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Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative
stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level
compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few
decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox
homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing
ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and
antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling
pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer
therapeutic effects through their ROS-related functions.

1. Introduction

Reactive oxygen species (ROS) are highly reactive metabolic
by-products that cause both deleterious and beneficial effects.
Cellular ROS act as secondary messengers in signalling
cascades that are critical for normal physiological functions
such as differentiation and development [1, 2]. However,
overproduction of ROS can cause damage to biomolecules
such as DNA, lipids, carbohydrates, and proteins [3, 4], lead-
ing to loss of cell integrity and subsequently cell pathology
(Figure 1). For example, ROS is now recognized to promote
tumorigenesis, metastasis, and angiogenesis [5]. But then
again, in cancer, excessive accumulation of ROS induces cell
death [6]. Studies have shown that cancer cells have increased
ROS level compared to normal cells due to high metabolic
rate and mitochondrial dysfunction, which render increased
susceptibility to oxidative stress [7, 8]. Thus, additional surge
in ROS level is likely to cause cancer cells to reach their oxi-
dative stress threshold sooner than normal cells, resulting in
oxidative stress-induced cancer cell death [7, 8]. Therefore, it

is not surprising that several natural dietary bioactive com-
pounds that cause increased ROS levels have been shown to
selectively target cancer cells [9]. For instance, dietary phyto-
chemicals such as polyphenols, flavonoids, and stilbenes have
the capacity to inhibit cancer cell proliferation and induce
apoptosis and autophagy [10]. While most dietary bioactive
compounds possess antioxidant capacity at low doses, high
doses induce prooxidant activity that leads to cancer cell
death. These compounds also influence mitochondrial
functions by altering mitochondrial enzymes, oxidative
phosphorylation, and mitochondrial pathways [11]. In this
review, we focus on ROS regulation, ROS-mediated signal-
ling pathways, and the contemporary use of dietary phyto-
chemicals for cancer therapy.

2. ROS Regulation

ROS production is affected by both external factors such as
tobacco smoke and ionizing radiation and intracellular fac-
tors such as the endoplasmic reticulum (ER), mitochondria,
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and peroxisomes [12] (Figure 2). Endogenous ROS are
mainly produced in mitochondria during oxidative phos-
phorylation. Superoxide anions are generated through the
electron transport chain complexes I and III localized in the
inner mitochondrial membrane, and superoxide dismutase
(SOD) converts superoxide ions into hydrogen peroxide
(H2O2), which is subsequently catalyzed by glutathione per-
oxidase (GPX) to generate H2O. Catalase (CAT) also con-
verts H2O2 to water (Figure 1) [13]. Other intracellular
enzymes such as NADPH oxidase, lipoxygenases, and xan-
thine oxidase are also capable of ROS production [14].
Although intracellular redox homeostasis is well controlled
by the enzymatic antioxidants, SOD, GPX, and CAT, it is also
regulated by nonenzymatic antioxidants such as ascorbic
acid (vitamin C) and glutathione (GSH) [15] (Figure 2).

Besides these antioxidants, the transcription factor,
nuclear factor erythroid 2- (NFE2-) related factor 2 (Nrf2),
also contributes in controlling oxidative stress. Activation
of Nrf2 requires inhibition of its negative regulator Keap1,
which results in Nrf2 nuclear translocation [16]. This leads
to the expression and production of the antioxidant enzymes,
CAT, GPX, heme oxygenase-1 (HO-1), and peroxiredoxin
(PRX), and maintenance of redox balance [16]. We note,
however, that intracellular oxidative stress induces activation
of hypoxia-inducible factors (HIFs), resulting in the tran-
scription of genes that promote survival and proliferation
of cancer cells [17].

3. ROS in Cancer Signalling Pathways

ROS serve a crucial role in the regulation of a number of
cellular processes such as cell proliferation and differentia-
tion and cell death. Therefore, it is critical that a delicate bal-
ance in ROS level is maintained. ROS level is regulated by
redox homeostasis via ROS elimination through antioxi-
dants. Within the threshold limit of redox homeostasis, a
regulated ROS increase could serve as a signal for H2O2-

mediated oxidation of protein cysteine residues, triggering
specific cellular events such as proliferation [18]. Conversely,
disturbance of redox homeostasis in the direction of ROS
overload leads to deleterious outcomes such as irreversible
oxidative DNA damage that could trigger cell death. It is
now known that metabolically transformed and fast-
growing cancer cells have higher ROS levels than neighbor-
ing normal cells, placing cancer cells at a greater risk of
reaching the ROS threshold to induce apoptosis. This infers
that promoting further ROS production in cancer cells may
be utilized as a strategy to induce cancer cell death.

ROS play an important role in tumor initiation, promo-
tion, and progression [19]. At levels below the ROS thresh-
old, ROS activate oncogenes such as Ras and c-Myc [20]
and induce p53-mediated DNA repair and survival [21] in
cancer cells. At levels above the ROS threshold, ROS trigger
apoptotic signals [6]. These cellular processes are controlled
by ROS through its regulation of various signalling pathways
(Figure 3), including the mitogen-activated protein kinase
(MAPK)/extracellular-signal-regulated kinase (ERK), the
phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT),
the inhibitor of kappa B (IκB) kinase (IKK)/nuclear factor
κB (NFκB), and the protein kinase D (PKD) signalling
pathways [22, 23]. For example, ROS-dependent ERK activa-
tion controls the expression of proapoptotic genes by phos-
phorylation of transcription factors [23, 24]. Conversely,
ROS-induced JNK activation results in phosphorylation
and downregulation of antiapoptotic proteins such as BCL-
2 and BCL-XL [25]. In response to ROS, IκB phosphorylation
by IKK and subsequently ubiquitination lead to activation
and translocation of NFκB into the nucleus to stimulate the
expression of antiapoptotic genes [26]. ROS directly activates
PI3K subsequently converting phosphatidylinositol 4,5-
bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphos-
phate (PIP3) and resulting in transcriptional inhibition of
the AKT target genes, glycogen synthase kinase 3 (GSK3),
forkhead box O (FOXO), and BCL-2-associated death
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Figure 1: Intracellular redox homeostasis and imbalance and their effects on cellular functions. SOD: superoxide dismutase; CAT: catalase;
OH: hydroxyl radical; GPX: glutathione peroxidase; GSSG: glutathione disulfide; GR: GSSG reductase; GSH: glutathione.
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promoter (BAD) and activation of mammalian target of
rapamycin (mTOR1) [27].

ROS-mediated apoptosis can be initiated by mitochon-
drial intrinsic apoptotic signalling or by extrinsic apoptotic
signalling through death receptor pathways (Figure 4).
Increased production of ROS depolarizes the mitochondrial
membrane, releasing cytochrome C from the mitochondria.
Cytochrome C induces activation of caspase-9 by promoting
nucleotide binding to apoptotic protein-activating factor 1
(APAF-1), which leads to activation of caspase-3 [28].

Antiapoptotic (BCL-2 and BCL-XL) and proapoptotic
(BAD, BAK, BAX, BID, and BIM) proteins also contribute
to the formation of distinct channels for mitochondrial
membrane permeabilization [29]. Elevated ROS levels have
also been implicated in the activation of death receptors
and in triggering caspase 8-mediated cleavage of caspase 3
[6]. In addition, ROS modulates the TRAIL- and Fas-
mediated apoptosis through p53-mediated upregulation of
death receptors. p53 regulates such apoptosis by controlling
the expression of anti- and proapoptotic (e.g., PUMA and
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Figure 2: Exogenous and endogenous sources of ROS and enzymatic and nonenzymatic antioxidants.
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Figure 3: ROS-mediated intracellular cell signalling pathways. The indicated signalling pathways regulate molecules associated with
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NOXA) proteins [30, 31]. ROS further promotes apoptosis
by inducing increased Ca2+-mediated mitochondrial perme-
ability transition pore opening [32].

4. Dietary Polyphenols

There is increasing claim that certain natural bioactive com-
pounds can maintain redox homeostasis and hold promise as
anticancer therapeutics due to their biocompatibility, biode-
gradability, comparatively less toxicity, and reduced side
effects. The polyphenol bioactive compounds are secondary
metabolites found in plants [33]. The most abundantly
occurring plant polyphenols are phenolic acids and flavo-
noids which account for 30% and 60%, respectively, of
dietary polyphenols [33]. Interestingly, they have both anti-
oxidant and prooxidant properties that modulate cell prolif-
eration and apoptotic pathways [34]. Some of the most
common bioactive compounds that were suggested to have
cancer therapeutic effects through their ROS-related activi-
ties are discussed below.

4.1. Quercetin. Quercetin (3,5,7,3′,4′-pentahydroxyflavone)
is a flavonoid, present in numerous vegetables and fruits
[34, 35]. Quercetin (Qu) displays neuroprotective, chemo-
preventive, and anticancer activities [36, 37], and these have
been attributed to their anti- and prooxidative capacities.
Qu efficiently scavenges mitochondrial superoxide anions
(O2

−) and subsequently generates semiquinone, Qu radicals,
and H2O2 [11, 34, 38]. While, H2O2 is eliminated by peroxi-
dase, semiquinone and Qu radicals alter intracellular ROS
metabolism by depleting the intracellular GSH pool in a
concentration-dependent manner [39–41] and inhibiting
thioredoxin reductase activity [42]. In vitro and in vivo stud-
ies (Table 1) show that Qu promotes ROS-induced apoptosis,
necrosis, and autophagy [43] at a range of 10-100 μM in a

variety of cancers, including glioma [43], osteosarcoma
[44], and cervical [45] and breast cancer [46]. Qu induces
apoptosis through distinct mechanisms: (i) via the mitochon-
drial pathway through activation of caspase-3. Qu reduces
the mitochondrial membrane potential (MMP), inducing
cytochrome C release and subsequent activation of caspase-
3. This mechanism was observed in MDA MB-231 breast
cancer cells [47], U937 promonocytic leukemia cells [48],
HL-60 promyelocytic leukemia cells [49], HepG2 hepatocel-
lular carcinoma cells [50], and oral cancer cells [51]. (ii) Qu
alters the expression of the antiapoptotic BCL-2 and BCL-
XL and proapoptotic BAX and BAD proteins [47, 48]. Leuke-
mic cells treated with Qu showed upregulation of BAX and
increased phosphorylation of BCL-2 [52]. Similar results
were observed in osteosarcoma [44] and breast cancer cells
[46]. (iii) Qu induces the expression of death receptor-
(DR-) 5, enhancing TNF-related apoptosis-inducing ligand-
(TRAIL-) induced apoptosis [53–55] either by accumulating
death receptors in lipid rafts [56] or inhibiting survivin in the
ERK signalling pathway [57]. In addition to its proapoptotic
capacity, Qu also promotes cell cycle arrest [58] by modulat-
ing p21WAF1, cyclin B, and p27KIP1 in squamous cell carci-
noma [59] and breast [60], lung [61], and hepatoma cancer
cells [62].

4.2. Curcumin. Curcumin (1,7-bis(4-hydroxy-3-methoxy-
phenyl)-1,6-heptadiene-3,5-dione) is the principal polyphe-
nol derived from turmeric (Curcuma longa). Various
pharmacological activities have been attributed to curcumin,
including its anti-inflammatory and anticarcinogenic prop-
erties which are triggered at 25 μM [63]. Its anticancer effect
is currently being evaluated in clinical trials for a variety of
cancers [64–66] (Table 2). In normal cells, curcumin acts as
a potent antioxidant. It scavenges hydroxyl radicals, superox-
ide, nitric oxide, H2O2, and peroxynitrite [11, 67–69] and
modulates the expression of SOD, HO-1, and GPX through
an indirect mechanism [11, 70–72]. In contrast, curcumin’s
anticancer properties rely on its prooxidative capacity to
induce apoptosis, likely via the mitochondria-mediated
pathway [73–75]. Curcumin oxidizes thiols in the mitochon-
drial membrane, leading to mitochondrial permeability tran-
sition pore (mPTP) opening, mitochondrial swelling,
mitochondrial depolarization, and inhibition of ATP synthe-
sis, resulting in apoptosis [76]. Evidence shows that curcu-
min increases ROS levels, including superoxides, hydroxy
radicals, and H2O2 [77–79]. Indeed, in human hepatoma
cells, curcumin causes cell death by ROS-induced mitochon-
drial DNA damage and impairment of OXPHOS [80, 81].
Curcumin also activates TRAIL-induced apoptosis by ROS-
mediated upregulation of DR5 in renal cancer cells and colon
cancer cells [82, 83]. Curcumin further induces autophagy in
colon cancer cells through ROS-dependent activation of the
ERK1/2 and the p38 MAPK pathway [84]. In glioblastoma
[85] and liver cancer [86], curcumin decreases cancer stem
cell viability and proliferation by ROS-mediated inhibition
of NFκB and signal transducer and activator of transcription
3 (STAT3). As with Qu, curcumin promotes cancer cell apo-
ptosis by upregulating proapoptotic proteins (BAX, BIM,
BAK, and NOXA) [87, 88] and downregulating antiapoptotic
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Figure 4: ROS-mediated extrinsic and intrinsic apoptotic
pathways. TRAIL: TNF-related apoptosis-inducing ligand; FADD:
Fas-associated death domain; [Ca2+]i: intracellular calcium
concentration; mPTP: mitochondrial permeability transition pore;
ΔΨm: mitochondrial membrane potential.
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proteins (BCL-2 and BCL-XL) [89, 90]. In addition, curcu-
min can impede tumor angiogenesis by downregulating the
expression of the vascular endothelial growth factor (VEGF)
and matrix metalloproteinases (MMPs) [91, 92].

4.3. Capsaicin. Capsaicin (trans-8-methyl-N-vanillyl-6-
nonenamide), the major component of Capsicum [93], has
been implicated to have anticarcinogenic properties [94–
96]. However, the mechanisms by which capsaicin induces
cancer cell death are still unclear. The proposed anticancer
mechanisms of capsaicin include promotion of ROS accumu-
lation, mitochondria-mediated apoptosis, cell cycle arrest,
and impairment of endoplasmic reticulum (ER) calcium
homeostasis [97]. Capsaicin induces a rapid rise of ROS level
followed by a disruption of mitochondrial membrane poten-
tial and subsequent activation of downstream caspase-3 in
human colon cancer [98], pancreatic cancer [99], glioma
[100], and prostate cancer [101]. In transformed T-cells, cap-
saicin inhibits the plasma membrane NADH-oxidoreductase

(PMOR) electron transport chain, causing an increase in
ROS level and subsequent disruption of the mitochondrial
membrane potential [102]. Capsaicin at 150 μM also blocks
complexes I and III of the respiratory chain and decreases
SOD activity in pancreatic cancer [103]. Interestingly, bind-
ing of capsaicin to the transient receptor potential vanilloid
type 1 (TRPV1) results in an increase in intracellular calcium
level and activation of the apoptotic pathway [104–106].
Besides its proapoptotic effects, capsaicin can also induce cell
cycle arrest through inhibition of the cyclin-dependent
kinases, Cdk2, Cdk4, and Cdk6 [107, 108].

4.4. Epigallocatechin-3-Gallate (EGCG). Epigallocatechin-3-
gallate ((2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-
3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzo-
ate) is a prominent catechin polyphenol in green tea. EGCG
has dual antioxidant and prooxidant roles. It produces ROS
by autooxidation [109] and its ability to modulate ROS level
accounts for its chemopreventive property. EGCG induces

Table 2: Clinical trials of natural phytochemicals.

Bioactive compounds
(Clinicaltrials.gov identifier)

Disease condition Phase Dosage Study goal

Quercetin
(NCT03476330)

Squamous cell carcinoma II 4 g/day
Efficacy in reducing buccal

micronuclei in patients with Fanconi
anemia

Curcumin
(NCT03769766)

Prostate cancer III 500 mg, 2x/day Effect on prostate cancer progression

(NCT00094445) Pancreatic cancer II 8 g/day
Effect in pancreatic cancer growth

and the safety of treatment

(NCT01246973) Radiation dermatitis III 500 mg, 3x/day
Effect on dermatitis caused by

radiation therapy in breast cancer
patients

With piperine
(NCT02598726)

Neoplasms I A dose escalation study
Optimal biological dose in cancer

patients

Capsaicin
(NCT02037464)

Prostate cancer II 2 capsules/day for 6 months
Expression of Ki67 and p27 in a

posttreatment biopsy

(NCT00003610)
Head & neck cancer,

mucositis
III

4 lozenges/day up to 2 weeks
after radiation therapy

Efficacy of lozenges in patients with
mucositis caused by radiation

therapy

Patch (Qutenza)
(NCT03317613)

Cancer II
Qutenza (8% capsaicin

patch)
for every 3 months

Efficacy in peripheric neuropathic
pain in cancer patients

EGCG
(NCT02891538)

Colon cancer Early I 450 mg, 2x/day Chemopreventive effects

(NCT01317953) Small cell lung carcinoma I
2 × 450mg/day to 5 × 450

mg/day Side effects and best dose

PEITC
(NCT00691132)

Lung cancer II 4x/day for 5 days in week 4
Effect in preventing lung cancer in

smokers

(NCT01790204) Oral cancer I & II Effect on oral cells with mutant p53

Nutri-PEITC jelly
(NCT03034603)

Head & neck neoplasms
200 mg/day, 5 days/week for

3 months
Safety and efficacy

Resveratrol
(NCT00256334)

Colon cancer I 20 mg/day Modulation of Wnt signalling in vivo

(NCT01476592) Neuroendocrine tumor 5 g/day Effect on Notch-1 signalling

SRT501
(NCT00920803)

Colorectal cancer I 5 g/day Safety and tolerability
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apoptosis in various cancer cell types, including myeloid leu-
kemia cells [110], human lymphoblastoid B cells [111], and
hepatocarcinoma cells [112]. In pancreatic carcinoma [113]
and lung cancer cells [114], EGCG-induced apoptosis occurs
through inhibition of the PI3K/AKT signalling pathway.
EGCG also decreases the mitochondrial membrane potential,
increasing the intracellular free Ca2+ level and causing activa-
tion of the intrinsic apoptotic pathway. EGCG further
decreases the expression of the antiapoptotic BCL-2, BCL-
XL, xIAP, and cIAP and increases the expression of the proa-
poptotic BAD, BAX, and FAS/CD95 [115]. In pancreatic
[116] and bladder cancer cells [117], EGCG also induces
G0/G1 cell cycle arrest through regulation of cyclin D1,
Cdk4, Cdk6, p21WAF1, and p27KIP1 via the ERK, IKK, and
PI3K signalling pathways. A combination of EGCG (10
μM) and curcumin (10 μM) inhibits breast cancer stem cell
growth by inactivating the NFκB-STAT3 pathway [118].

4.5. PEITC and BITC. Phenethyl isothiocyanate (PEITC) and
benzyl isothiocyanate (BITC) are abundant in cruciferous
vegetables that have been implicated to have anticancer
properties [119–122]. Epidemiological studies show that
increased intake of dietary isothiocyanates (ITC) reduces
cancer risk [123] and increases cancer patient survival
[124]. Both PEITC and BITC induce ROS production in
many cancer cells [125–127]. IC50 value of PEITC is at the
range of 3-14 μM in various human cancer cells [128]. PEITC
increases ROS level by decreasing intracellular GSH level,
leading to mitochondrial dysfunction as observed in ovarian
[126, 129] and non-small-cell lung cancer [128] cells but not
in normal cells. PEITC-induced ROS production correlates
with inhibition of complex III activity, inhibition of
OXPHOS, and ATP depletion in prostate cancer [125].
PEITC also inhibits HO-1 and subsequently induces the
ROS-mediated mitochondrial apoptotic pathway, which
was noted in human chronic myeloid leukemia [130]. Con-
versely, BITC causes oxidative stress in pancreatic [131], gli-
oma [122], and prostate cancer [132] cells by depleting SOD
and GSH, which is accompanied by the induction of caspase-
mediated apoptosis [121, 133]. BITC also activates the
ERK/JNK/p38MAPK pathway in pancreatic cancer [134].
Both PEITC and BITC induce G2/M cell cycle arrest by
downregulating cyclin B1, Cdc2, and Cdc25C [135, 136].

4.6. Piperine. Piperine ([5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-
pentadienyl]piperidine) is the most abundant natural alka-
loid found in long pepper (Piper longum L.). Recently, it
was determined to be a promising anticancer compound
[137]. Piperine suppresses tumor growth in vitro and
in vivo by modulating the ROS-induced oxidative stress
response pathway, cell cycle arrest, and ER stress. In hepato-
cellular carcinoma, piperine treatment initiates ROS-induced
mitochondria-mediated apoptosis by inhibiting catalase
activity [138]. In human oral squamous cells exposed to high
concentrations of piperine, ROS elevation is associated with
mitochondrial depolarization and activation of caspase-
mediated apoptosis. Piperine also induces nuclear condensa-
tion and cell cycle arrest in these cells [139].

4.7. Resveratrol. Resveratrol (3,4′,5-trihydroxystilbene), a
polyphenol that is found in grapes and berries, effectively
prevents tumor initiation and progression by stimulating
apoptosis at 10 to 100 μM [140] in prostate [141] and neuro-
blastoma cells [142]. Resveratrol has been shown to promote
apoptosis by activating p53, ROS-dependent caspases, and
death receptors for TRAIL and FasL [143]. Resveratrol-
mediated apoptosis is mainly associated with the inhibition
of the PI3K/AKT, MAPK, and NFκB pathways [144] and
STAT3 [145]. Moreover, resveratrol suppresses the expres-
sion of antiapoptotic proteins such as survivin, xIAP, and
BCL-XL and increases BAX/caspase-3-associated apoptosis
[146]. Resveratrol further binds to F1-ATPase, inhibiting
mitochondrial ATP synthesis [147, 148]. It triggers cell cycle
arrest by upregulating p21WAF1 and p27KIP1 and downregu-
lating cyclins D1, D2, and E and Cdks 2, 4, and 6 [149, 150].

4.8. Others. Peanuts, tomatoes, and carrots are rich in p-
Coumaric acid (p-CoA), an isomer of cinnamic acid
[151]. In colon cancer cells, p-CoA triggers apoptosis by
increasing ROS generation and mitochondrial depolariza-
tion, resulting in p53-mediated upregulation of BAX and
downregulation of BCL-2 [151, 152]. In addition, p-CoA
treatment of these cells in vitro and in vivo induces apo-
ptosis mediated by the unfolded protein response [153].

The naturally occurring quinone compounds have
potent cytotoxicity against cancer cells. In lung adenocar-
cinoma cells, 2-methoxy-1,4-naphthoquinone (MNQ) and
8-hydroxy-2-methoxy-1,4-naphthoquinone (HMNQ) elicit
ROS production and induce apoptosis via the JNK/p38
MAPK pathway [154–156].

Naringenin, a citrus flavonoid, triggers ROS-induced
apoptosis and stimulates p38MAPK-mediated caspase
activation [157, 158].

Gallic acid (3,4,5-trihydroxy-benzoic acid; GA), which is
widely present in grapes and red wine, inhibits lung cancer
cell growth by increasing ROS level and depleting GSH
[159]. In prostate cancer cells, autooxidation of GA produces
H2O2 and O2

−, leading to mitochondria-dependent apoptosis
[160]. GA also induces apoptosis via ROS-dependent activa-
tion of the ATM/p53 [161] and JNK pathways [162].

5. Limitations

Poor bioavailability is a major obstacle for natural bioactive
compounds, especially for Qu, curcumin, and resveratrol,
which are associated with poor absorption and fast metabo-
lism in the liver and intestine. Pharmacokinetic profile anal-
ysis of Qu revealed that about 93% of the compound is
metabolised after oral administration (10 mg/kg) in male
Sprague-Dawley rats [163]. On the other hand, people taking
high oral doses (10 or 12 g) of curcumin attained limited
availability of this compound in the plasma and other tissues
[164]. Similarly, oral bioavailability of resveratrol is low at
less than 1% [165]. Thus, the cytotoxic concentration of these
compounds appears to be difficult to achieve by oral admin-
istration in cancer patients [166]. Several strategies have been
proposed to overcome the problem of low oral bioavailabil-
ity. One approach is to use a combination of phytochemicals.
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For example, a combination of piperine and curcumin [167]
(in rats: 20mg/kg piperine + 2 g/kg curcumin; in humans:
20mg piperine + 2 g curcumin) or piperine and resveratrol
[168] (in mice: 10mg/kg piperine + 100mg/kg resveratrol)
showed increased bioavailability of curcumin and resveratrol,
respectively. Other promising approaches include the use of
novel formulations, synthetic analogues, prodrugs, and
different drug delivery systems (e.g., via liposomes, phospho-
lipid complexes, micelles, and nanoparticles). These methods
could increase bioavailability as well as solubility and/or met-
abolic stability [169, 170]. Some studies have also shown that
natural bioactive compounds may promote carcinogenesis
by inducing ROS-mediated chromosome aberrations and
DNA damage [80, 171, 172]. For example, an in vivo study
showed that curcumin promotes lung cancer [173] and topi-
cal application of capsaicin causes skin cancer in mice [174],
suggesting that these natural compounds must be carefully
assessed for safety prior to clinical application.

As dietary phytochemicals lack mechanistic selectivity,
these natural compounds display a variety of effects in differ-
ent cancer cell types and thus the discrepancies in results
among separate studies. Other possible reasons for divergent
findings in different studies include changes or differences in
(i) stability of the bioactive compounds in cell culture
medium, for example, stability of Qu decreases at pH 7 or 8
[175]; (ii) release of bioactive compounds under different
conditions, for example, the maximum release of curcumin
occurs in phosphate buffered saline at pH 6.4 [176]; (iii) sen-
sitivity of different cell types to bioactive compounds; (iv)
cellular permeability of bioactive compounds; (v) presence
or contamination by metal ions [177]; (vi) number of
hydroxyl groups present in a molecule [177]; and (vii)
in vivo biodistribution.

6. Conclusion

Natural phytochemicals have been associated with antican-
cer properties through their ability to modulate oxidative
stress, cell cycle regulators, and proapoptotic, antiapoptotic,
and survival signalling pathways. In preclinical and clinical
trials, bioactive compounds show a promising and wide
therapeutic window against various malignancies, including
glioblastoma and breast, colon, and prostate cancers where
phytochemical-induced cancer cell death was observed.
However, certain attributes such as poor solubility and bio-
availability of these bioactive compounds limit their clinical
application. Thus, further studies are required to identify
ways for effective biological delivery of these compounds
in different cancer cell types. It is also critical that detailed
studies are conducted in large cohorts to establish the
pharmacokinetic profile of these compounds alone and in
combination with other chemotherapeutic agents to deter-
mine dosage, tissue targets, and toxicity. Indeed, natural
phytochemicals may serve as future therapy for specific
types of cancer.
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