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Recognition of a familiar object in a novel location requires retrieval of the former object–place association and encoding of novel
information. Such object-in-place (OiP) memory recruits a neural network including the hippocampus (HPC), medial prefrontal
cortex (mPFC), and nucleus reuniens of the thalamus (NRe); however, the underlying cellular mechanisms are not understood.
Locus ceruleus (LC) noradrenergic neurons signal novelty; thus here we focused on the contribution of LC–forebrain projections
and noradrenaline (NA) receptor subtypes to OiP encoding compared with retrieval, using an arena-based OiP task in male rats.
The NRe was found to receive a catecholaminergic input from LC, with the strongest innervation directed to rostral NRe.
Interestingly optogenetic inactivation of the LC→NRe pathway impaired OiP retrieval but was without effect on encoding, while
inactivation of the LC→HPC selectively impaired encoding. Consistent with this double dissociation, pharmacological blockade
of NRe α1-adrenoreceptors selectively impaired memory retrieval, while blockade of HPC β-adrenoreceptors impaired encoding.
Finally, pharmacological attenuation of noradrenergic signaling in the NRe and HPC through the infusion of the α2-adrenergic
receptor agonist UK 14,304 impaired retrieval and encoding, respectively. Surprisingly, antagonism or agonism of adrenoreceptor
subtypes in the mPFC had no effect on memory performance. Together these results reveal the importance of NA within the HPC and
NRe for OiP, whereby selectivity of function is achieved via spatially distinct LC output projections and NA receptor subtypes con-
sistent with a modular view of NA function. These results are also important in demonstrating the distinct neuronal mechanisms by
which encoding and retrieval are achieved.
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Significance Statement

Noradrenaline projections from the locus ceruleus (LC) have been recognized as providing a novelty signal to the forebrain yet
whether this signal is important in mediating different stages of memory is poorly understood. Our results demonstrate that
associative recognition memory retrieval is selectively mediated by a direct projection from the LC to the nucleus reuniens of
the thalamus (NRe) and by activation of NRe α1- and α2-adrenoreceptors. Conversely encoding is selectively mediated by LC
input to the hippocampus (HPC) and by HPC β- and α2-adrenoreceptors. These findings reveal functional and regional spe-
cificity of noradrenergic modulation of memory processing in the context of memory circuitry and thus enable the definition
of clearer targets for disease-modifying therapies for patients with memory deficits.

Introduction
Remembering a stimulus such as an object and the location in
which it was last encountered is a crucial memory process.
Such memories can be formed rapidly in a “one-shot” encoding
of an object-in-place (OiP) association, while retrieval of this
association enables the rapid detection of a change in our

environment. We have previously identified a hippocampal
(HPC)–medial prefrontal cortex (mPFC)–nucleus reuniens of
the thalamus (NRe) network in which specific neural pathways
differentially mediate encoding and retrieval of OiP (Barker
et al., 2021), yet the underlying cellular mechanisms by which
these processes are mediated are poorly understood.
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Stimulus novelty is a key factor in driving memory encoding
(Dunsmoor et al., 2022), and exploration of novel objects or envi-
ronments produces significant increases in neuronal firing within
the locus ceruleus (LC) (Sara et al., 1994; Vankov et al., 1995), the
origin of forebrain noradrenaline (NA) afferents, suggesting that
the LC provides a key signal which drives memory formation.
Consistent with this hypothesis, behavioral studies show that
activity in the LC→HPC and LC→mPFC projections is critical
for spatial memory encoding and contextual fear learning, while
blockade of HPC α1-adrenergic or β-adrenergic receptors impairs
spatialmemory learning (Lemon et al., 2009; Torkaman-Boutorabi
et al., 2014; Fan et al., 2022; Tsetsenis et al., 2022). Although the
role of NA in encoding is clear, for retrieval it is less so. For exam-
ple, in one study, retrieval of a contextual fear memory was found
to require a decrease in NA release in the HPC (Wilson et al.,
2024); in contrast, increased NA in the basolateral amygdala
enhanced retrieval (Fukabori et al., 2020). Thus, evidence indicates
that NA neurotransmission is involved in both memory encoding
and retrieval, yet its role is clearly complex and may differ depend-
ing on the brain region and/or task under investigation.

As stated, OiP memory depends on a HPC–NRe–mPFC net-
work (Barker et al., 2021). While the LC–NA projections to HPC
and mPFC are numerous and well described (Loughlin et al.,
1986; Smith and Greene, 2012), the NRe has been reported to
receive only limited input (Lindvall et al., 1974; Swanson and
Hartman, 1975; McKenna and Vertes, 2004) despite appearing
to have dense adrenoreceptor expression (Palacios and Kuhar,
1982; Sargent-Jones et al., 1985; Boyajian et al., 1987). Thus, it
is likely that the density of NA innervation to the NRe is more
extensive than previously described and, if so, may have an
important role in the neuromodulation of encoding or retrieval
of associative recognition memory.

To examine the relationship between forebrain NA and the
encoding and retrieval of associative recognition memory, we
took a circuit analysis approach using (1) anatomical tracing tech-
niques tomap the extent of catecholaminergic projections from the
LC to NRe, (2) combined optogenetic and recognition memory
testing to assess the importance of LC inputs to the HPC and
NRe on encoding and retrieval, and (3) selective pharmacological
manipulations of adrenergic receptor subtypes to establish their rel-
ative contribution to OiP encoding and retrieval.

Materials and Methods
Animals
For the anatomical studies, eight male Lister Hooded rats (Envigo) weigh-
ing 297–307 g at the start of experimentation were used. Rats were group
housed (2–4 per cage) kept on a 12 h light/dark cycle (light phase,
06:00–18:00). For the behavioral studies, 48 male Lister Hooded rats
(Harlan Laboratories) weighing 300–400 g at the start of experimentation
were used. For the optogenetic experiments, animals were split into two
groups: those that received the control virus, AAV5-CaMKII-EYFP
(YFP; n=12), and those that received the virus that expresses the inhibitory
opsin, AAV5-CaMKII-eArch3.0-EYFP (Arch; n=12). For the pharmacol-
ogy experiments, animals were split into two groups: bilateral cannula
implanted into the NRe (n=12) and bilateral cannula implanted into the
HPC and mPFC (a total of four cannulae per animal; n=12). Rats were
group housed (2–4 per cage) and kept on a 12 h light/dark cycle (light
phase, 18:00–06:00). All animals had ad libitum access to water and stan-
dard chow. All animal procedures were conducted in compliance with
the Animals (Scientific Procedures) Act (1986).

Surgical procedures
General surgical procedures. Animals were anesthetized using isoflur-

ane (induction 4%, maintenance 2%). The scalp of the animals was shaved
before they were positioned in a stereotaxic frame; the incisor bar was

adjusted to achieve a flat skull (David Kopf Instruments). Before the start
of surgery, animals received eye drops (0.1% sodium hyaluronate;
Hycosan) and topical application of both lidocaine (5% m/m; TEVA)
and chlorhexidine on the scalp. Following surgery, the skin was sutured,
and antibiotic wound powder (2% w/w; Battle) was applied. Immediately
postsurgery animals received eye drops (0.1% sodium hyaluronate;
Hycosan), subcutaneous injection of 5 ml glucose saline (sodium chloride
0.9% w/v with glucose 5% w/v), intramuscular injection of 0.05 ml
Vetergesic (0.3 mg/ml buprenorphine; Ceva Animal Health), and intra-
muscular injection of 0.1 ml Clamoxyl (150 mg/ml; Zoetis).

Injection of anatomical tracers. Each animal received a unilateral
injection of an anatomical tracer into the NRe. All tracer injections
were given at a 6° angle from the mediolateral (ML) plane. The stereo-
taxic coordinates were derived from the rat brain atlas of Paxinos and
Watson (2007). As the NRe lies directly ventral to the sagittal sinus,
ML coordinates used were aimed to target as close to the side of the sagit-
tal sinus as possible. Table 1 shows a list of cases including details of the
coordinates used, anatomical tracer used, and the main site of tracer
deposit. For pressure injections, fast blue (FB) or cholera toxin B subunit
(CTB) were mechanically injected via a 1 µl Hamilton syringe
(Hamilton); 55 nl was injected per site at a rate of 20 nl/min. The syringe
was left in situ for 3 min prior to injection and 10 min after injection to
minimize leakage of tracer. For iontophoretic injections, CTB or
FluoroGold (FG) was injected using a glass micropipette (tip diameter,
15–20 µm). A positive pulsed current (2 µA for 6 min followed by
6 µA for 6 min and finally 7 µA for 6 min) was applied using Digital
Midgard Precision Current Source iontophoretic pump (Stoelting) on
a cycle of 6 s on/6 s off. After the injection period, the glass micropipette
was left in situ for 3 min to minimize leakage of tracer. During with-
drawal of the micropipette, a negative current was applied. All animals
were allowed to recover for 7 d before being killed for subsequent histo-
logical processing.

Viral injections and implantation of optical fibers. Animals received a
bilateral injection of AAV5-CaMKII-eArchT3.0-EYFP (Arch group) or
AAV5-CaMKII-EYFP (YFP group) into the LC. To target the LC, the fol-
lowing coordinates were used: anterior–posterior (AP) −9.6 mm, ML
±1.4 mm, and dorsoventral (DV) −7.4 mm. Each animal received two
injections (one in each hemisphere) of virus through a 5 µl Hamilton
syringe. Each virus was injected at a rate of 0.2 µl/min using a Micro4
controller infusion pump (World Precision Instruments), attached to
the arm of the stereotaxic frame. The needle was left in situ for a further
10 min before being withdrawn. Following injection of the virus, animals
were immediately implanted with bilateral optical fibers to target both
the NRe and HPC. Therefore, for a given animal, four optical fibers
were implanted (two aimed at the NRe and two aimed at the HPC).
To implant optical fibers, burr holes were drilled into the skull to allow

Table 1. Overview of individual cases with details of retrograde tracers used and
method of injection

Case
number Tracer Coordinates

Method of
injection

Main site of tracer
deposit

1 FB AP, −1.9; ML, sinus;
DV, −7.4

Pressure Rostral NRe

2 CTB AP, −1.9; ML, sinus;
DV, −7.5

Pressure Rostral NRe

3 CTB AP, −1.9; ML, sinus;
DV, −7.5

Pressure Rostral NRe

4 CTB AP, −1.9; ML, sinus;
DV, −6.8 (dura)

Iontophoretic Rostral NRe

5 CTB AP, −2.4; ML, sinus;
DV, −6.9 (dura)

Iontophoretic Intermediate to
caudal NRe

6 FG AP, −2.6; ML, sinus;
DV, −6.8 (dura)

Iontophoretic Intermediate to
caudal NRe

7 CTB AP, −2.6; ML, sinus;
DV, −6.7 (dura)

Iontophoretic Intermediate to
caudal NRe
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implantation of optical fiber [core, 200 µm; numerical aperture, 0.22
(MFC 200/240-0.22 SM3 C45 Mono Fiber-optic Cannula); Doric
Lenses]. Four stainless steel screws (Plastics One) and dental cement
were used to anchor the optical fibers. To target the NRe, animals were
implanted with bilateral optical fiber (length, 7 mm) using the following
coordinates: AP −1.8 mm, ML ±2 mm, and DV −6.6 mm. All optical
fibers were implanted 15° from theML plane. To target the HPC, animals
were implanted with bilateral optical fiber (length, 5.5 mm) using the fol-
lowing coordinates: AP −5.4 mm, ML ±2.7 mm, and DV −2.8 mm. All
optical fibers were implanted 25° from the AP plane.

Cannula implantation. Burr holes were drilled into the skull to allow
implantation of stainless steel guide cannula (26 gauge; Plastics One).
Four stainless steel screws (Plastics One) and dental cement were used
to anchor the cannula. To target the NRe, animals were implanted
with bilateral cannula using the following coordinates: AP −1.8 mm
and −2.4 mm, ML ±1.7 mm, and DV −6.4 mm. All cannulae were
implanted 15° from the ML plane. To target the HPC or mPFC, animals
were implanted with bilateral cannula to target both brain regions.
Therefore, for a given animal, four infusion cannulae were implanted
(two aimed at the HPC and two aimed at the mPFC). To target the
HPC, the coordinates were as follows: AP −4.3 mm, ML ±2.5 mm, and
DV −2.8 mm (dura). To target the mPFC, the coordinates were as fol-
lows: AP +3.2 mm, ML ±0.75 mm, and DV −3.5 mm. To prevent con-
tamination/cannula blockages, dummy cannulae were inserted into the
guide cannula. Animals were singly housed for 7 d postsurgery and given
2 weeks to recover before behavioral testing commenced.

Behavioral procedures
Behavioral apparatus and habituation. Behavioral testing was con-

ducted in a wooden open-topped (90 × 100 × 50 cm) arena with a
sawdust-covered floor. One wall of the arena was black, and three other
walls were gray in color on one side and surrounded by a black cloth on
the north and south side hung from a height of 1.5 m. The room was lit
with two floor lamps situated at either side of the arena. A webcam was
located above the arena to record behavior. Objects were constructed
from DUPLO blocks (Lego) and varied in size (ranging from 16 × 16 ×
8 cm to 20 × 20 × 25 cm), color, and shape. Objects were placed 10 cm
from the edges of the arena and cleaned with 100% ethanol during the
delay period between sample and test and between animals to remove
olfactory cues. All animals were handled extensively prior to habituation
and then habituated to the behavioral testing setup for 4 d before mem-
ory testing.

Drugs and infusion procedure for cannulation experiments
The following drugs were used: the α2 adrenergic agonist UK 14,304
(2466, Tocris Bioscience); the α2 antagonist RS 79948 (0987, Tocris
Bioscience); the α1 antagonist prazosin (0623, Tocris Bioscience); and
the β adrenergic antagonist propranolol (0834, Tocris Bioscience). UK
14,304, propranolol, and RS 79949 were dissolved in 0.9% sterile saline
solution and infused at the following concentrations: UK 14,304
(10 µM); propranolol (10 µM); and RS 79948 (1 µM). Prazosin was ini-
tially dissolved in 100% dimethyl sulfoxide (DMSO); the stock solution
was subsequently diluted with 0.9% sterile saline solution, yielding an
infusion concentration of 1 µM prazosin in 0.1% DMSO. For the NRe
experiments, vehicle control animals received either 0.9% sterile saline
solution (UK 14,304 and RS 79948 experiment) or 0.9% sterile saline
solution with 0.1% DMSO (prazosin and propranolol experiment). For
the HPC–mPFC experiments, vehicle control animals received 0.9% ster-
ile saline solution. Drug doses used were based on published IC50 values
(Atlas et al., 1974; Bylund and Snyder, 1976; Lefkowitz et al., 1976;
U’Prichard et al., 1978; Greengrass and Bremmer, 1979; van Meel et
al., 1981). Drugs were infused via 33 gauge cannula (Plastic Ones)
attached to a 25 µl Hamilton syringe by polyethylene tubing. The rate
of infusion was controlled using an infusion pump (Harvard
Apparatus). For the NRe, animals were infused with 0.3 µl of drug or
saline per hemisphere at a rate of 0.3 µl/min. For the HPC, animals
were infused with 0.5 µl of the drug or saline per hemisphere at a rate
of 0.25 µl/min. For mPFC infusions, animals were infused with 1 µl of
the drug or saline per hemisphere at a rate of 0.5 µl/min. Following

infusion, cannulae were left in place for 5 min. Infusions were given
15 min before the sample phase to test the effects on encoding or
15 min before the test phase to assess the effects on retrieval.

Stimulation protocol for optogenetic experiments
Laser light for optical stimulation was generated using a diode laser
[Omicron LuxX 515-100 laser (515 nm), Photon Lines]. The laser was
attached to a fiber-optic rotary joint with beam splitter (FRJ 1X2i
FC-2FC, Doric Lenses) via a fiber-optic patch cord (core, 200 µm;
numerical aperture, 0.22; FG200LEA; Thorlabs). Two fiber-optic patch
cords (core, 200 µm; numerical aperture, 0.22; FC-CM3; Doric Lenses)
were attached to the rotary joint at one end, while the other end was
used to connect to the optical implant on the animal’s head. The power
output of the laser was adjusted so that 10 mWwasmeasured at the tip of
each optical fiber. Optical stimulation was either given throughout the
length of the sample phase to test the effects on encoding or throughout
the length of the test phase to test the effects on retrieval. Laser stimula-
tion was delivered at a frequency of 30 Hz and a duration of 10 ms pulses
(50% duty cycle) using a custom protocol on WinLTP (2.20 M/X-Series,
WinLTP). Stimulation parameters were chosen based on a previous in
vitro electrophysiological study conducted in acute brain slices demon-
strating that laser stimulation using the abovementioned parameters
resulted in a robust decrease in resting membrane potential (Banks
et al., 2021).

Spontaneous object recognition tasks
The OiP task comprised a sample and test phase, separated by a 3 h delay
(Fig. 2E). In the sample phase (5 min), each animal was placed in the
arena which contained four different objects. Each animal was then
allowed to explore the objects before being removed from the arena
and placed back into the home cage for the delay. For the test phase
(3 min), animals were placed back in the arena which contained the
same four objects, but two objects had exchanged positions. Successful
OiP memory is demonstrated by the animal preferentially exploring
the two moved objects (the novel configuration) compared with the
two objects in the same position (familiar configuration).

The novel object recognition (NOR) task comprised a sample and test
phase with a 3 h delay (Fig. 2I). In the sample phase (5 min), the animal
explored four different objects before being removed from the arena and
placed in the home cage for the delay. In the test phase, two objects
from the sample phase were replaced with novel objects. Intact NOR
is demonstrated by greater exploration of the novel over the familiar
objects.

The object location (OL) memory task comprised a sample and test
phase with a 3 h delay (Fig. 2J). For the sample phase (4 min), each ani-
mal was placed in the arena which contained two identical objects which
they were allowed to explore before being removed from the arena for the
delay. Following the delay, the animals were placed back in the arena
where the location of one object was changed. Successful OL memory
is demonstrated by greater exploration of the familiar object in the
new location over the familiar object in the familiar location.

The OiP task with two test phases employed similar methods to the
OiP task as described above but consisted of two separate test phases
(Fig. 2G). At Test Phase 1, two objects, those on either the left or right
side of the arena, exchanged positions, and the animals were given
5 min to explore. At Test Phase 2, two objects either on the left or on
the right side, exchanged positions, and the animals were given 3 min
to explore. If during Test Phase 1, objects to the left exchanged positions,
then during Test Phase 2, objects to the right exchanged positions and
vice versa. If an animal demonstrates successful OiP memory, it should
preferentially explore the two objects which have exchanged positions
(the novel configuration) over the two objects which have remained in
the same position (familiar configuration). Thus, in Figure 2G, at Test
Phase 1, animals with intact memory will preferentially explore the
objects on the right-hand side of the arena (i.e., the moved objects relative
to their position in the sample phase), and at Test Phase 2, animals
will preferentially explore the objects on the left-hand side of the
arena (i.e., objects which have been moved relative to their positions in
Test Phase 1).
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Behavioral scoring
Total object exploration in the sample and test phases was measured
using a custom software with the experimenter blind to the experimental
condition of the animal. In all tasks, the positioning and/or identity of the
objects in the sample and test phases in each task was counterbalanced
between the animals. Exploration of an object was measured in seconds
and defined as the animal’s nose directed toward the object and <2 cm
from the object while actively sniffing. Sitting on top of the object or
using the object for supported rearing was not scored as exploratory
behavior. To measure an animal’s ability to discriminate between the
novel configuration/object compared with the familiar configuration/
object, a discrimination ratio was calculated as follows:

Discrimination ratio

= (exploration of novel (s) – exploration of familiar (s))
total exploration time (s)

.

A value of zero indicates no preference for the novel or familiar confi-
guration/object. A positive discrimination ratio value indicates a prefer-
ence for the novel configuration/object, while a negative value indicates
preference for the familiar object/configuration.

Histology
Tissue fixation. On completion of experiments animals received an

intraperitoneal injection of sodium pentobarbital (Euthatal, Merial).
Animals were transcardially perfused with 0.1 M phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde (PFA) in 0.1 M PBS (ana-
tomical tracing or viral injections/optical fiber implantation animals) or
4% formal saline (cannulated animals). Brains were removed and
postfixed with PFA for a minimum of 4 h or with formal saline for a min-
imum of 1 week before being transferred to 25% sucrose in 0.1 M PBS
for 24 h.

Tissue preparation. Following the tissue fixation procedures outlined
above, brains were sectioned using a cryostat (Leica CM3050S) into
40 µm coronal sections. For anatomical tracing and viral injection/opti-
cal fiber implantation animals, four series were taken. The first tissue
series was directly mounted onto gelatin-subbed slides for cresyl violet
staining. The second tissue series was subject to immunohistochemical
processing. For cannulated animals, sections were directly mounted
onto gelatin-subbed slides and air-dried before staining with cresyl violet.
A Leica DM6 B microscope mounted with a Hamamatsu C13440 digital
camera was used to image the samples.

Immunohistochemical procedure. Immunohistochemical staining
was performed on free-floating sections. Sections were washed with
0.1 M PBS (3 × 10 min). Sections were incubated in blocking solution
[5% animal serum, 2.5% bovine serum albumin, 0.2% Triton X-100 in
0.1 M PBS (PBST)] for 1 h before incubation with primary antibodies
diluted in blocking solution overnight at room temperature. Sections
were then washed in 0.1 M PBST (4 × 10 min) before incubation in
secondary antibodies diluted in blocking buffer for 2 h at room temper-
ature. Sections were given a final wash with PBS (4 × 10 min) and
mounted on gelatin-subbed slides and coverslipped with Fluoromount
(Sigma-Aldrich, F4680). The following primary antibodies were used
in this study: rabbit anti-TH (tyrosine hydroxylase; 1:1,000, AB152,
Chemicon), chicken anti-TH (1:1,000, AB76442, Abcam), chicken
anti-GFP (1:1,000, GFP-1020, Aves Labs), and rabbit anti-CTB
(1:3,000, C30620, Sigma-Aldrich).

Anatomical nomenclature. Anatomical boundaries and nomenclature
follow the rat brain atlas of Paxinos and Watson (2007), except for termi-
nology regarding NA-positive neurons which follows the well described
nomenclature (Fuxe, 1964; Hokfelt, 1984). To determine the origin of nor-
adrenergic input to the NRe, only noradrenergic cell groups which have
previously described projections to the NRe were examined for double-
labeled neurons (i.e., those that demonstrate costaining of both the retro-
grade tracer and TH antibody; McKenna and Vertes, 2004).

Cell counts and quantification. For cell counts, the region of interest
was determined by the presence of TH-positive cells. All TH-positive
cells, retrogradely transported cells, and double-labeled cells within the
region of interest were counted for each animal. The Olympus cellSens
Dimension Desktop software was used to perform manual cell counts.
For cell counts, the region of interest was determined by the presence
of TH-positive cells. All TH-positive cells, retrograde tracer-positive
cells, and double-labeled cells within the region of interest were counted
for each animal. Note the counts were not stereological so should give
relative not absolute numbers.

Experimental design and statistical analysis
The cannulation experiments were run with a cross-over design; thus for
a given experiment, each animal received both drug and saline infusions.
For the HPC–mPFC implanted animals, saline infusion into the HPC or
mPFC was counterbalanced between infusion timing, e.g., for a given
drug, if an animal received a presample infusion of saline into the
HPC, for the pretest infusion, the same animal would receive saline infu-
sion into the mPFC or vice versa. The optogenetic experiments were run
with a cross-over design with each animal tested with both optical stim-
ulation on and off conditions.

In all behavioral experiments, statistical analyses were performed to
compare discrimination ratios, sample phase exploration times, and
test phase exploration times between conditions. In addition, in all exper-
iments to determine whether the discrimination ratio for each condition
was significantly different from chance (a discrimination ratio of zero),
one-sample t tests were conducted. Alpha was set at 0.05 for all analysis.
The IBM SPSS Statistics 25 software (IBM) was used to perform all sta-
tistical analysis. Graphs were created using R 3.6.1 (R Core Team). Data
are presented as mean ± standard error of the mean (SEM).

Results
Catecholaminergic innervation of NRe
To visualize the distribution of catecholaminergic innervation to
the NRe, an antibody against TH was used. As depicted in
Figure 1A–C, the entire rostrocaudal axis of the NRe contained
TH-immunopositive (TH+) fibers that were fine and spindly in
nature. Interestingly the distribution of TH+ fibers in the NRe
was nonuniform. At the rostral-most level (Fig. 1A), moderate
levels of labeled fibers were observed, whereas fewer labeled
fibers were observed in the intermediate to caudal levels
(Fig. 1B,C). There was no apparent variation in the density of
TH+ fibers in the ML plane.

To examine whether the LC provided a catecholaminergic
input to the NRe, we employed retrograde labeling using CTB,
FB, or FG combined with TH immunohistochemistry. In all cases
analyzed (see Fig. 1D for an overview of cases), double-labeled
neurons, i.e., neurons immunopositive for both CTB/FB/FG
and TH, were observed in the A6-LC (Fig. 1F) but were rarely
observed from other noradrenergic cell groups analyzed [A7
pontine reticular formation (data not shown)]. In the LC,
63.0% of cells were retrograde+/TH+, and in those cases where
the position of the NRe injection was more rostral (Cases 1, 2,
3, 4, 7), there was a greater proportion of double-labeled cells
in the LC, compared with the more caudal injections (Cases 5,
6; Fig. 1D,G). These findings suggest that the LC may provide a
stronger catecholaminergic input to the rostral compared with
caudal NRe, although further studies are needed to confirm this.

Dissociation of the role of LC projections to NRe and HPC on
OiP encoding and retrieval
In view of the observed strong projections from LC to NRe and
the previously reported evidence that the LC projection to the
HPC is crucial for some forms of memory (Kempadoo et al.,
2016; Takeuchi et al., 2016; McNamara and Dupret, 2017;
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Wagatsuma et al., 2017), we next used specific optogenetic path-
way inhibition to assess the functional roles of the LC→NRe and
LC→HPC projections on encoding and retrieval of associative
recognition memory. Animals received bilateral injection of
Arch or YFP into the LC, followed by bilateral implantation
of optrodes into the NRe and HPC. Animals were allowed
to recover for 6 weeks before behavioral testing commenced
(Fig. 2A). Following behavioral testing, immunohistochemistry
confirmed that viral expression was observed in the LC
(Fig. 2B) with axonal transport of virus, as well as optrode place-
ment targeting the NRe (Fig. 2C) and HPC (Fig. 2D).

Figure 2E shows the discrimination ratios when light was
delivered during the sample phase into the NRe or HPC of the
Arch or YFP groups compared with a “light off” condition. We
found that light delivery in the Arch-HPC, but not the

Arch-NRe group, significantly impaired OiP performance.
These results are supported by a significant interaction between
stimulation and virus in the ANOVA (F(2,44) = 4.06; p= 0.024)
and Bonferroni-corrected paired t test [Arch-off vs Arch-NRe
(p= 1.00, n.s.); Arch-off vs Arch-HPC (p= 0.003); Arch-NRe vs
Arch-HPC (p= 0.013)]. We next examined the effects of light
delivery during the test phase (Fig. 2F) and found impairment
in the Arch-NRe but not the Arch-HPC group (stimulation by
virus interaction; F(2,44) = 5.64; p= 0.007) Bonferroni-corrected
paired t test [Arch-off vs NRe (p= 0.029); Arch-off vs
Arch-HPC (p= 1.00); Arch-NRe vs Arch-HPC (p= 0.024)].

The double dissociation, i.e., that LC→HPC is required for
OiP encoding, while LC→NRe is selectively required for OiP
retrieval, suggests a separation of the function of the two path-
ways. However, encoding of new information and retrieval of

Figure 1. Origin of catecholaminergic input to the NRe. A–C, Distribution of TH-positive fibers in the NRe. Left panel, Schematic of the Paxinos and Watson (2007) brain atlas at three AP levels
with the highlighted area (dashed black box) indicating the region in which photomicrographs were taken and distance in millimeter from the bregma. Middle panel, Representative pho-
tomicrographs of TH immunoreactive fibers in the thalamus. Right panel, High-magnification photomicrographs of the region indicated by boxes in the middle panel. D, Schematic drawings of
retrograde tracer injection spread in each case. Each individual case is color coded, and the Numbers #1–#7 correspond to rostral–caudal injection sites (Table 1). E, Representative Case 3 showing
the spread of the CTB tracer in the NRe. F, Fluorescent photomicrographs of Case 1 showing retrogradely transported FB neurons (blue), TH-positive neurons (green), and an overlay of the two
images in the LC. Double-labeled neurons highlighted by the white arrowheads. G, Proportion of double-labeled neurons (gray) relative to the number of retrogradely transported cells (green) in
A6 for each case. Raw numbers are in brackets, and percentages show the proportion of double-labeled neurons following the injections at different levels (Table 1). Scale bars, 200 µm. A11, A11
dopamine cells; A13, A13 dopamine cells; AHP, anterior hypothalamic area, posterior part; AM, anteromedial thalamic nucleus; AMV, anteromedial thalamic nucleus, ventral part; ANS, accessory
neurosecretory nuclei; CM, central medial thalamic nucleus; DA, dorsal hypothalamic area; DMD, dorsomedial hypothalamic nucleus, dorsal part; IAD, interanterodorsal thalamic nucleus; IAM,
interanteromedial thalamic nucleus; JLPH, juxtaparaventricular part of lateral hypothalamus; MT, medial terminal nucleus of the accessory optic tract; PaDC, paraventricular hypothalamic nucleus,
dorsal cap; PaLM, paraventricular hypothalamic nucleus, lateral magnocellular part; PaMP, paraventricular hypothalamic nucleus, medial parvicellular part; PaXi, paraxiphoid nucleus of thalamus;
Pe, periventricular hypothalamic nucleus; PH, posterior hypothalamic nucleus; PHD, posterior hypothalamic area, dorsal part; PT, paratenial thalamic nucleus; PVA, paraventricular thalamic
nucleus, posterior part; Re, reuniens thalamic nucleus; Rh, rhomboid thalamic nucleus; Stg, stigmoid hypothalamic nucleus; Sub, submedius thalamic nucleus; SubD, submedius thalamic nucleus,
dorsal part; SubV, submedius thalamic nucleus, ventral part; VM, ventromedial thalamic nucleus; VRe, ventral reuniens thalamic nucleus; Xi, xiphoid thalamic nucleus. Figures adapted from
Paxinos and Watson (2007).
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Figure 2. Differential effects of inhibition of LC→NRe and LC→HPC projections on encoding and retrieval of OiP, NOR, and OL memory. A, Schematic of experimental approach for in vivo
optogenetic inhibition. B, Representative image of viral expression in the LC. C, Representative image in the NRe showing optrode tracts (left) and Arch3.0-EYFP expression (right). D, A rep-
resentative image in the HPC showing optrode tracts (left) and Arch3.0-EYFP expression (right). E, OiP performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP
(n = 12) animals during the sample phase compared with a no-light “off” condition. F, OiP performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP (n= 12)
animals during the test phase compared with a no-light “off” condition. G, OiP performance in the Arch (n= 12) and YFP (n= 12) animals, in Test Phase 1 and Test Phase 2 with light delivery
into the NRe and HPC during Test Phase 1. H, NOR performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP (n= 12) animals during the sample phase compared
with a no-light condition (all F< 1, n.s.). I, NOR performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP (n= 12) animals during the test phase compared with a
no-light condition (all F< 1, n.s.). J, OL performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP (n= 12) animals during the sample phase compared with a
no-light condition (all F< 1, n.s.). K, OL performance following light delivery into the NRe and HPC, in the Arch (n= 12) and YFP (n= 12) animals during the test phase compared with a no-light
condition (all F< 1, n.s.). All data represented as mean ± SEM and circles indicate individual animals. *p< 0.05; **p< 0.01 difference between groups. Scale bars, 200 µm.
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old information co-occur during ongoing behavior, which raises
the question of whether it is possible to block one process while
leaving the other intact. To address this question, we adapted the
OiP task, to include two test phases with light stimulation deliv-
ered only during Test Phase 1 (Fig. 2G, top). If encoding and
retrieval are truly mediated by separate neural projections, we
hypothesized that LC input to NRe will be required for retrieval
of the object–place configurations encoded during the sample
phase, as assessed during the first test phase, but not for the
encoding the novel object–place configurations encountered dur-
ing that test phase (i.e., Test Phase 1) which will be dependent on
the LC input to HPC. The discrimination ratios following light
delivery into the Arch-HPC and Arch-NRe for Test Phase 1
and Test Phase 2 are shown in Figure 2G. As expected perfor-
mance in Test Phase 1 was impaired following light delivery in
the Arch-NRe, but not the Arch-HPC condition [ANOVA stim-
ulation × virus; F(2,44) = 6.03; p= 0.005; Bonferroni-corrected
paired t test: off vs NRe (p= 0.002), off vs HPC (p= 1.00), NRe
vs HPC (p= 0.004)]. In contrast, performance in Test Phase 2
was impaired following light delivery in the Arch-HPC, but not
the Arch-NRe condition [ANOVA stimulation × virus; F(2,44) =
3.48; p= 0.040; Bonferroni-corrected post hoc analysis: off vs
Arch-NRe (p= 1.00), off vs Arch-HPC (p= 0.043), Arch-NRe
vs Arch-HPC (p= 0.020)].

Finally, we examined the effects of optogenetic inhibition of
the LC→HPC and LC→NRe pathways during the sample or
test phases of the NOR or OL tasks (Fig. 2H–K) and no impair-
ments in performance were observed. Further analysis revealed
that overall exploration levels in all tasks were not affected
(Table 2). In addition, all observations were confirmed by com-
paring performance against chance, i.e., discrimination of zero
(Table 3).

α1-, α2-, and β-adrenergic receptors play a regionally specific
role in OiP memory
Given the differential roles of LC innervation of the HPC and
NRe on OiP encoding and retrieval, we next examined the role
of specific adrenergic receptor subtypes in the NRe and HPC.
In these experiments, we also included a group in which infu-
sions were made into the mPFC for a number of reasons: (1) neu-
ronal activity in the mPFC is key for associative recognition
memory encoding and retrieval (Barker et al., 2007; Barker and
Warburton, 2011; Benn et al., 2016); (2) the mPFC receives a
significant NA input (Chandler and Waterhouse, 2012; Agster
et al., 2013; Cerpa et al., 2019); (3) we have previously found
the selective role of D1/D5 receptors in the mPFC for OiP mem-
ory encoding, but not retrieval (Savalli et al., 2015); and (4) the
role of NA receptors in the mPFC has not yet been examined.

Two groups of animals received surgery to bilaterally implant
chronically indwelling cannulae aimed, in one group, at the NRe
only (Fig. 3A) or, in the second group, at both the HPC and
mPFC (Fig. 3B). The cannulae allowed local administration of
selective receptor antagonists prazosin (α1-adrenergic antago-
nist), propranolol (β-adrenergic antagonist), UK 14,304
(α2-adrenergic receptor agonist), or RS79948 (α2-adrenergic
receptor antagonist), either before the sample phase, to investi-
gate effects on encoding, or before the test phase to investigate
effects on retrieval (Fig. 3C).

Intra-NRe administration of either prazosin or propranolol
before the sample phase had no effect on OiP performance
(Fig. 3D); however, when the infusions were delivered prior to
the test phase, prazosin, but not propranolol, significantly impaired
performance, as confirmed by significant drug × infusion timing

interaction [F(2,36) = 4.09; p=0.025; Bonferroni-corrected post
hoc t test: pretest vehicle vs prazosin (p= 0.006); prazosin vs pro-
pranolol (p= 0.011); vehicle vs propranolol (p= 1.00, n.s.)].

Local infusion of prazosin into either the HPC or mPFC, pre-
sample or pretest, had no effect (Fig. 3E; region × infusion timing;
F(2,44) = 0.222, n.s.). In contrast, presample intra-HPC adminis-
tration of propranolol produced a significant memory disruption
while presample intra-mPFC infusions had no effect [Fig. 3F;
region × infusion timing; F(2,40) = 3.73; p= 0.033; Bonferroni-
corrected post hoc t test presample infusion timepoint: vehicle
vs HPC (p= 0.017); vehicle vs mPFC (p= 1.00); HPC vs mPFC
(p= 0.006)]. Together these results show that α1-adrenergic
receptors in the NRe are critical for retrieval, while
β-adrenergic receptors in HPC are critical for OiP encoding.

In the final series of experiments, we investigated the effects of
inhibiting or stimulating NA release, by local infusion of the
α2-adrenergic receptor agonist (UK 14,304) or antagonist (RS
79948). As α2-adrenergic receptors exist, although not exclu-
sively, as autoreceptors, located presynaptically on the terminals
of noradrenergic neurons (Langer, 1974; Milner et al., 1998;
Starke, 2001). Previous microdialysis studies have shown that
UK 14,304 infusions cause a robust decrease in NA levels (van
Veldhuizen et al., 1993; Dalley and Stanford, 1995; Ferry et al.,
2015), while infusion of RS 79948 results in a robust increase
in NA (Fernández-Pastor and Meana, 2002; Horrillo et al.,
2019). Here we found that intra-NRe infusion of UK 14,304
before the test, but not before the sample phase, significantly
impaired discrimination [Fig. 3G; drug × infusion timing;
F(1,18) = 6.29; p= 0.022; Bonferroni-corrected post hoc t test pre-
sample: vehicle vs UK 14,304 (t(9) =−0.462, n.s.); pretest: vehicle
vs UK 14,304 (t(9) = 3.62; p= 0.006)]. In contrast, intra-HPC infu-
sion of UK 14,304 prior to the sample, but not test, impaired
discrimination, while infusions into the mPFC had no effect
(Fig. 3H; region × infusion timing; F(2,44) = 2.67; p= 0.080, n.s.).
Comparisons against chance showed that presample infusion
into the HPC significantly impaired discrimination (t(11) = 1.45;
p= 0.176), while all other groups significantly discriminated
vehicle [presample (t(11) = 4.19; p= 0.002); pretest (t(11) = 3.98;
p = 0.002)]; mPFC [presample (t(11) = 5.69; p < 0.001); pretest
(t(11) = 3.20; p= 0.008)], and HPC [pretest (t(11) = 5.41;
p < 0.001)]. When we tested the effect of RS 79948 into the
NRe, HPC, or mPFC, we found no effects on memory perfor-
mance irrespective of the brain region or timing of infusion
(Fig. 3I,J) confirmed by ANOVA [NRe: drug × infusion timing
interaction (F(1,16) = 0.001; p= 0.978); HPC vs mPFC: region ×
infusion timing (F(2,44) = 0.003; p= 0.997)].

Analysis of total object exploration during the sample and
test phases indicated overall exploration levels in all tasks were
not affected. While some analyses revealed significant main
effect of infusion timing, further analysis revealed that this
effect was importantly independent of infusion region and
due to differences observed in exploration times when either
presample or pretest infusions were given (Tables 4, 5). In
addition, analysis comparing performance against chance
confirmed these observations (Tables 6, 7). Together, these
results support our conclusions that successful OiP encoding
and retrieval requires release of NA in the HPC and NRe,
respectively.

Discussion
This study contains several important new findings. We showed,
for the first time, that the entire rostrocaudal axis of the NRe is
innervated by catecholaminergic fibers and that the LC provides
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Table 2. Mean exploration time ± SEM in the sample and test phases of animals involved in optogenetic experiments

Figure and task
Stimulation
timing Virus

Stimulation
condition

Exploration
in sample
phase (s)

Statistical analysis of
sample phase

Exploration
in Test
Phase 1 (s)

Statistical analysis of
Test Phase 1

Exploration
in Test
Phase 2 (s)

Statistical analysis of Test
Phase 2

Figure 2, E and F
OiP

Encoding YFP Off 57.9 ± 4.18 Stimulation condition ×
virus (F(2,44) = 2.70;
p = 0.079)

Main effect of
stimulation condition
(F(2,44) = 1.87;
p = 0.166)

Main effect of virus
(F(1,22) = 0.831;
p = 0.372)

32.0 ± 4.10 Stimulation condition ×
virus (F(1.54,33.9) =
0.572; p= 0.526)

Main effect of
stimulation condition
(F(1.54,33.9) = 1.69;
p= 0.204)

Main effect of virus
(F(1,22) = 0.124;
p= 0.728)

NRe 49.7 ± 4.76 28.2 ± 3.16
HPC 41.9 ± 2.52 28.7 ± 3.03

Arch Off 45.5 ± 3.90 31.1 ± 3.29
NRe 47.5 ± 3.52 29.9 ± 1.98
HPC 47.0 ± 4.29 24.6 ± 3.01

Retrieval YFP Off 71.5 ± 5.54 Stimulation condition ×
virus (F(2,44) = 0.687;
p = 0.508)

Main effect of
stimulation condition
(F(2,44) = 0.146; p=
0.865)

Main effect of virus
(F(1,22) = 0.907;
p = 0.351)

31.8 ± 4.17 Stimulation condition ×
virus (F(2,44) = 1.11;
p = 0.338)

Main effect of
stimulation condition
(F(2,44) = 0.438;
p= 0.648)

Main effect of virus
(F(1,22) = 0.004;
p= 0.950)

NRe 68.0 ± 5.34 33.9 ± 4.28
HPC 66.3 ± 3.55 28.8 ± 3.28

Arch Off 62.3 ± 4.15 32.6 ± 2.77
NRe 65.1 ± 4.39 29.7 ± 3.22
HPC 64.1 ± 3.00 31.4 ± 3.48

Figure 2G OiP
(two test
phases)

YFP Off 71.0 ± 4.36 Stimulation condition ×
virus (F(2,44) = 0.006;
p = 0.994)

Main effect of
stimulation condition
(F(2,44) = 0.273;
p = 0.762)

Main effect of virus
(F(1,22) = 0.166;
p = 0.688)

48.4 ± 4.40 Stimulation condition ×
virus (F(2,44) = 0.184;
p = 0.833)

Main effect of
stimulation condition
(F(2,44) = 0.014;
p= 0.986)

Main effect of virus
(F(1,22) = 3.66;
p= 0.069)

34.9 ± 2.22 Stimulation condition ×
virus (F(2,44) = 0.663;
p= 0.521)

Main effect of
stimulation condition
(F(2,44) = 0.006;
p= 0.994)

Main effect of virus
(F(1,22) = 0.232;
p= 0.635)

NRe 72.5 ± 5.37 47.8 ± 4.49 38.6 ± 3.41
HPC 69.8 ± 6.41 45.6 ± 3.54 37.4 ± 2.71

Arch Off 68.2 ± 5.71 55.3 ± 5.49 37.6 ± 3.83
NRe 70.6 ± 3.42 54.5 ± 5.35 34.3 ± 1.92
HPC 67.6 ± 4.74 56.8 ± 4.33 35.9 ± 3.20

Figure 2, H and I
Object
recognition

Encoding YFP Off 62.7 ± 3.62 Stimulation condition ×
virus (F(2,42) = 0.041;
p = 0.959)

Main effect of
stimulation condition
(F(2,42) = 1.84;
p = 0.171)

Main effect of virus
(F(1,21) = 0.005;
p = 0.947)

36.9 ± 2.81 Stimulation condition ×
virus (F(2,42) = 0.671;
p = 0.517)

Main effect of
stimulation condition
(F(2,42) = 1.77;
p= 0.183)

Main effect of virus
(F(1,21) = 1.05;
p= 0.318)

NRe 64.8 ± 2.59 41.8 ± 2.90
HPC 59.4 ± 3.13 36.0 ± 2.75

Arch Off 61.3 ± 5.26 36.3 ± 3.08
NRe 63.2 ± 3.05 41.8 ± 5.23
HPC 59.1 ± 4.52 43.1 ± 2.19

Retrieval YFP Off 67.2 ± 4.99 Stimulation condition ×
virus (F(2,44) = 0.919;
p = 0.407)

Main effect of
stimulation condition
(F(2,44) = 2.95;
p = 0.063)

Main effect of virus
(F(1,22) = 0.033;
p = 0.858)

39.6 ± 3.11 Stimulation condition ×
virus interaction
(F(2,44) = 0.035;
p= 0.966)

Main effect of
stimulation condition
(F(2,44) = 0.623;
p= 0.541)

Main effect of virus
(F(1,22) = 0.869;
p= 0.361)

NRe 79.5 ± 3.95 35.0 ± 4.33
HPC 72.0 ± 4.82 36.9 ± 4.04

Arch Off 69.5 ± 5.31 43.0 ± 3.33
NRe 74.8 ± 4.03 39.5 ± 4.71
HPC 77.0 ± 4.08 39.4 ± 4.61

Figure 2, J and K
OL

Encoding YFP Off 39.8 ± 3.74 Stimulation condition ×
virus (F(2,44) = 0.828;
p = 0.444)

Main effect of
stimulation condition
(F(2,44) = 0.066;
p = 0.936)

Main effect of virus
(F(1,22) = 0.006;
p = 0.937)

27.3 ± 3.05 Stimulation condition ×
virus interaction
(F(2,44) = 0.047;
p= 0.954)

Main effect of
stimulation condition
(F(2,44) = 0.098;
p= 0.907)

Main effect of virus
(F(1,22) = 4.08;
p= 0.056)

NRe 36.8 ± 4.13 26.5 ± 2.51
HPC 39.0 ± 4.07 25.7 ± 2.72

Arch Off 37.2 ± 1.81 31.6 ± 2.76
NRe 40.1 ± 3.06 32.1 ± 2.64
HPC 39.3 ± 3.19 31.3 ± 2.03

Retrieval YFP Off 39.8 ± 4.46 Stimulation condition ×
virus (F(2,44) = 0.268;
p = 0.766)

28.4 ± 2.93 Stimulation condition ×
virus (F(2,44) = 0.753;
p = 0.872)

NRe 41.2 ± 4.17 28.2 ± 3.85
HPC 38.9 ± 2.71 30.3 ± 2.40

(Table continues.)
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a strong catecholaminergic input to this nucleus. Interestingly the
strongest innervation from LC appeared to be to the rostral NRe.
Next, optogenetic inactivation of LC→NRe significantly disrupted
OiP retrieval, but not encoding, while inactivation of the
LC→HPC projection impaired encoding but not retrieval.
Finally, we found that retrieval was mediated by increased NA

release in the NRe acting at α1-adrenoreceptors, while encoding
required NA release in the HPC, specifically acting at
β-adrenoceptors. Neither encoding nor retrieval appeared to
depend on NA function in the mPFC. While NA release has
been associated with attentional processing and arousal
(Berridge and Waterhouse, 2003; Berridge, 2008; Sara, 2009;

Table 2. Continued

Figure and task
Stimulation
timing Virus

Stimulation
condition

Exploration
in sample
phase (s)

Statistical analysis of
sample phase

Exploration
in Test
Phase 1 (s)

Statistical analysis of
Test Phase 1

Exploration
in Test
Phase 2 (s)

Statistical analysis of Test
Phase 2

Main effect of
stimulation condition
(F(2,44) = 0.662;
p= 0.521)

Main effect of virus
(F(1,22) = 0.011;
p= 0.919)

Main effect of
stimulation condition
(F(2,44) = 0.027;
p= 0.974)

Main effect of virus
(F(1,22) = 0.083;
p= 0.775)

Arch Off 38.2 ± 2.83 28.2 ± 2.36
NRe 42.3 ± 3.19 29.3 ± 2.74
HPC 40.8 ± 3.64 25.6 ± 2.69

Table 3. Analysis of performance against chance of animals involved in optogenetic experiment

Figure and task
Stimulation
timing Virus

Stimulation
condition

Statistical analysis comparing performance against
chance in Test Phase 1

Statistical analysis comparing performance against
chance in Test Phase 2

Figure 2, E and F OiP Encoding YFP Off t(11) = 7.28; p< 0.001
NRe t(11) = 4.17; p= 0.002
HPC t(11) = 3.95; p= 0.002

Arch Off t(11) = 3.44; p= 0.006
NRe t(11) = 5.63; p< 0.001
HPC t(11) =−0.425; p= 0.679

Retrieval YFP Off t(11) = 5.30; p< 0.001
NRe t(11) = 7.12; p< 0.001
HPC t(11) = 5.35; p< 0.001

Arch Off t(11) = 4.66; p= 0.001
NRe t(11) = 0.704; p= 0.496
HPC t(11) = 3.66; p= 0.004

Figure 2G OiP (two test
phases)

YFP Off t(11) = 5.52; p< 0.001 t(11) = 3.59; p= 0.004
NRe t(11) = 4.17; p= 0.001 t(11) = 3.63; p= 0.004
HPC t(11) = 3.95; p= 0.001 t(11) = 4.22; p= 0.001

Arch Off t(11) = 6.54; p< 0.001 t(11) = 4.35; p= 0.001
NRe t(11) =−0.853; p= 0.412 t(11) = 4.20; p= 0.001
HPC t(11) = 7.97; p< 0.001 t(11) =−2.49; p= 0.808

Figure 2, H and I Object
recognition

Encoding YFP Off t(11) = 4.59; p= 0.001
NRe t(11) = 4.18; p= 0.002
HPC t(11) = 4.40; p= 0.001

Arch Off t(11) = 3.72; p= 0.003
NRe t(11) = 5.27; p< 0.001
HPC t(10) = 3.31; p= 0.008

Retrieval YFP Off t(11) = 4.22; p= 0.001
NRe t(11) = 4.04; p= 0.002
HPC t(11) = 4.21; p= 0.001

Arch Off t(11) = 3.35; p= 0.007
NRe t(11) = 4.62; p= 0.001
HPC t(11) = 4.11; p= 0.002

Figure 2, J and K OL Encoding YFP Off t(11) = 2.93; p= 0.014
NRe t(11) = 3.44; p= 0.006
HPC t(11) = 3.67; p= 0.004

Arch Off t(11) = 4.08; p= 0.002
NRe t(11) = 6.10; p< 0.001
HPC t(11) = 2.97; p= 0.013

Retrieval YFP Off t(11) = 6.23; p< 0.001
NRe t(11) = 4.60; p= 0.001
HPC t(11) = 4.11; p= 0.002

Arch Off t(11) = 3.75; p= 0.003
NRe t(11) = 4.19; p= 0.002
HPC t(11) = 3.35; p= 0.006
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Schwarz and Luo, 2015), significantly none of the optogenetic or
pharmacological experimental manipulations disrupted NOR or
OL memory. That NOR was not affected is not that surprising
given our previous work demonstrating that the HPC, NRe, and
mPFC are not involved in this form of recognition memory
(Barker and Warburton, 2011, 2018), although the lack of effect

onOL does contrast with some earlier findings as will be discussed.
Finally, overall object exploration during the sample or test phases
was not affected by photostimulation or manipulation of norad-
renergic receptor subtypes. Hence, we can exclude the possibility
that the observed OiP deficits are due to nonspecific attentional
or motivational deficits. Together these findings indicate the

Figure 3. The differential role of adrenergic receptors on OiP encoding and retrieval. A,B, Schematic of experimental approach for intracerebral administration of specific adrenergic receptor
agonists/antagonists. C, Schematic representation of the OiP task. D, The effects of intra-NRe administration of prazosin or propranolol prior to the sample phase or test phase (n= 10). E, The
effects of intra-HPC or intra-mPFC infusion of prazosin prior to the sample or test phase (n= 12). F, The effect of administration of propranolol into the HPC or mPFC before the sample or test
phase (n= 11). G, The effect of administration of UK 14,304 into the NRe before the sample or test phase (n= 10). H, The effect of administration of UK 14,304 into the HPC or PFC either before
the sample or test phase. I, The effect of administration of RS79948 in the NRe before the sample or test. J, The effect of RS 79948 into the HPC or mPFC before the sample or test. Data
represented as mean ± SEM and circles indicate individual animals; *p< 0.05; **p< 0.01; ***p< 0.001.

10 • J. Neurosci., June 11, 2025 • 45(24):e2408242025 Tran et al. • Noradrenaline and Associative Recognition Memory



importance of NA neuromodulation in discrete brain regions for
OiP memory encoding and retrieval.

The significant TH staining across the NRe observed was
found to be densest in rostral NRe. These results contrast with
an earlier study which found that the catecholaminergic innerva-
tion of themidline nuclei, which includes NRe, is sparse (Lindvall
et al., 1974). Such differences in findings are likely accounted for
by different experimental protocols, as the earlier study used a
glyoxylic acid fluorescence method, while here TH was used as
the marker. TH is the rate-limiting step of catecholamine bio-
synthesis and therefore labels both dopaminergic and noradren-
ergic axons, and while the present study did not distinguish

neurochemical identity of these fibers, we revealed that the
sole source of potential noradrenergic inputs to the NRe is
the LC. However, not all retrogradely labeled cells from the
NRe to the LC were TH+; thus, the LC also likely sends noncate-
cholaminergic inputs to the NRe whichmay be either GABAergic
or glutamatergic (Fung et al., 1994; Nakamura et al., 2000;
Glennon et al., 2019; Negishi et al., 2020; Ganley et al., 2021;
Yang et al., 2021). Given that our study was in no way meant
to be a definitive anatomical investigation of inputs to NRe fur-
ther studies, including those investigating sources of dopaminer-
gic inputs, are clearly needed. The finding that the rostral NRe
has the densest innervation of catecholaminergic fibers is

Table 4. Mean exploration times ± SEM in the sample and test phases of NRe-infused animals

Figure
Infusion
timing Condition

Exploration in sample
phase(s) Statistical analysis of sample phase

Exploration in test
phase(s) Statistical analysis of test phase

Figure 3D Prazosin and
propranolol

Presample Vehicle 74.2 ± 10.7 Drug × infusion timing (F(2,36) = 0.085;
p= 0.918)

Main effect of drug (F(2,36) = 1.24;
p = 0.301)

Main effect of infusion timing
(F(1,18) = 6.00; p= 0.025)

47.5 ± 5.29 Drug × infusion timing (F(2,36) = 0.268;
p= 0.766)

Main effect of drug (F(2,36) = 0.295;
p = 0.747)

Main effect of infusion timing
(F(1,18) = 0.267; p= 0.612)

Prazosin 83.2 ± 6.40 47.5 ± 7.90
Propranolol 84.7 ± 6.30 49.5 ± 6.48

Pretest Vehicle 89.7 ± 4.37 41.7 ± 2.54
Prazosin 92.9 ± 7.74 48.2 ± 6.12
Propranolol 99.6 ± 3.46 45.4 ± 3.91

Figure 3G UK 14,304 Presample Vehicle 76.9 ± 6.05 Drug × infusion timing (F(1,18) = 0.516;
p= 0.482)

Main effect of drug (F(1,18) = 0.062;
p = 0.806)

Main effect of infusion timing
(F(1,18) = 4.02; p= 0.060)

38.2 ± 3.23 Drug × infusion timing (F(1,18) = 0.026;
p= 0.874)

Main effect of drug (F(1,18) = 0.203;
p = 0.658)

Main effect of infusion timing
(F(1,18) = 4.75; p= 0.043)

UK 14,304 79.3 ± 7.37 37.1 ± 3.29
Pretest Vehicle 93.8 ± 4.68 51.6 ± 5.71

UK 14,304 88.8 ± 5.05 46.4 ± 6.42

Figure 3I RS79488 Presample Vehicle 85.5 ± 5.19 Drug × infusion timing (F(1,16) = 0.293;
p= 0.596)

Main effect of drug (F(1,16) = 1.89;
p = 0.188)

Main effect of infusion timing
(F(1,16) = 10.3; p= 0.006)

50.5 ± 4.79 Drug × infusion timing (F(1,16) = 0.521;
p= 0.481)

Main effect of drug (F(1,16) = 0.001;
p = 0.982)

Main effect of infusion timing
(F(1,16) = 3.33; p= 0.087)

RS79488 76.5 ± 10.4 48.3 ± 7.33
Pretest Vehicle 59.2 ± 4.44 44.6 ± 2.77

RS79488 54.7 ± 4.57 42.0 ± 3.27

Table 5. Mean exploration times ± SEM in the sample and test phases of HPC or mPFC-infused animals

Figure and drug
Infusion
timing

Drug
condition

Exploration in sample
phase(s) Statistical analysis of sample phase

Exploration in test
phase(s) Statistical analysis of test phase

Figure 3E
Prazosin

Presample Vehicle 87.0 ± 5.33 Infusion region × infusion timing
(F(2,44) = 1.31; p= 0.281)

Main effect of infusion region
(F(2, 44) = 1.09; p= 0.345)

Main effect of infusion timing
(F(1,22) = 2.10; p= 0.161)

53.1 ± 4.12 Infusion region × infusion timing
(F(2, 44) = 1.38; p= 0.262)

Main effect of infusion region (F(2,44) = 0.481;
p= 0.621)

Main effect of infusion timing (F(1,22) = 1.66;
p= 0.211)

HPC 90.9 ± 6.88 51.2 ± 4.13
mPFC 76.7 ± 6.23 47.0 ± 3.82

Pretest Vehicle 92.5 ± 6.57 52.6 ± 3.01
HPC 93.8 ± 4.86 57.7 ± 3.66
mPFC 94.0 ± 3.65 56.5 ± 4.85

Figure 3F
Propranolol

Presample Vehicle 52.4 ± 4.05 Infusion region × infusion timing
(F(2,40) = 0.868; p= 0.482)

Main effect of infusion region
(F(2,40) = 1.63; p= 0.208)

Main effect of infusion timing
(F(1,20) = 2.38; p= 0.138)

34.9 ± 3.90 Infusion region × infusion timing
(F(2,40) = 0.915; p= 0.409)

Main effect of infusion region (F(2,40) = 1.81;
p= 0.176)

Main effect of infusion timing (F(1,20) = 7.43;
p= 0.013)

HPC 54.5 ± 4.15 28.7 ± 2.98
mPFC 50.2 ± 4.69 27.0 ± 2.62

Pretest Vehicle 55.9 ± 5.97 38.5 ± 5.36
HPC 71.6 ± 8.48 40.6 ± 5.16
mPFC 61.6 ± 10.0 35.0 ± 5.47

Figure 3H UK
14,304

Presample Vehicle 71.9 ± 5.65 Infusion region × infusion timing
(F(2,44) = 0.341; p= 0.713)

Main effect of infusion region
(F(2,44) = 0.423; p= 0.658)

Main effect of infusion timing
(F(1,22) = 2.68; p= 0.116)

46.9 ± 4.07 Infusion region × infusion timing
(F(1.45, 31.9) = 1.82; p= 0.175)

Main effect of infusion region
(F(1.45, 31.9) = 0.571; p= 0.517)

Main effect of infusion timing
(F(1,22) = 0.491; p= 0.037)

HPC 69.4 ± 4.97 46.9 ± 3.69
mPFC 65.6 ± 5.87 40.8 ± 3.89

Pretest Vehicle 59.3 ± 4.07 31.3 ± 3.72
HPC 60.0 ± 5.61 36.7 ± 3.77
mPFC 59.1 ± 3.93 36.9 ± 4.85

Figure 3J
RS79488

Presample Vehicle 69.4 ± 5.17 Infusion region × infusion timing
(F(2,44) = 0.516; p= 0.600)

Main effect of infusion region
(F(2,44) = 0.026; p= 0.974)

Main effect of infusion timing
(F(1,22) = 4.83; p= 0.039)

36.1 ± 3.77 Infusion region × infusion timing
(F(2, 44) = 0.003; p= 0.997

Main effect of infusion region (F(2,44) = 0.465;
p= 0.631)

Main effect of infusion timing
(F(1,22) = 0.499; p= 0.487)

HPC 71.1 ± 4.19 38.5 ± 4.83
mPFC 67.3 ± 5.08 39.6 ± 3.61

Pretest Vehicle 60.4 ± 3.72 40.9 ± 3.00
HPC 57.2 ± 4.97 42.5 ± 2.69
mPFC 62.6 ± 5.51 39.4 ± 4.13
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potentially interesting in the context of our previously described
OiP memory network, as NRe→HPC projections arise in rostral
NRe and projections to mPFC in caudal and lateral wings
(Hoover and Vertes, 2012; Varela et al., 2014). Clearly a next
step would be to assess whether behavior-specific patterns of
neuronal activity occur in HPC-projecting NRe cells modulated
by NA.

We next focused on the functional role of LC projections and
NA receptor subtypes in the HPC–NRe–mPFC memory net-
work. We consistently found that both disruption of NA signal-
ing in the NRe and disruption of LC input to NRe impaired
associative recognition memory retrieval. Changes in behavioral
contingencies increase LC firing, thus signaling salience, novelty,
or unexpected uncertainty (Vankov et al., 1995; Bouret and Sara,
2005; Yu and Dayan, 2005) as would occur during the OiP test.
While the effect of increased LC firing on NRe neurons has not
been investigated, in other thalamic nuclei such as the thalamic

reticular nucleus, NA increases neuronal excitability through
α1-adrenoreceptor activation (McCormick and Prince, 1988;
Lee and McCormick, 1996). As associative memory retrieval
requires activity in the NRe→HPC pathway (Barker et al.,
2021) and the mPFC (Barker et al., 2007), it is tempting to spec-
ulate that recognition of a novel object–place arrangement
requires top–down mPFC→LC signaling of the object–place
change (Schwarz et al., 2015; Breton-Provencher and Sur,
2019) which results in increased LC firing, release of NA in
NRe, which acts via α1-adrenoreceptors located specifically on
the NRe–HPC projection. Indeed, it has been reported that
some LC neurons project to a single brain area and thus have a
selective “modular” effect (Kebschull et al., 2016) to optimize
behavioral outcomes. NA release in the NRe could thus act to
promote ongoing exploration of novelty (Beerling et al., 2011),
as one would observe in the OiP task, if retrieval was unaffected.

OiP encoding was disrupted by LC→HPC inhibition, agon-
ism of α2-adrenergic receptors, and antagonism of β-adrenergic
receptors. Previous research has shown that novelty, including
that during encoding of an object’s new location, is associated
with LC activation (Kempadoo et al., 2016; Takeuchi et al.,
2016; Gálvez-Márquez et al., 2022). Thus, it was surprising that
LC→HPC inhibition only impaired OiP and not OL memory
which may reflect differences in task difficulty as the OL requires
only the single discrimination of the moved object. It has been
shown that LC activation releases NA in the HPC, leading to
β-adrenergic–dependent synaptic plasticity changes (Hansen
and Manahan-Vaughan, 2015; Hagena et al., 2016; Babushkina
and Manahan-Vaughan, 2022) specifically long-term depression
(Hagena and Manahan-Vaughan, 2025). Such plasticity could
provide a mechanism for the longer-term storage of object–place
associative memories. However, some recent studies have sug-
gested that projections from the LC to the HPC release dopamine
as well as NA, and it is the release of such dopamine rather than
NA which is critical for learning and memory (Kempadoo et al.,
2016; Takeuchi et al., 2016; McNamara and Dupret, 2017;
Wagatsuma et al., 2017). However, using the same protocols,
we previously found that direct infusion of the D1/D5 antagonist
SCH23390 into the HPC had no effect on OiP encoding (Savalli
et al., 2015). Hence overall, our data indicating that NA signaling
in the HPC, via β-adrenergic receptors, is required for OiP
encoding may reflect the involvement of a NA-mediated under-
lying long-term synaptic plasticity mechanism ensuring reten-
tion of memory over a 3 h delay.

Thus far, encoding and retrieval have been discussed sepa-
rately, although they are highly dynamic processes and likely to
be occurring, on most circumstances, at the same time; thus,
we used a modified version of the OiP task involving two test
phases (Barker et al., 2021) and confirmed that LC→NRe inacti-
vation impaired retrieval at Test 1, but did not impair encoding of
the new information in Test 1, as Test 2 performance was intact.
Conversely inactivation of the LC→HPC pathway impaired
encoding but not retrieval. These results thus support our prop-
osition that encoding and retrieval are mediated concurrently
through separate but parallel LC–forebrain subnetworks, which
may be key for the binding of recent and related information
while ensuring a separation of processing.

Surprisingly we found no effect of noradrenergic receptor
manipulation in the mPFC although the mPFC is pivotal for
associative recognition memory (Barker et al., 2007; Barker and
Warburton, 2011; Benn et al., 2016), is strongly innervated by
noradrenergic fibers, and has dense noradrenergic receptor
expression (Palacios and Kuhar, 1982; Scheinin et al., 1994;

Table 6. Analysis of performance against chance of NRe-infused animals

Figure
Infusion
timing Condition

Statistical analysis of sample
phase

Figure 3D Prazosin and
propranolol

Presample Vehicle t(9) =−4.10; p= 0.003
Prazosin t(9) = 4.48; p= 0.001
Propranolol t(9) = 3.17; p= 0.011

Pretest Vehicle t(9) = 3.10; p= 0.013
Prazosin t(9) =−1.70; p= 0.123
Propranolol t(9) = 3.66; p= 0.005

Figure 3G UK 14,304 Presample Vehicle t(9) = 5.05; p= 0.001
UK 14,304 t(9) = 3.64; p= 0.005

Pretest Vehicle t(9) = 4.32; p= 0.002
UK 14,304 t(9) = 0.092; p= 0.928

Figure 3I RS79488 Presample Vehicle t(8) = 4.17; p= 0.003
RS79488 t(8) = 5.25; p= 0.001

Pretest Vehicle t(8) = 3.47; p= 0.008
RS79488 t(8) = 4.44; p= 0.002

Table 7. Analysis of performance against chance of HPC or mPFC-infused animals

Figure and drug
Infusion
timing

Drug
condition

Statistical analysis comparing
performance against chance

Figure 3E
Prazosin

Presample Vehicle t(11) = 5.13; p< 0.001
HPC t(11) = 4.18; p= 0.002
mPFC t(11) = 4.78; p= 0.001

Pretest Vehicle t(11) = 4.31; p= 0.001
HPC t(11) = 3.32; p= 0.007
mPFC t(11) = 3.47; p= 0.005

Figure 3F
Propranolol

Presample Vehicle t(10) = 4.45; p= 0.001
HPC t(10) =−6.15; p= 0.553
mPFC t(10) = 5.10; p< 0.001

Pretest Vehicle t(10) = 3.82; p= 0.003
HPC t(10) = 4.40; p= 0.001
mPFC t(10) = 3.88; p= 0.003

Figure 3H UK
14,304

Presample Vehicle t(11) = 4.19; p= 0.002
HPC t(11) = 1.45; p= 0.176
mPFC t(11) = 5.69; p< 0.001

Pretest Vehicle t(11) = 3.98; p= 0.002
HPC t(11) = 5.41; p< 0.001
mPFC t(11) = 3.20; p= 0.008

Figure 3J
RS79488

Presample Vehicle t(11) = 5.74; p< 0.001
HPC t(11) = 6.04; p< 0.001
mPFC t(11) = 4.34; p= 0.001

Pretest Vehicle t(11) = 3.26; p= 0.008
HPC t(11) = 7.13; p< 0.001
mPFC t(11) = 5.03; p< 0.001
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Rosin et al., 1996; Talley et al., 1996; Paschalis et al., 2009;
Santana et al., 2013). Interestingly those functional studies show-
ing the critical role of NA in the mPFC have found effects on
short-term working memory and attentional set shifting or in
the extinction, but not acquisition, of fear memory (see reviews
in Mueller et al., 2008; Berridge and Spencer, 2016), thus under-
lining the functional and regional specificity of LC and NA sig-
naling in cognition. Indeed recent reports have argued that the
LC is a heterogeneous structure where separate populations of
LC neurons send selective projections to provide this functional
specificity (Chandler and Waterhouse, 2012; Chandler et al.,
2014, 2019; Uematsu et al., 2015, 2017; Hirschberg et al., 2017;
Giustino et al., 2019; Totah et al., 2019; Borodovitsyna et al.,
2020; Ranjbar-Slamloo and Fazlali, 2020). The present data
clearly accord with this view, i.e., that during associative recogni-
tion memory, LC projections provide localized and hence mod-
ular neuromodulation in the NRe and HPC.

These findings demonstrate that memory encoding and
retrieval are dependent both on activation of specific pathways
and noradrenergic receptor subtypes within a HPC–thalamic
memory circuit. Associative recognition memory deficits are
associated with several neurodegenerative conditions and neuro-
psychiatric diseases such as schizophrenia (Mäki-Marttunen
et al., 2020; Crawford and Berry, 2024). In aging, the LC cell
number and NA concentration in the brain declines (Marien
et al., 2004) and in both Parkinson’s and Alzheimer’s disease
LC degeneration occurs relatively early (Braak et al., 2004;
Grudzien et al., 2007; Paredes-Rodriguez et al., 2020). Future
work should consider a modular LC–NA system in the context
of memory circuitry and prevention of memory decline.
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