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Abstract: Changing ecological communities in response to anthropogenic activities and climate
change has become a worldwide problem. The eutrophication of waterbodies in freshwater and
seawater caused by the effects of human activities and nutrient inputs could result in harmful
algae blooms (HABs), decreases water quality, reductions in biodiversity and threats to human
health. Rapid and accurate monitoring and assessment of aquatic ecosystems are imperative.
Environmental DNA (eDNA) analysis using high-throughput sequencing has been demonstrated to
be an effective and sensitive assay for detecting and monitoring single or multiple species in different
samples. In this study, we review the potential applications of eDNA approaches in controlling and
mitigating eutrophication and HABs in freshwater and marine ecosystems. We use recent studies to
highlight how eDNA methods have been shown to be a useful tool for providing comprehensive
data in studies of eutrophic freshwater and marine environments. We also provide perspectives
on using eDNA techniques to reveal molecular mechanisms in biological processes and mitigate
eutrophication and HABs in aquatic ecosystems. Finally, we discuss the feasible applications of
eDNA for monitoring biodiversity, surveying species communities and providing instructions for the
conservation and management of the environment by integration with traditional methods and other
advanced techniques.
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1. Introduction

The eutrophication of lakes and coastal oceans, which is caused by excess inputs of nutrients,
has become a worldwide problem [1]. Nutrient inputs are produced by anthropogenic activities,
including urban development and the agriculture, forestry, and fishery industries [2]. The main cause
of lake eutrophication is increasing nitrogen (N) and phosphorus (P) inputs [3,4]. Reducing N and P
concentrations can help to improve water quality and ecological status [5,6]. The negative effects of
eutrophic waters might result in murky water, harmful algae blooms (HABs) caused by phytoplankton,
anoxia or toxicity of waterbodies and reduced species diversity [7]. Cyanobacterial blooms, such as
those caused by Microcystis, are a major sign of eutrophication in lakes and can destroy the food web in
aquatic environments because of their toxicity and rapid proliferation [8]. It has been demonstrated
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that long-term exposure to microcystin could promote the development of cancer, such as liver cancers,
and be harmful to human health [9].

There are many physical and chemical techniques to control cyanobacterial blooms and improve
water quality, such as coagulation and treatment with copper sulfate [10,11]. However, these
physical and chemical methods can be time-consuming, expensive, and damaging to the environment.
Using chemical methods might induce heavy metal accumulation and secondary pollution of the
aquatic environment because of the stability and residues of the chemical reagents [12]. Biological
approaches have been recommended as a useful tool in cyanobacterial bloom control [11]. It has been
widely demonstrated that algicidal microorganisms such as bacteria, fungi and viruses can inhibit
cyanobacterial blooms effectively and with specificity [13–15].

Environmental DNA (eDNA) has been reported to be a useful tool for monitoring species
distributions and identifying different organisms [16]. eDNA is composed of extracellular DNA
released by organisms through discharges such as secretions, feces, gametes, sloughed cells, hair, or
bodily remains in the environment [17,18]. Ogram et al. introduced eDNA in the field of microbiology
in 1987 [19]. eDNA is a valuable tool, and analysis of eDNA is increasingly being used to identify
sensitive and invasive species or pathogens, detect low abundance or endangered species and estimate
biodiversity [20,21] (Table S1). Furthermore, previous studies indicated that eDNA analysis could be
more convenient, efficient and comprehensive than conventional methods for analyzing different taxa
across spatial and temporal scales [22].

In aquatic ecosystems, traditional methods, such as physical identification, are inadequate
for reflecting the real population structure and detecting invasive species early [23], because the
organisms in aquatic environments could be hidden underwater and difficult to find by conventional
techniques. eDNA has a better applicability to a wider range of water bodies and other animals or
plants [24]. Therefore, eDNA analysis could be a sensitive and effective assay for detecting species that
are undetectable by traditional survey approaches [25,26]. In addition, eDNA analysis contributes
positively to the detection of certain groups from complex samples in aquatic ecosystems. For example,
Rudko et al. developed four species-specific detection assays in water samples from lakes in Northern
Michigan [27]. Many studies have reported that eDNA has been used in the investigation of freshwater
and marine ecosystems. As suggested by Banerji et al., DNA metabarcoding supplements conventional
biological methods to obtain more comprehensive profiles of freshwater plankton community structure
and distribution [28]. The rapid monitoring of changes in biodiversity using eDNA holds great
promise for monitoring the changes expected as a result of climate change, especially in large lake
ecosystems [29]. On the other hand, eDNA analysis is also used to explore and survey microorganisms,
fishes or other species in seawater samples [30–32].

Furthermore, for environmental management and ecological research, eDNA is able to integrate
traditional and advanced techniques for surveying aquatic ecosystems and biological interactions with
different environmental factors [33,34]. In this review, we describe the potential applications of eDNA
methods for eutrophication and HAB control in freshwater and marine ecosystems.

2. eDNA Methods for Eutrophication and HAB Control

It is widely cognized that eDNA metabarcoding could contribute to the development of biological
techniques for use against eutrophication and HABs, such as cyanobacterial blooms. We obtained the
total number of publications in the Web of Science database from 1975 to 2020 (2nd March) with the
terms “eDNA, eutrophication and HAB/s” in the title, abstract or keywords based on bibliometric
methods (Supplementary data 1) [35]. There were 469 publications in this period (Figure 1). This
analysis indicated that before 2013, the publication output remained at a low level, which meant that
the eDNA approach did not receive enough attention to survey eutrophication and HABs. After
2013, however, this topic was increasingly researched. The key reason for this increase might be
the global rapid economic development, which may have resulted in increasing eutrophication in
waterbodies [36] and the rapid development of DNA sequencing technology, which provided effective
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and accurate methods to conduct DNA research at the molecular level. Rapid economic development
and human activities are the major source of nutrients, such as increasing nutrient loading, which can
cause the problem of eutrophication. Increasing eutrophication is expected to amplify the severity
of the ecological problems. Advanced technologies are employed to deal with the eutrophication
and HAB control. In the field of nucleic acid research, there are a lot of technological and scientific
breakthroughs observed within the last few years. The inputs from large numbers of researchers around
the world who have invested many time and resources to develop technologies that can innovate
the DNA sequencing strategies [37]. For example, the generations of DNA sequencing have moved
on from the first generation to the third generation. These changes in DNA sequencing technology
has altogether extended the potential outcomes of employing eDNA and is expected to supplement
the traditional methods. Undoubtedly, eDNA research is gaining momentum swiftly because of the
developments in sequencing techniques [38]. The new strategy of integrating eDNA techniques into
eutrophication and HAB control has attracted more and more attention worldwide.
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Figure 1. The number of journal publications with “environmental DNA (eDNA), eutrophication and
harmful algae bloom/s (HAB/s)” in title, abstract and keywords during 1975–2020 (2nd March) in
Web of Science. The data in the present work were sourced from the online database of the Science
Citation Index Expanded (SCIE), Web of Science. This database is the most comprehensive and
frequently used data source in bibliometrics [35,39]. The exact query was TS = ((“environmental DNA”
OR “environment DNA” OR “eDNA”) AND (“eutrophication” OR “eutrophic” OR “nutrient*” OR
“nitrogen” OR “phosphorus” OR “phosphate” OR “bloom” OR “blooms” OR “harmful algae bloom*”
OR “HAB*”)), and the timespan was from 1975 to 2020 (2nd March).

Seven document types were identified among the documents collected from the database (Figure 2
and Supplementary data 1). Articles were the main documents type, comprising 87.80% of the total
publications, followed by reviews, accounting for 8.71% of the total. This finding suggested that
using eDNA to research eutrophication and HABs was at an early stage and would later receive more
attention. In addition, a total of 41 countries were covered by the publications obtained from the
Web of Science database. As shown in Figure 3 and Supplementary data 2, most of the published
documents were from the United States, accounting for 30.49% of the total, followed by Germany, the
United Kingdom, Japan and Australia, accounting for 9.17%, 8.96%, 6.18%, and 4.69% of the total,
respectively. This finding indicated that a relatively greater number of countries have conducted
research exploring the application of eDNA (which is an environmentally friendly method based on
advanced technology) in the field of eutrophication and HAB control. Increasing eDNA studies for
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mitigating and controlling eutrophication and HABs could improve water quality, helping to protect
the environment and manage aquatic ecosystems.
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2.1. Freshwater Ecosystems

2.1.1. eDNA and Eutrophication in Freshwater

Many studies have focused on monitoring and managing freshwater environments, including
lakes, ponds and rivers [40–42]. eDNA could be used to identify environmental stressors and evaluate
the trends of lake ecosystems by accurately monitoring changes in the microorganism and plankton
community structure in lakes [43]. It has been reported that eDNA data might be helpful for predicting
pollution status and uncovering the main factors affecting ecological networks. Li et al. determined
species distributions and main stressors of the community structure, such as total nitrogen (TN) and
total phosphorus (TP), through eDNA metabarcoding and principal component analysis (PCA) in the
Yangtze River Delta (YRD) [42]. These results could be used to predict the pollution status based on
the operational taxonomic units (OTUs) and multivariate linear regression models (MLRs).
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Furthermore, the exchange of nutrients between waterbodies and sediments is important for
altering the trophic level of water [44]. The biological transportation and metabolism of microorganisms
in sediments could affect the cycling of N and P [45,46]. Therefore, bacteria in the sediment also play
a critical role in aquatic ecosystems. High-throughput DNA sequencing was used to analyze the
sediment bacterial community in Lake Taihu [47]. The data showed that biodiversity is positively
correlated with NH4

+-N in the water and negatively correlated with NOX-N in the sediment. On
the other hand, land-use intensification threatens freshwater ecosystems because of the chemical
contaminants discharged by different land-use types [48]. Many chemical contaminants have been
reported to result in a decrease in eukaryotic microbial diversity and disturbance of the cycling of
geochemical elements in water [49]. Xie et al. indicated that in situ sampling of eukaryotic communities
could be used to reveal chemical pollution from different land-use types, such as agricultural regions
and industrial regions, in sediments from Nanfei River in Anhui Province, China [50].

2.1.2. eDNA and HABs in Freshwater

In eutrophicated water, cyanobacteria are dominant species that can form cyanobacteria blooms
with rapid cell proliferation [51,52]. The global temperature rise and eutrophication increase might
induce toxic blooms, such as cyanobacterial blooms [53]. The cyanobacterial blooms can have a
negative influence on the environment and aquatic biodiversity by depleting oxygen and limiting
the nutrient cycling and light [54]. Furthermore, the toxins produced by cyanobacteria have been
reported to be a risk to animals, plants and human beings [55]. Bell et al. detected changes in the
eukaryotic and bacterial communities and their relationships with the environmental conditions in
Lake Velence [56]. There is a positive correlation between eukaryotic diversity, such as green algae and
diatoms, and dissolved organic carbon (DOC) or dissolved inorganic carbon (DIC). Moreover, it has
been shown that the Microcystis abundance has a negative correlation with bacterial (e.g., Actinobacteria)
diversity. In Erhai Lake, Song et al. identified 473 Microcystis genotypes by seasonal monitoring using
internal transcribed spacer (ITS) genes and amplification primers [57]. The data indicated that the early
stage of eutrophication in Erhai Lake might result in high diversity of Microcystis due to the negative
relationship between the diversity of ITS genotypes and TN/TP.

There are a great number of microbes such as bacteria, viruses and fungi, in freshwater ecosystems
that play a critical role in controlling and mitigating HABs [58]. Heterotrophic bacteria have also
been described for use in assessing and controlling the negative impacts of cyanobacteria. Berg et al.
isolated 460 bacterial strains from lake, river, and drinking water samples [59]. They characterized the
taxonomic properties of these heterotrophic bacteria by DNA sequencing based on 16S rRNA. The
results of the study demonstrated the occurrence of many growth-promoting cyanobacterial strains,
such as Flavobacterium, and growth-inhibiting cyanobacterial strains, such as Pedobacter. They also
detected other strains that are able to degrade toxins or organic compounds such as Sphingomonas.
The secondary metabolites produced by cyanobacteria might affect water quality and be harmful for
plants, animals and humans [60,61]. High-throughput DNA sequencing can be used to discover new
bacterial taxa which can degrade toxins or organic compounds and provide instructions to manage
freshwater ecosystems.

eDNA is one of the most useful methods for detecting different species and exploring the
relationship between biodiversity and environmental stressors, but few studies have investigated
using eDNA to uncover algicidal microorganisms in freshwater environments. The major published
documents have focused on isolated and cultured bacteria or fungi from freshwater environments that
can inhibit HABs directly or indirectly. For example, growth-inhibiting bacteria (GIBs), which limit the
growth of Microcystis aeruginosa, were isolated from the biofilm surface on different aquatic plants,
such as Trapa japonica in Japan [14]. In Lake Biwa, Imai et al. discovered bacteria that caused mortality
in Microcystis and GIBs from the biofilm surface of aquatic plants (Egeria densa and Ceratophyllum
demersum) [55]. The data showed that Agrobacterium vitis which is the most powerful bacterial strain
among the 37 isolated strains could inhibit the growth of M. aeruginosa cells significantly. In addition,
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Yu et al. identified that a Streptomyces sp. strain named HG-16 was able to inhibit harmful algae with
high algicidal activity [62]. However, eDNA can monitor and detect more species than traditional clone
isolation techniques. It is suggested that more than 90% of microorganisms from the environment
cannot be isolated and are uncultivable in the laboratory [63]. Conventional methods could not detect
most algicidal microorganisms and might create a bottleneck for the termination of HABs. Therefore,
increasing attention should be paid to detecting and analyzing algicidal microorganisms by using the
eDNA method.

2.2. Marine Ecosystems

2.2.1. eDNA and Eutrophication in Seawater

The marine environment is important for ecosystem services such as food, medicine, and the
regulation of the climate [64]. However, marine ecosystems suffer from multiple stressful factors, such
as chemical pollution, eutrophication and harmful algae [65]. The effects of humans are among the
driving factors for marine eutrophication and global climate change [66]. The eutrophication of marine
waters could cause a reduction in water quality and have negative impacts on marine ecosystems, the
economy, and human health [67]. There is an urgent need to monitor and assess the biodiversity of
marine environments and decrease the eutrophic state of seawater.

Effective aquatic management and monitoring depend on obtaining comprehensive information
about the diversity and distribution of organisms. eDNA could help to develop monitoring and
assessment programs from seawater samples [68]. Coastal ecosystems are threatened by the effects of
anthropogenic activities such as marine transport [69]. In addition, it is difficult to identify ecological
features due to the nonlinearity and complexity of coastal ecosystems [22]. However, Jo et al. used
an eDNA approach to investigate the general ecological characteristics of aquatic biodiversity in the
coastal ecosystem of Gwangyang Bay [22]. These results suggest that eDNA can be recommended as
a useful tool for detecting spatial differences in species communities in coastal areas. As suggested
by Cowart et al., eDNA metagenomic sequencing could evaluate biodiversity and ecosystems to
more comprehensively supplement traditional approaches [70]. This study suggested that eDNA
metagenomic sequencing could evaluate biodiversity and ecosystems to more comprehensively
supplement traditional approaches. Furthermore, eDNA sequencing could assist in revealing the
interactions between anthropogenic activity and environmental changes, especially in the nearshore
region [71].

2.2.2. eDNA and HABs in Seawater

HABs such as red tide can negatively influence marine environments and human health [72].
Different studies have reported that the growth of microalgae might be inhibited by certain macroalgae.
For instance, the macroalgae Enteromorpha clathrata were demonstrated to significantly inhibit the
growth of the red tide microalgae Skeletonema costatum [73]. It has been shown that three macroalgae
Ulva linza, Corallina pilulifera, and Sargassum thunbergii, have growth-inhibiting effects on the red tide
microalgae Prorocentrum donghaiense [74].

Microorganisms in the ocean are essential for global biomass and energy cycling. It has already
been shown that the eDNA method could be applied to detect microbial communities from seawater
samples [75]. The microbes that exist in freshwater ecosystems, are similar to those that exist in
marine environments, which might enable the mitigation or termination of HABs. Many studies have
demonstrated that a very large number of algicidal bacteria could influence algae blooms. In the
coastal environment of southwestern Japan, 65 strains of algicidal bacteria and GIBs were identified
by 16S rRNA sequencing [76]. It has been shown that the biofilm surface of seagrasses and seaweeds
might provide an environment that harbors algicidal bacteria and GIBs [55,77]. Onishi et al. found
that the GIBs isolated from the seagrass Zostera marina strongly inhibit the growth of the dinoflagellate
Alexandrium tamarense [78]. Furthermore, algicidal bacteria and GIBs that have been shown to inhibit
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the red tide raphidophyte Heterosigma akashiwo and the dinoflagellate Alexandrium tamarense were also
uncovered from seagrass and seaweed beds in the Puget Sound, USA [79].

The biological mechanisms of the inhibition of HABs by microorganisms or macroalgae requires
further exploration through eDNA analyses. However, in marine ecosystems, the investigation of
eDNA is considered to be more challenging than that in freshwater environments because of the
large volume of water and certain abiotic factors, such as salinity and currents [80]. In the ocean,
the concentrations of eDNA have been reported to be negatively associated with depth and increasing
distance to the coast [81]. It has been documented that the concentrations of eDNA range from <1 µg/L
in oligotrophic oceans [82] to 44 µg/L in subtropical estuaries [83]. eDNA has been proven to be a
powerful and efficient tool for detecting large numbers of species and monitoring marine ecosystems.
Therefore, the control and mitigation of HABs in the ocean are expected to benefit from the rapid rise
in the eDNA technique.

3. Perspectives on eDNA

In recent years, eDNA analysis has drawn much attention as an effective and sensitive approach
for researching biodiversity [84,85], which can help to analyze the changes of species in different
eutrophication levels. The breakthroughs by and substantial development of high-throughput DNA
sequencing have made it possible to use this method to rapidly detect organisms’ community
structure [86]. In addition, eDNA metabarcoding has been proven to be useful for monitoring
species communities both qualitatively and quantitatively [24]. The detection of species diversity,
community structures and species change patterns are often of considerable significance in assessing the
effectiveness of eutrophication and HAB control. For example, the biomass and species compositions
of phytoplankton are important factors and indicators of lake water quality [87]. The analysis of species
compositions can help discover ecological indicators to provide instructions to mitigate eutrophication
and HABs in aquatic environments. The novel method of using eDNA as a molecular marker for species
identification and biodiversity assessment could produce comprehensive and valuable information for
the management and protection of ecosystems [88].

Traditional biological monitoring and surveys have most often relied on the morphological
identification of taxa. However, there are some limitations to the morphological approaches for
identifying aquatic biodiversity. For instance, they require a large amount of time to carefully prepare
and preserve specimens. A large number of species or samples cannot be collected and observed
directly. It is difficult to distinguish many closely related organisms visually because of the lack of
diagnostic morphological characters [89]. Molecular genetic assessment based on DNA sequences
could help researchers to obtain more information quickly and economically. DNA metabarcoding
was used to investigate the spatial and temporal dynamics of planktonic organisms, such as fungi and
green algae [28].

Using a single method, it is difficult to continue monitoring and making the assessments used
to collect all the information on the samples from lakes or oceans. It has been suggested that the
combination of eDNA and conventional methods is beneficial for monitoring waterbodies [90] because
eDNA analysis can produce accurate information based on robust data related to population genetic
parameters and relatively widespread taxa. Traditional approaches can provide information on
morphological traits and population characteristics such as life stage, size and growth curves [24].
Therefore, it is necessary to integrate conventional methods with the eDNA approach to produce
comprehensive and long-term data to help evaluate and manage ecosystems and policy decisions.

Furthermore, there are 2 cold topics and 4 hot topics according to the statistical data from the Web
of Science publications (Figure 4 and Supplementary data 3). The 2 cold topics, gene library and PCR
assays, showed a decreasing trend in topic popularity from 1975 to 2020 (2nd March) (Figure 4a). This
might be because the DNA library of a very large number of species and PCR technologies were not
able to uncover most gene sequences when DNA sequencing first began. Therefore, many studies
have focused on improving PCR methods and constructing gene libraries. It contributes to provide
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comprehensive data for further eDNA study. However, DNA sequencing technologies have been
extensively developed in recent years. This might have led to the decreasing trend of these 2 cold
topics. The 4 hot topics (species identification, biodiversity, aquatic species analysis and ecological
communities) showed increasing trends in topic popularity from 1975 to 2020 (2nd March). This was
especially true of species detection (Figure 4b). This result indicated that eDNA could be beneficial
for detecting multiple species, monitoring the environment, analyzing biodiversity and evaluating
ecosystems. Moreover, technologies in eDNA research have expanded to be able to analyze whole
communities from a single sample [91]. The biodiversity assessment of whole communities needs
to be applied to monitor the aquatic environments in different eutrophication levels and explore the
relationship between algicidal microorganisms’ community and HABs.
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per-document probabilities for topics). The mean θ by year reflect the increasing and decreasing trends
of scientific interests. In this study, we present a basic analysis based on a post hoc examination of the
estimates of θ produced by the Latent Dirichlet Allocation (LDA) model [36]. To identify topics that
were increasing and decreasing in popularity from 1975 to 2020 (2nd March), we conducted a linear
trend analysis on θ of each topic by year. According to the mean θ and significance levels (p < 0.05),
topics were identified as “cold” topics and “hot” topics.

Although the use of eDNA related to eutrophication and HABs has been studied in many countries
in recent decades (Figure 3 and Supplementary data 2), the current eDNA research rarely focuses



Microorganisms 2020, 8, 417 9 of 15

on the application of eDNA for mitigating eutrophication and HABs based on topical data. Few
investigations have reported the combination of eDNA and physical or chemical methods to reduce
or inhibit eutrophication and HABs in aquatic ecosystems. Previous studies have documented the
development and improvement of strategies for controlling eutrophication and HABs, such as physical,
chemical, and biological strategies. The physical and chemical methods have been proven to be
potentially harmful for aquatic ecosystems due to their high cost and the secondary pollution they
cause [92]. It has been suggested that using biological approaches is effective and environmentally
friendly [93]. To control eutrophication and HABs, N and P inputs must be reduced in eutrophicated
aquatic systems [94]. Microorganisms are responsible for biogeochemical cycles in freshwater and
marine environments. Therefore, eDNA could be used to find microorganisms that can efficiently
utilize and transform nutrients, such as N and P, in waterbodies to decrease the concentration of
these elements.

Moreover, algicidal microorganisms are recommended as a useful tool to reduce and mitigate
HABs. It is also important to identify microbes that possess growth-inhibiting activity against
harmful algae. It is widely believed that there are a great number of microorganisms with high
algicidal activity in freshwater and marine environments that could be used to control HABs [14,62].
Furthermore, Brevibacillus laterosporus which was isolated from soil samples was reported to have
algicidal capabilities [95]. Therefore, anthropogenic activities and environmental changes in lake basins
and coastal areas can also affect water quality changes, which, in turn, affect water eutrophication
levels and HABs.

Few studies have shown the mechanisms by which algicidal microorganisms terminate or decrease
algae blooms. For instance, GIBs inhibit the motility of the raphidophyte Chattonella antiqua in two
ways [76]: they can change the cell morphology of C. antiqua from spindle-shaped to roundish-shaped
and they can elongate the process of cell division in C. antiqua. However, the molecular mechanisms
underlying algicidal microorganisms are not yet clear. eDNA analysis is a promising tool, as it
might provide a large amount of information about DNA sequences and accurate transcriptional
information about specific genes or protein functions, which can be combined with metagenomics and
transcriptomics to predict the function of different genes and proteins. Then, transgenic or gene editing
technologies, such as CRISPR, could be used to improve the lysing or growth-inhibiting activity of
algicidal microorganisms and enhance the function of specific genes that play an important role in the
algicidal process. On the other hand, long-term monitoring of species biodiversity and environmental
factors (such as pH, N, and P) is beneficial for understanding the optimal conditions for microbes. Early
warning systems can be created and the inhibition of HABs can be achieved by artificially inducing the
proliferation of those microorganisms before the outbreak of HABs.

The DNA sequencing analysis is possible to be aimed at detection of species for which the genome
or a portion thereof exists in databases [85]. Reference DNA databases may limit eDNA application for
some species, because eDNA methodologies can only provide the information of the organisms that
are discoverable from genetic material. However, rapid advances about meta-data are being made to
fill the gaps to some extent. The meta-data research is supported by many databases and programs,
such as Genbank, the BarCode of Life, the International Barcode of Life (iBOL) program, and the Earth
BioGenome Project (EBP) [85]. The metagenomics can be used to analyze the species which have not
been added into databases. According to the meta-data, the taxa of these species can be identified
based on genomic similarity. The biological function of these species can be predicted based on the
homology of functional genes.

Overall, the temporal trend in the eDNA publications indicated continuous growth, based on
the number of published papers (Figure 1). The growing tendency showed an increasing awareness
of the key scientific points of eDNA. This suggests that the number of documents related to eDNA
applications for controlling eutrophication and HABs will continue to increase in the coming years.
This could provide new directions and challenges for future research in aquatic ecosystems (Figure 5).
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With the rapid development of DNA sequencing technologies, eDNA has been proven to be highly
successful for monitoring biodiversity and surveying species communities. There are a great number
of microorganisms, animals and plants in freshwater and marine ecosystems. It is difficult to identify
complete species communities and their distributions by conventional techniques. However, screening
and finding algicidal microorganisms and other species at the molecular level can be accomplished
more accurately and faster based on the alignment of DNA sequencing results in a database than with
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management of the environment, especially in aquatic ecosystems. The sustainable management of
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