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Abstract

Background: Generalized heterosexual epidemics are responsible for the largest share of the global burden of HIV. These
occur in populations that do not have high rates of partner acquisition, and research suggests that a pattern of fewer, but
concurrent, partnerships may be the mechanism that provides the connectivity necessary for sustained transmission. We
examine how network size affects the impact of concurrency on network connectivity.

Methodology/Principal Findings: We use a stochastic network model to generate a sample of networks, varying the size of
the network and the level of concurrency, and compare the largest components for each scenario to the asymptotic
expected values. While the threshold for the growth of a giant component does not change, the transition is more gradual
in the smaller networks. As a result, low levels of concurrency generate more connectivity in small networks.

Conclusions/Significance: Generalized HIV epidemics are by definition those that spread to a larger fraction of the
population, but the mechanism may rely in part on the dynamics of transmission in a set of linked small networks. Examples
include rural populations in sub-Saharan Africa and segregated minority populations in the US, where the effective size of
the sexual network may well be in the hundreds, rather than thousands. Connectivity emerges at lower levels of
concurrency in smaller networks, but these networks can still be disconnected with small changes in behavior. Concurrency
remains a strategic target for HIV combination prevention programs in this context.
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Introduction

The large, persistent disparities in HIV prevalence have

stimulated much research. They are evident at every scale: from

differences across global regions, with nearly 70% of all cases

located in sub-Saharan Africa, to differences in geographically

contiguous subpopulations, such as the nearly 10-fold difference in

prevalence by race in the United States [1,2], and persistent

differentials of similar magnitude in countries like Kenya,

Tanzania and South Africa [3,4,5].

Most heterosexual populations do not have generalized

epidemics of HIV, but some do. So, what conditions are needed

for a generalized epidemic of HIV to emerge? In contrast to air

and water borne pathogens, HIV requires intimate personal

contact to spread. The probability of such contact between any

two individuals in a population is low, and after the acute phase of

infection, the probability of transmission is low. Under these

conditions the transmission network would typically lack the

connectivity needed to sustain HIV transmission. Generalized

epidemics would not be predicted.

This issue is often addressed in mathematical modeling by

introducing extreme variation in the rates of partner acquisition.

Core group models are one example of this [6], creating a small

‘‘high activity group’’ that can act as a reservoir for sustained

transmission, and pass infection on to members of less active

groups. Such models produce concentrated epidemics, however,

with high prevalence in the core group, and a small trickle of

infections out to the general population, where further transmis-

sion fails. In typical simulation models developed to reproduce the

prevalence seen in generalized epidemics, the average male and

female in the population is assumed to have 75–200 lifetime

partners, and the top 6–12% of both sexes have 360–2,800 lifetime

partners [7,8,9]. These partner assumptions are one or two orders

of magnitude larger than any data observed in empirical studies of

sexual behavior.

An alternative mechanism for creating connectivity without

such extreme levels of heterogeneity is concurrency – partnerships

that overlap in time [10,11,12]. With concurrency, the focus shifts

to the momentary or cross-sectional distribution of the number of

partners per person, rather than the cumulative distribution of

partners over time. Serial monogamy produces a momentary

distribution with only two values, 0 (no partners) and 1 (a single

partner). Values above 1 in the momentary distribution indicate

the presence of concurrency. It does not take a high rate of partner

acquisition to generate connectivity in a network with concurren-
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cy. For example, imagine a population in which no one had more

than 2 partners in their lifetime. If everyone has those partners

concurrently, this creates a circle: everyone has only two partners,

but the entire population is completely connected, and the

network can rapidly spread infection. A serially monogamous

network with only two partnerships per person over time would

have far less transmission potential.

Concurrent partnerships become particularly important in the

context of short infectivity windows [13]. In this situation, when

the index case becomes infected by one partner, their concurrent

partner is more likely to be contacted and exposed during the brief

window period. There is no need for the index case to rapidly

acquire new partners during this window. HIV causes a brief spike

of infectivity immediately after acquisition [14], and simulation

studies have shown that concurrency amplifies the impact of this

acute spike [15,16]. As this suggests, the primary impact of

concurrency at the individual level is that it increases the

probability of the index case transmitting infection [17,18,19].

The rapid and non-linear impact of concurrency on the

connectivity of a network can be seen in Figure 1, which has

been widely distributed to researchers, intervention program

developers, and educators in the international HIV prevention

community. The histograms at the top show the fraction of

persons with concurrent partners (among those who have

partners). No one in these simulated networks has more than

three partners, and those with three partners are a small minority

of partnered persons in all panels – 10% in the first panel and 18%

in the last. The network visualizations in the lower panels show

examples of the typical largest connected component for a 10,000 node

network with that momentary degree distribution. Reading across

the panels, the fraction of persons with concurrent partners rises

by only 12%, and the mean degree (i.e., the average number of

partners that sexually active people have at any moment in time)

only increases by 0.2 of a partner, from 1.7 to 1.9, but the

percentage of the population in the largest component jumps from

2% to 64%. This shows the highly non-linear nature of network

connectivity: like infectious disease transmission and population

growth it has a threshold, and the outcomes are qualitatively

different above and below that threshold.

This paper was motivated by the reactions that this figure

received during research study dissemination activities in a rural

location in the Kisumu district of western Kenya. The dissemi-

nation involved the results of a longitudinal study of widow

inheritance in the region, and it included an educational

component on concurrency. After an interactive game used to

demonstrate the way concurrency works to connect people, the

participants were shown the graphic in Figure 1. When asked

which panel of the Figure they thought was most similar to their

local network, the vast majority of participants (virtually everyone)

voted for panel 3. The original study was not designed to provide

estimates of concurrency in this population, but it seemed unlikely

to the researchers that the local momentary degree distribution

had such high proportions of persons with two and three partners.

At the same time, the near unanimity of the participants’

perception, across different villages, seemed too strong a signal

to ignore.

One way that the conflicting perceptions of researchers and

villagers can be reconciled is if concurrency has an amplified effect

in small networks. The simulations used to create Figure 1 were

intentionally based on a large network. Network density declines

with network size for any given mean degree, and the point of this

Figure was to show that connectivity could be maintained, even for

very large, very sparse networks with low mean degree. The study

participants, however, live in villages that are much smaller than

10,000 persons. Table 1 shows the adult populations of 30 villages

in four trial arms that are part of the next stage of research in this

region. Village size ranges from about 100–400 persons. While

residents may have some partners from outside the village, it is

likely that the effective size of their sexual networks are much

smaller than 10,000. Does that change the impact of concurrency

on network connectivity?

Materials and Methods

To answer this question, we simulated smaller networks across

the range of degree distributions shown in Figure 1 and compared

the average size of the largest component in these smaller networks

to the size predicted by asymptotic analytical methods. We

constrain sexual mixing to be heterosexual, and thus consider only

bipartite networks.

Simulation methods
We use a model-based simulation approach that produces a

representative sample of networks with a specified degree

distribution and size. Three sizes of networks were simulated that

reflected the range of observed village sizes in Table 1: 100, 200

and 500 nodes. We divide the population evenly into males and

females, and use the same degree distribution for both sexes. For

each level of concurrency, we create a starting network with a

stub-matching approach that produces a network of the desired

size with a specific degree distribution by randomly permuting the

edges emanating from females and pairing them with the list of

edges emanating from males. The resulting list of edges is checked

to for repeated (M,F) pairs, and re-permuted if any exist. We then

sampled 2500 networks from the space of networks with this size

and degree distribution using the networksis [20] package in the

statnet program [20]. For each sampled network, we calculate the

size of the largest component using the sna [21] package in statnet.

Asymptotic Results
Newman [22] derived the size of the largest component in an

infinite bipartite graph using probability generating functions

(pgfs). The pgfs of the degree distributions for women and men are

given by

f0(x)~
X3

i~1

pi
:xi and g0(x)~

X3

i~1

qi
:xi,

respectively. We also need the pgfs of the remaining degree of a

node when an edge is randomly selected. These are

f1(x)~
1

m
f
0

0 (x) and g1(x)~
1

u
g
0
0(x),

His results depend on two functions: G0(x)~f0(g1(x)), the

number of female partners of a randomly selected woman’s male

partners, and G1(x)~f1(g1(x)), the number of female partners of

the remaining male partners of the woman incident on a randomly

selected edge. The threshold for the development of a giant

component is G
0

1(1)~1. In this case, with equal degree

distributions for men and women, and degree constrained to 1

to 3, this reduces to p1~3p3, which yields a threshold of 1.72 for

formation of a giant component. The percentage of women (and

men) in the network who are in the giant component is given by

1{G0(u), where u is the minimum positive solution of u~G1(u).

Network Size and Epidemics

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43048



Results

Figure 2 plots the average size of the largest component as a

function of the momentary degree distributions for networks of

size 100, 200 and 500, showing the corresponding analytic results

for asymptotically large networks. Each point on the graph

represents the mean of 2500 simulated networks for that scenario.

The midpoint of the sharp increase in component size for the small

networks occurs at the analytic threshold of 1.72. However, the

transition across the threshold is more gradual. In particular, the

smaller the network, the more rapidly connectivity rises before the

analytic threshold is reached. For example, at a mean degree of

1.6 there is no large component in the asymptotically large

networks, but a network with 100 persons would produce a large

component connecting, on average, 20% of the population. The

same personal behavior in the two networks would lead to

different population level outcomes.

Figure 3 replicates the information from the graphic in Figure 1

for the smaller networks of interest here. The top panel shows the

histograms of the degree distribution for networks at mean degrees

around 1.4, 1.6 and 1.8, and the bottom two panels show the

corresponding distributions of the size and density of the largest

component from simulated networks with these mean degrees. As

in Figure 1, the connectivity in these networks arises without any

highly active persons acting as hubs; no single node has a degree

above 3 and over 80% have only one or two partners, even in the

most highly connected graphs.

The inverse relation between component size and network size

is readily apparent, but the variability in the size of the largest

component also rises as both the mean degree and network size

increase. As a result, the network size effects dominate when mean

degree is low, but are moderated by variability as the mean degree

rises.

The typical density of the largest component also decreases as

network size increases, but it is inversely related to mean degree.

This is somewhat counter-intuitive, as we might have expected

that higher overall density would lead to higher density for the

largest component. In fact, the opposite happens, because the

component size is also increasing as mean degree rises, so the (n-1)

Figure 1. Growth of the largest component in large networks at the threshold: This figure demonstrates the rapid growth of the
giant component in large networks near the threshold level of concurrency. The top row shows histograms of the momentary degree
distribution for networks at mean degree 1.68, 1.74, 1.80 and 1.86, corresponding to 56, 60, 64 and 68 percent of sexually active persons having
concurrent partners. The bottom row gives a visualization of a typical largest component. We can see that the percentage of the population in the
largest component jumps rapidly from 2% to 64% with a very small increase in mean degree (0.2 of a partner, 12% more persons with concurrent
partnerships).
doi:10.1371/journal.pone.0043048.g001

Table 1. Adult populations of 30 villages in the Siyaya district
of Kenya.

Number of Adults in villages

Region (number of
villages) Minimum Maximum Average

1. Kakumu/Kombewa (7) 129 359 240

2. Gangu (11) 89 187 144

3. North Rambula (5) 164 215 187

4. Masat (7) 163 281 220

All Villages 89 359 198

The data source is the Kenya National Bureau of Statistics 1999 Census.
doi:10.1371/journal.pone.0043048.t001
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nodes required to connect a component of size n quickly become a

small percentage of the overall possible number of edges among n

nodes. Results for bicomponents (not shown) are substantively

similar.

Discussion

This study has demonstrated that small networks amplify the

effects of concurrency, producing high connectivity at partnership

rates that are well below the asymptotic threshold for large

component formation. This has a number of implications.

The first concerns the state of our knowledge regarding the size

of a typical sexual network, and how much variation in size there is

across different populations. We know very little empirically about

these questions, but a number of factors suggest that there may be

substantial variations in effective network size. One way such size

differentials can emerge is in the context of a heterogeneous

population with different sized subgroups and strong assortative

mixing. In this context group size would be correlated to effective

network size, and minority groups would have smaller networks.

Small networks may therefore emerge in the midst of large

populations. In the United States, for example, empirical studies

consistently show strong assortative mixing by race in sexual

partnerships [23,24]. In any particular geographic area, such

assortative racial mixing may lead to fairly small effective networks

for minority populations, despite the large populations in which

they are embedded. The level of assortative mixing may be further

constrained by high levels of residential segregation that isolate

and concentrate different groups in the U.S. [25,26]. As noted by

Acevedo-Garcia [27], residential segregation can affect disease

transmission both directly, by influencing the spatial distribution

and contact patterns of populations, and indirectly, by concen-

trating risk factors such as poverty, overcrowding, lack of access to

healthcare and social disorganization. Small networks are also

likely to predominate in rural areas, where the geographic

patchiness of population density reduces the pool of local partners

and the effective size of the resulting network.

Questions remain, however, on how to define the boundaries

and effective size of a network. There is evidence that these

networks are not well described by a simple circular area around a

person’s residence [28]. While the majority of relationships may

occur within a village, neighborhood or socially homogeneous

group, and thus be constrained by the size of that unit, persons

with concurrent partnerships may have one partner in their own

group, and a second partner in another group. This is a common

pattern associated with labor migration, for example, where the

Figure 2. Mean size of the largest component as a function of
network size and concurrency: We see here the average size of
the largest component for networks of size 100, 200, and 500
nodes as the concurrency rises through the threshold level. The
black line gives the analytic approximation for large networks. Notice
that the curves for the small networks approach the analytic result as
the network size increases. The small networks have the same
threshold, but the behavior around the threshold is different. The
flatter curve means that lower levels of concurrency produce higher
levels of connectivity in small networks.
doi:10.1371/journal.pone.0043048.g002

Figure 3. Distributions of the largest component size and
density as a function of network size and concurrency: In this
figure we reproduce some of the information in Figure 1 for
networks of size 100, 200 and 500. The top row again shows
histograms of the momentary degree distribution for networks at mean
degrees around 1.4, 1.6 and 1.8, corresponding to concurrency
prevalence of 35, 50 and 65%. The middle row shows the size
distribution of the largest component as a percentage of the network,
and the bottom row shows the distribution of the density of the largest
components. Note that the percentage of the network in the largest
component decreases with network size, but variability rises with
concurrency levels. The density of the largest component decreases
with network size and level of concurrency.
doi:10.1371/journal.pone.0043048.g003
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migrant has a partner both at home and at the work location [29].

This type of contact pattern – a network where within-group

contacts predominate but there is the occasional contact out of the

group – has received much attention in previous research in both

epidemiology and social networks. Examples include the role of

‘‘long-jumps’’ for epidemic persistence in zoonotic diseases [30],

the studies of diffusion in ‘‘small world’’ networks [31] in the social

network literature, and the role of ‘‘bridge populations’’ for

spreading infection to low risk populations in the HIV transmis-

sion literature [32]. Small world networks are one of the most

efficient structures for diffusion. They maximize spread within

groups, while preserving the connection between groups, using

another form of heterogeneity to enable epidemic persistence in

otherwise sparsely connected populations.

The second concerns the validity of mathematical modeling

studies for HIV transmission analysis. Simulation methods like

deterministic compartmental models that rely on asymptotic

approximations or large population assumptions will fail to

capture this element of size-dependent variation in network

connectivity. Analytic methods for deriving standard qualitative

measures of epidemic potential, e.g., R0 and doubling times also

rely heavily on asymptotic approximations [33,34,35]. As a result,

these methods may underestimate the role that concurrency has in

explaining prevalence differentials across groups, and the contri-

bution concurrency reduction can make to prevention.

The importance of population-specific combination prevention

approaches to HIV has made mathematical modeling a necessary

tool for planning efforts. Our findings suggest that it would be

prudent to cross-validate large simulation studies with small scale

simulations that use empirically accurate representations of the

network size and structure. Our study focuses on the character-

istics of static networks, but transmission occurs over dynamically

evolving networks of relationships. All else equal, the higher

connectivity we have observed in the cross section will translate

into larger reachable paths in time. The impact of concurrency on

the size of the reachable path in a dynamic network is not well

understood, however, and this remains an important area for

future research.

Finally, this has implications for empirical study design. The

unique empirical signature of concurrency is a momentary

distribution that is not constrained to 0 (isolates) and 1

(monogamously paired); this defines the point prevalence of

concurrency. The impact of concurrency also depends on the

intensity of the overlapping partnership intervals – determined

largely by the duration of overlapping partnerships, and the level

of activity in both partnerships during the overlap. As noted by the

UNAIDS consensus paper, the minimal information needed to

establish the point prevalence of concurrency and its intensity can

be obtained from behavioral surveillance surveys by replacing the

standard questions that elicit information on the cumulative

distribution, e.g., ‘‘how many partners have you had in the last X

months?’’ with partner-specific questions on the start and end

dates of sexual relations, and whether the partnership is ongoing

[36]. Our findings suggest that additional partner-specific infor-

mation, e.g., age, race or geographic residence, would be helpful

for identifying the clustering and segregation that can lead to small

effective network size. Reducing the impact of social desirability

bias in self-reported sexual behavior is a key part of improving the

validity of the data.

This study highlights the potential importance of concurrency

reduction as an element of comprehensive prevention, and the

need for reliable empirical data on the prevalence and duration of

concurrent partnerships. In large networks, the rapid changes in

connectivity only occur near the threshold, which in this simplified

example is when about 65% of the partnered population has

concurrent partners. While this excludes single persons from the

denominator, it is still a high level of concurrency. By contrast, in

smaller networks, the connectivity effects occur across a wider

range of concurrency levels, so changes at lower (and perhaps

more realistic) levels of concurrency can still have an impact. For

example, only 15% of the population would need to cut back by 1

partner to reduce connectivity by more than half in a network of

500 actors with 25% of the population connected. Thus an

intervention with low efficacy at the individual level might still be

effective at the population level. With the right data and the right

models, a reliable intervention target can be identified and

translated into an effective intervention program.
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