires certain equipment provided exter-
nally, and there will be visual potentials in the subject’s EEG.
However, these will not happen when paying attention to the
position of the tactor on the body.

Researches have shown that spatial attention can be used
to modulate ERP components [34, 35]. This corresponds to
our findings that the N200, P300, and N400 ERPs were
evoked during both the VA and NVA conditions (see

Figure 5). Specifically, the VA condition yielded more
discriminative features between targets and nontargets
compared to the NVA condition (see Figure 6). The mean
peak values of the N200 ERP at electrode Pz, the P300 ERP at
electrodes Pz and Cz, and the N400 ERP at electrode Cz
during the VA condition were higher than those observed
during the NVA condition. However, the mean peak times
of the N200 ERP at electrode Pz, the P300 ERP at electrodes
Pz and Cz, and the N400 ERP at electrode Cz during the VA
condition were lower than those observed during the NVA
condition (see Table 1).

As for the mean amplitude of the P300 ERP at electrode
Cz for each participant, a significant difference was observed
between the two conditions (see Figure 7). Additionally, the
mean offline classification accuracy and raw bit rate over the
11 participants, when different numbers of trials were used
to construct the ERP (1-10 trials) during the VA condition,
were higher than those observed during the NVA condition
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FiGure 10: The contributions of N200, P300, and N400 ERPs to the offline classification accuracy for each participant. (a) VA condition.

(b) NVA condition.

in the first trail. Subsequently, the classification accuracy of
both conditions improved gradually as the number of trials
increased. Finally, both conditions achieved a classification
accuracy higher than 70% (see Figure 8(a), 96.36% was
achieved for the VA condition; 70.30% for the NVA con-
dition), and this is considered as the minimum accuracy
percentage necessary for effective BCI control [36].

When single-trial classification was used, the offline
classification accuracy of the VA condition was significantly
higher than that of the NVA condition (see Figure 9). For
each condition, the contributions of the N200, P300, and
N400 ERPs to the offline classification accuracy for each

participant were different (see Figure 10), but the contri-
butions of all the time windows to offline classification
accuracy in the VA condition were all significantly higher
than those in the NVA condition. We found that the late
ERPs contributed more to the classification accuracy than
the early ERPs for most participants in the VA condition,
while the NVA condition happened to be the opposite. In
this study, the left and right wrists were used for delivering
target vibration stimuli, which allowed for visual attention
and discrimination between targets due to their spatial
distribution. The resulting single-target classification accu-
racies showed that the mean classification accuracy of the left
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FiGure 11: The offline single-target classification accuracy for each participant. (a) VA condition. (b) NVA condition.
TaBLE 2: The online classification accuracy, average number of trials, and raw bit rate for each participant.
. ACC (%) AVT RBR (bit/min)
Participants
VA-C NVA-C VA-C NVA-C VA-C NVA-C
P1 95 65 3.05 3.35 12.69 411
P2 90 50 3.15 3.85 10.49 1.67
P3 100 75 3.00 3.15 15.48 6.42
P4 100 55 3.25 3.35 14.29 2.56
P5 100 60 3.05 3.30 15.23 3.34
P6 80 55 3.30 3.50 7.27 2.45
P7 90 55 3.10 3.65 10.66 2.35
P8 95 70 3.05 3.35 12.69 5.02
P9 95 75 3.30 3.25 11.73 6.22
P10 75 65 3.40 3.60 5.95 3.82
P11 80 65 3.35 3.35 7.16 4.11
AVG+£STD 90.91 £+ 8.89 62.73 £8.47 3.18+0.14 3.43+0.20 11.24 +3.30 3.82+1.57

ACC refers to classification accuracy, AVT refers to average number of trials, RBR refers to raw bit rate, VA-C refers to VA condition, NVA-C refers to NVA

condition, AVG refers to average, and STD refers to standard deviation.

target was higher than that of the right target for both of the
conditions (see Figure 11). However, the single-target
classification accuracy showed that there was no significant
difference between two target locations in both paradigms.
This phenomenon can be explained by the description in the
somatosensory homunculus that the left and right sides of
the wrists have similar tactile sensitivity [37]. Significantly
higher single-target classification accuracies were achieved
with the VA condition than those achieved with the NVA
condition.

The online results showed that the classification accuracy
and raw bit rate of the VA condition were both significantly
higher than those of the NV A condition (see Table 2), which
proved that the VA stimulation condition was feasible and
effective. In particular, in the VA condition, three participants
obtained a peak online classification accuracy of 100% and 8
out of the 11 participants achieved online classification

accuracies higher than 90%. Moreover, the lowest online
classification accuracy (75%) in the VA condition is equiv-
alent to the highest online classification accuracy in the NVA
condition. As in all cases, the VA condition could obtain
superior performance compared to the NVA condition.
According to the feedback provided by the 11 partici-
pants who attempted to control the BCI using both stim-
ulation conditions, it was easier to clearly count the number
of times the target stimuli was presented in the VA con-
dition. Most importantly, all participants hold the view that
the NVA condition made them more tired compared to the
VA condition (see Table 3). On one hand, these phenomena
indicated that visual attention could help the participants
pay more attention to the targets and avoid forgetting the
position of the target stimuli. On the other hand, in order to
accurately count the number of times the target appears, the
participants needed to spatially concentrate on the target,
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TaBLE 3: The scores given by the 11 participants to the two
questions for each stimulation condition.

Difficult
-C NVA-C V.

Tired

Participants
C NVA-C

v

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11 4 2 4
AVG+STD 3.09+£0.70 4.36+0.50 1.36+0.50 3.00+0.77

AV-C refers to VA condition, NVA-C refers to NVA condition, AVG refers
to average, and STD refers to standard deviation.
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which could cause fatigue and discomfort over a prolonged
period of time. Conversely, visual attention would deal with
these problems and make the participants feel relaxed.

5. Conclusions

The main goal of this study was to assess the influence of
using visual attention during attempted control of a con-
ventional tactile P300 BCI. Two stimulation conditions
were explored and compared. The test results of eleven
participants showed that the VA condition could obtain
superior performance and was preferred by the participants
over the NVA condition. Thus, the involvement of visual
attention can have positive effects on both tactile P300 BCI
performance and user-evaluation. Future work will con-
centrate on further optimization such tactile BCI stimu-
lation conditions and on further validation by more
participants and BCI end user groups.
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