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With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory 
environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such 
as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based 
cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. 
Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration 
in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics 
of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches 
to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced tech-
nologies and is expected to continue.
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Introduction 

  Cardiovascular diseases remain one of the significant 
mortalities worldwide. Ischemic heart disease (IHD) is 
still one of the five major factors leading to premature 
death in China (1). Millions of patients suffer from heart 
failure or new or recurrent myocardial infarction (MI) ev-
ery year. IHD results in CMs’ gradual death through 
apoptosis and/or necrosis and causes fibrotic replacement 
of the dead CMs. Subsequently, fibroblasts proliferate and 

migrate to the impaired area and remodel the myocar-
dium through extracellular matrix deposition, resulting in 
increased tissue stiffness and decreased contraction. 
Excessive myocardial fibrosis is a vital driver in the course 
of various heart diseases and heart failure.
  The minimal regenerative capacity of the human heart 
has extensively promoted new techniques for producing 
CMs in vivo and in vitro. With the ground-breaking scien-
tific discovery of human embryonic stem cells (hESCs)  
(2) and human-induced pluripotent stem cells (hiPSC) (3, 
4), researchers focus on developing reliable methods that 
affect the induction of stem cells differentiation into the 
cardiovascular lineage in recent decades. According to the 
enormous data, the above two forms of human pluripotent 
stem cells (hPSC) can produce numerous contractile CMs  
(5-7).
  So far, although the cardiomyocytes generated by the 
hPSC (hPSC-CMs) display lots of resemblance with hu-
man primary CMs, hPSC-CMs have shown immature de-
velopmental status representing embryonic or fetal stages 
CMs. These hPSC-CMs exhibit spontaneous contraction, 
fetal ion channels, fetal electrophysiological properties (8), 
and fetal type gene expression patterns. Many recent stud-
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Table 1. Hallmarks of cardiac maturation

Characteristics Functional assessments Key references

Structure Myofibrils massive expansion Sarcomere length (14-17, 20, 23, 26)
More clear banding Fractional shortening
Improved sarcomere filament alignment Contraction velocity
M-line more clear
Sarcomeric isoform switching

Metabolism Increased number and size of mitochondria Oxygen consumption rate (47-50, 52, 53, 56)
Densely organized cristae Mitochondrial membrane polarization
Mitochondrial membrane polarization
Glycolytic genes downregulation

Calcium handling & 
electrophysiology

More negative resting membrane potential Calcium transient (66-72, 76, 79)
Longer plateau phase of action potential Peak height
Faster upstroke velocity Departure velocity
T-tubulea formation Action potential
Low automaticity

Cardiomyocyte 
proliferation

Decreased proliferation rate Brdub (84-89, 91-95, 97)
Repressed cell cycle regulators Ki67
Maturational hypertrophy pH3c

Polyploidization
aT-tubule: transverse tubules, bBrdu: 5-bromodeoxyuridine, cpH3: phosphorylated histone H3.

Fig. 1. Major challenges and applications of pluripotent stem 
cell-derived cardiomyocytes (hPSC-CMs).

ies have sought approaches to overcome this developmen-
tal hindrance and further improve hPSC-CMs maturation 
to closer to native adult cardiac tissue by long-term cul-
ture, electrical and biomechanical stimulation methods, 
recently reviewed (9, 10). Furthermore, some investigators 
also develop an advanced three-dimensional (3D) cell cul-
ture system (that is, co-culture of non-CMs and extra-

cellular matrix) to recapitulate in vivo environment (11, 
12). Despite extensive efforts, we are still far from achiev-
ing PSC-derived CMs characteristics comparable to native 
or mature CMs in vitro (Fig. 1).
  Thus, an in-depth understanding and identification of 
the molecular mechanism of cardiac maturation is neces-
sary, which may help us better improve the maturation 
of hPSC-CMs, thereby achieving translational medicine 
applications.

Hallmarks of Cardiac Maturation

  Major characteristics of CMs maturation are summar-
ized in Table 1.

Sarcomere

  The highly ordered tissue of striated muscle is the 
premise of rapid and unidirectional development of force 
and movement in the process of cardiac and skeletal mus-
cle contraction (13-15). Myofibril is a 1-μm diameter, 
long cylindrical structure in striated muscle. A bunch of 
myofibrils provides the contractile function to skeletal 
muscle cells. Myofibrils are comprised of thick filaments 
and thin filaments. The components of thick filaments are 
myosins, and the main components of thin filaments are 
actins, supplemented by tropomyosins and troponins. 
  Under the electron microscope, the whole length of each 



368  International Journal of Stem Cells 2021;14:366-385

myofibril presents regular bright and dark bands. The 
light and dark zones contain thinner and parallel fila-
ments called myofilaments. The light band is isotropic, so 
it is called band I. The myofilament is thinner with a di-
ameter of about 5 nm, which is called the thin myofilament. 
Part of the myofilament is located in the bright band, and 
the other part is in the dark band, inserted between the 
thick myofilaments. The dark band is also called band A. 
The myofilaments in the dark zone are larger with a diam-
eter of about 15 nm, so they are called thick myofilaments. 
There is a bright narrow band in the center of the dark 
band called the band H; there is a thin film in the middle 
of the H band called the M membrane. There is also a 
thin film in the center of the bright band, called Z-mem-
brane, or Z-line; The area of myofibril between two ad-
jacent Z lines is called sarcomere, which is the basic unit 
of muscle contraction and relaxation.
  In the process of myofilament gliding, when the intra-
cellular Ca2＋ is increased due to the excitation of CMs, 
Ca2＋ binds to troponin on the filaments, which changes 
its configuration, thus pulling the troponin to roll and 
shift, exposing its covered binding sites. Meanwhile, 
Myosin ATPase on the cross-bridge can catalyze the de-
composition of ATP, and the release of energy drives mus-
cle contraction. When intracellular Ca2＋ concentration is 
reduced, troponin dissociates from Ca2＋ and returns to its 
resting position. The cross-bridge cannot contact the thin 
muscle filament, which makes the muscle enter the relaxa-
tion process.
  Research has shown hESC-CMs and hiPSC-CMs be-
tween 20 and 40 days manifest poorly arranged contractile 
apparatus, exhibiting stunted myofibril density and ori-
entation and fluctuating Z-disc alignment (15). However, 
substantial improvements in the myofibrillar density, 
alignment, and morphology are observed over prolonged 
in vitro culture, as shown in late period hESC-CMs and 
hiPSC-CMs (80∼120 days). An integral element of myofi-
bril maturation is myofibrillar proteins isoform switching, 
such as titin, myosin heavy chain, α-actin, and the tropo-
nin complex. Due to extensive alternative splicing, the 
N2BA isoform of TTN is expressed in fetal CMs and 
hPSC-CMs, whereas the stiffer N2B isoform becomes re-
stricted to adult CMs (16).
  Another well-known sarcomere component is the my-
osin heavy chain, and it is expressed under two distinct 
isoforms in rodents, among which MYH7 is the predom-
inant fetal isoform during fetal development, while MYH6 
is the adult isoform in the adult hearts (17). On the con-
trary, fetal human CMs and hPSC-CMs initially express 
MYH6, while in adult CMs, MYH7 replaces it (18, 19). 

Likewise, slow skeletal muscle isoform (TNNI1) is pre-
dominantly expressed in fetal CMs, then switches to car-
diac troponin I (TNNI3) as CMs mature (20-22). Studies 
have shown MLC-2A transcript expression is observed in 
both atria and ventricle during heart development in 
humans. In contrast to the mouse, it does not become 
chamber restricted; instead, it is widely expressed through-
out heart development until adulthood. MLC-2V is identi-
fied as a maturation marker, which is not detected in the 
aria and slow-conducting tissues (23, 24). It is also re-
ported that hiPSC-CMs present either one of these myosin 
light chain isoforms or both, to a distinct degree in the 
cultures (25). The isoform of myomesin (EH-myomesin) 
peaks in fetal CMs, but the isoform of myomesin lacking 
the EH domain can be detected in mature CMs (26). SMA 
is abundantly expressed in early embryonic phases in ro-
dents and becomes undetectable in the adult heart (27, 
28). hESC-CMs have been confirmed to express SMA in 
vitro but less in human fetal CMs (28). Desmin protein 
is the muscle-specific intermediate filament critical for 
maintaining sarcomeres (29) and is observed only in a 
fraction of hESC-CMs (25). By contrast, the typeⅢ inter-
mediate filament protein vimentin is observed in fetal 
CMs and all hESC-CMs in the culture but not in adult 
rat CMs (25). 
  Contractile force, the critical feature of sarcomere con-
traction, results from fine regulatory interaction among 
electrical activation, calcium treatment, and myofilament 
activation. However, it is one of the least studied parame-
ters, although the methods of contractile forces of CMs 
have been greatly developed. To the best of our knowl-
edge, contractile force assays include magnetic beads (30), 
atomic force microscopy (AFM) (31, 32), micropost arrays 
(MPAs) (33-36), traction force microscopy (TFM) (37), op-
tical edge detection (38), flexible cantilevers (39, 40), and 
strain gauges (41). Out of these techniques, MPAs and 
cantilevers have been used successfully to measure forces 
and assess cell maturation from CMs (33, 34, 36, 42). An 
early study reported peak isometric twitch tension was 
44.0±11.7 mN/mm2 in human myocardium, peak twitch 
tension was 56.4＋4.4 mN/mm2 in rat myocardium, 46.1± 
2.6 mN/mm2 for rabbit myocardium (43). hPSC-CMs in 
a 3D collagen matrix with uniaxial mechanical load fur-
ther increase the active force. However, this construct gen-
erates around 0.08 mN/mm2, about 550 times less than the 
adult human myocardium (44). Similarly, engineered 
heart tissue (EHT) consisting of neonatal rat CMs with 
collagen I and matrix factors revealed a high ratio of 
twitch (0.4 to 0.8 mN/mm2) to resting tension (0.1 to 0.3 
mN/mm2) (45). Another group quantified the contraction 
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Fig. 2. Major characteristics of car-
diomyocyte maturation. Dynamic chan-
ges of structure and function of car-
diomyocytes occur during maturation. 
Major characteristics of human pluri-
potent stem cell-derived cardiomyo-
cytes (representing immature cardio-
myocyte) and adult-like cardiomyo-
cytes (representing mature cardio-
myocyte) as discussed in the text.

force of hiPSC-CMs and hESC-CMs by using atomic force 
microscopy (AFM); they observed these two different sour-
ces of CMs contract with the comparable mechanical 
properties with contraction forces of 0.49±0.45 nN and 
0.23±0.11 nN, respectively (32). In addition, individual 
CMs (which were plated onto polyacrylamide gels with an 
elastic modulus of 4 kPa and surfaces functionalized with 
chemically cross-linked gelatin) were detected using a 
method of dynamic traction force microscopy (46). Selected 
hESC-derived CMs contracted with an average axial force 
of 139±29 nN and a total force of 144±33 nN. Notably, 
these values did not change obviously, even if the culture 
time was prolonged to 90 days. In contrast, NRVCs con-
tracted with an average axial force of 202±47 nN and a 
total force of 222±54 nN by employing the same method 
(46).

Metabolism 

  Fetal nutrition relies predominantly on the placenta’s 

functional ability to intake glucose and lactic acid. During 
postnatal development, the transition to maternal milk 
nutrition raises the lipid diet content, and the increase of 
oxygen concentrations in circulating blood leads to meta-
bolic reprogramming (47). Subsequently, roughly 50% of 
the total ATP is derived primarily from anaerobic gly-
colysis in the fetal heart. In contrast, by postnatal day (P) 
7, β-oxidation of fatty acids is a major contributor to en-
ergy supply, facilitating more excellent ATP production 
(48, 49).
  During maturation, striking changes of shape, morphol-
ogy, and the biochemical content of cardiac mitochondria 
enable an amble and steady ATP production rate for 
contraction. PSC-CMs have immature mitochondria lo-
calized in the perinuclear region, exhibiting disorganized 
and fewer quantities and smaller sizes (Fig. 2). By con-
trast, mitochondria in adult CMs are well organized in a 
highly mature network that is about 40% of the cell vol-
ume (50) and are arranged in a straight line in the ori-
entation of the sarcomeres and attached to SR, leading to 
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efficient ATP transport (51, 52). Cristae, the inner mem-
brane invaginations that offer a sufficient surface area for 
efficient mitochondrial respiration, present few and poorly 
aligned within PSC-CMs (53) while closely compacted and 
organized within adult CMs (54, 55). Meanwhile, com-
pared with late fetal stages, the copy number of mitochon-
drial DNA (mtDNA) raises three times in adult hearts. 
  Mitochondrial fusion and fission can direct mitochon-
drial morphology and size. For instance, disturbance of 
mitochondrial fusion proteins mitofusin 1 (MFN1), mito-
fusin 2 (MFN2), or optic atrophy 1 (OPA1) in adult CMs 
results in a plethora of small, round mitochondria (56). 
Fission-promoting protein DRP1 overexpression in CMs 
induces mitochondrial fragmentation (57), partially phe-
nocopied by conditional interruption of MFN1/2. 
  Changes in metabolic maturation are directly involved 
in transcriptional activation of genes engaged in fatty acid 
metabolism and β-oxidation. A crucial part of the perox-
isome proliferator-activated receptor (PPARs) in the syn-
ergistic cardiac metabolism regulation has been investigated. 
In common with nuclear receptor gene family members, 
the PPARs are ligand-dependent transcription factors. The 
binding of agonist ligands to the receptor leads to PPARs 
target genes expression level alteration (58). Proliferator–
activated receptor γ coactivator-1 (PGC-1) gene expre-
ssion is initiated in the postnatal mouse heart, which is 
identified as a crucial regulatory player by modulating the 
cardiac mitochondrial number and function response to 
heart energy demands (59).
  Furthermore, inhibition of fatty acid β-oxidation by 
ETO in the postnatal mouse heart from postnatal days 2 
to 4 preserves endogenous CMs proliferation, whereas re-
tards CMs hypertrophic growth and maturation at P5 and 
P7. On the contrary, fatty acid β-oxidation activation in 
the infant mouse heart leads to maturation enhancements 
and gives rise to binucleated CMs at P5 (60). These find-
ings reveal in different cellular-context, PPARs have a dif-
ferent impact on cellular function.
  Likewise, another group in the nuclear receptors super-
family, the estrogen-related receptors (ERRs), have also 
been shown a significant role in supporting the metabolic 
transition of developing CMs. Supporting evidence shows 
ERRs have three family members, ERRa (Esrra), ERRb 
(Esrrb), and ERRg (Esrrg) (61, 62). ERRγ and PGC-1β 

are vastly upregulated in tissues with high energy require-
ments such as the heart, kidneys, and brown adipose tis-
sue (63, 64). A recent study shows knockdown of the ex-
pression of ERRα and γ in the heart after birth in mice 
causes cardiomyopathy with an arrest in mitochondrial 
maturation (65). Using RNA-seq and ChIP-seq, results re-

veal that ERRγ activates transcription of genes involved 
in nearly all aspects of postnatal developmental matura-
tion, including mitochondrial energy transduction, con-
tractile function, and ion transport. In common with 
PPARs, ERRγ expression is also augmented in patients 
with hypertrophic cardiomyopathy (HCM) and cardiac hy-
pertrophy animal models. Besides, overexpression of ERR
γ in the heart induces cardiac hypertrophy. Thus, the 
promising results indicate functional collaboration be-
tween ligand-dependent and orphan nuclear receptors in 
stimulating CMs maturation.

Calcium Handling and Electrophysiology

  The sustained contraction and relaxation of the heart 
are strictly controlled by electric pulses and the oscillation 
of cytoplasmic Ca2＋ concentration. Inward and outward 
channels of ions result in action potential, the form of the 
electrical signal that occurs during each cardiac cycle. 
When CMs are excited, depolarization and repolarization 
occur, forming action potential (AP). During the change 
of membrane potential, the ion channels undergo the tran-
sition of closing, opening, and deactivation. AP is tradi-
tionally characterized by five phases (0∼4) (66), and phase 
0 is rapid depolarization, resulting from Na＋ rapid influx. 
Phase 1 is the initial stage of rapid repolarization, which 
is caused by the transient outflow of K＋. The plateau 
stage of the two phases is slow repolarization, which is 
caused by the influx of Ca2＋ and a small amount of Na＋ 
and the outflow of K＋. Phase 3 is the end of fast repolari-
zation caused by the outflow of K＋. The AP duration from 
phase 0 to phase 3 is called action potential duration 
(APD). Phase 4 is the resting phase, and the membrane 
potential of the nonautonomous cells is maintained at the 
resting level. The intramembrane potential is negative to 
the extracellular potential in the resting state, which is 
about - 90 mV. It is in the polarized state caused by the 
high concentration of K＋ efflux from CMs. A complete 
discussion of AP phases in atrial and ventricular CMs can 
be found in ref (67). In contrast, field potential (FP) is 
used to describe the membrane potential of CMs meas-
ured by multi-electrode array system (MEA). The detected 
FP signal comprises the spatiotemporal electrical activity 
of a group of cells; therefore, it is the sum of all the chan-
nel currents. In this regard, the FP is similar to the ECG 
signal that records the change of body surface voltage 
caused by the current flowing throughout the heart. The 
FP waveform reveals different characteristics magnified by 
a pronounced transient spike during membrane depolari-
zation (68), followed immediately by mild slope associated 
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with calcium influx, terminated with repolarization based 
on potassium efflux. FPD has been demonstrated to corre-
late with the APD90 of the APs (68). hPSC-CMs together 
with the MEA system can be widely used to test cardiac 
drugs effects and represent a promising in vitro model for 
cardiac electrophysiologic studies (69-73).
  Atrial (neonatal and adult), as well as ventricular 
(embryonic, neonatal and adult) murine CMs, show sub-
stantial changes in AP morphology during development 
(74-77). The inward rectifier potassium current IK1 I nsuf-
ficiency is widely acknowledged as the main limitation for 
hiPSC-CMs. During murine fetal development, the total 
amplitude of IK1 in ventricular CMs and the activation ki-
netics increase, and the IK1 inward rectifier property be-
comes stronger. IK1 plays a crucial role in the spontaneous 
AP in fetal ventricular CMs (78). They block IK1, resulting 
in significant depolarization.
  Moreover, iPSC-CMs can reiterate the cellular electro-
physiological phenotype caused by SCN5A mutations. 
Remarkably, hiPSC-CMs reveal a relative increase in the 
adult Nav1.5 over the fetal Nav1.5 after extended culture  
(79). Some studies report that after＞60 days in culture, 
L-type calcium channel in hPSC-CM is remarkably com-
parable to L-type calcium channel densities measured in 
adult human ventricular (80). The action potential of im-
mature hPSC-CMs does not display an exact plateau 
phase (Fig. 2).
  In contrast, mature ventricular CMs open the L-type 
Calcium channels (Cav1.2) to permit high levels of cal-
cium influx, which generates a plateau phase (80). The 
slow recovery kinetics of transient outward potassium cur-
rent (Ito) coupled with a depolarized MDP are responsible 
for an AP notch deficiency in the majority of hiPSC-CMs. 
Electrophysiological analysis has also recognized that Ito 
is small or virtually nonexistent in neonatal CMs from 
other mammalian species (81).
  The action potential is transmitted to the trigeminal 
structure of the transverse tube and the terminal cistern 
of the bilateral muscle ganglia through the transverse tube 
system. The signal is transmitted to the nearby sarcoplas-
mic reticulum through the transverse tube, which results 
in the opening of calcium channels on the terminal cis-
tern, where it triggers the cardiac ryanodine receptor 2 
(RYR2) to liberate Ca2＋ from the sarcoplasmic reticulum 
(SR); thus the calcium ions in sarcoplasmic reticulum fol-
low the concentration gradient and enter the cytosol with 
low calcium concentration at rest (82). When excitation- 
contraction coupling occurs, the concentration of calcium 
ion in the cytosol can be increased by 100-fold. 
  Adult CMs are somewhat more giant cells, and Ca2＋ 

signals have a high homogeneity (82, 83). By contrast, 
hiPSC-CMs express the same components for calcium 
handling, and the spatial distribution of Ca2＋ signals is 
highly heterogeneous. During in vitro maturation, calcium 
store load steadily is increased. Notwithstanding, ＜40 
days post beating, hESC-CMs still express functional in-
tracellular calcium handling components, such as CaV1.2, 
CaVβ2, RyR2, and IP3R, even if its level is significantly 
lower than those of primary adult CMs.

Cardiomyocyte Proliferation

  Due to its relationship with cardiomyocyte proliferation, 
the study of cardiomyocyte maturation is also of great 
significance. Studies in humans and rodents demonstrate 
limited regeneration of CMs in adulthood, whereas CMs 
present proliferative capacity in the fetus (84-86). Tri-io-
do-L-thyronine (T3), which is believed as a major stimu-
lant of CMs maturation, suppresses the proliferation of fe-
tal CMs in vitro (87). The deactivation of thyroid hormone 
signaling diminishes the polyploidization of mouse CMs, 
postpones the exit of the cell cycle, and preserves the heart 
regeneration potential of adult mice (88). Similarly, over-
expression of YAP5SA, whose target genes encode cell cy-
cle regulators, induces adult CMs reversion to a fetal-like 
cell state (89). Although miR-199a promotes the dediffer-
entiation and proliferation of CMs, drops the infarct 
range, and recovers the contractile function of CMs in in-
farcted pigs, the uncontrolled expression of this miRNA 
ultimately causes abrupt death (90). Thus, we should pay 
more attention to the experiment of promoting cardiac 
proliferation in the clinic.
  Cardiomyocyte cell cycle withdrawal is observed within 
the first postnatal week of life in mice. Studies in humans 
have demonstrated the number of CMs remains stable 
over the human lifespan (91). During maturation, another 
hallmark is cardiomyocyte polyploidization. In rodents, ＞75% 
of CMs become polyploid and largely binucleated result-
ing from DNA synthesis and nuclear division without cy-
tokinesis (92). By contrast, a similarly high percentage of 
human and other primate CMs are polyploid containing 
high DNA contents ranging from 4c to 16c due to DNA 
synthesis without karyokinesis (93) (Fig. 2). Moreover, the 
number of polyploid cells improves after myocardial in-
farction and other injuries. Cardiomyocyte polyploidiza-
tion is likely negatively correlated with regenerative 
capacity. Inactivation of tnni3k causes mononuclear dip-
loid CMs to enhance cardiomyocyte proliferation. In turn, 
overexpression of tnni3k in zebrafish promotes myocardial 
polyploidy and impairs heart regeneration (94). Relevant 
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evidence shows that ect2 induces zebrafish cardiac poly-
ploidy, an obstacle to the proliferation of CMs (95). 
However, though polyploidy is related to the terminal dif-
ferentiation of CMs, polyploid hepatocytes devote robustly 
to liver regeneration despite ploidy. Thus, it remains ob-
scure about the regulation and unique function of poly-
ploids and their impact on cell physiology.
  The classic regulators of cell cycle progression, includ-
ing cyclins and CDKs, are also engaged in the cardiac cell 
cycle. These regulators are highly expressed during embry-
onic cardiac development and then decline at different 
rates during cardiomyocyte maturation (96). Likewise, the 
expression levels of cyclins and CDKs are diminished dur-
ing hPSC-CM differentiation (97). A recent study has re-
ported that overexpression of four cell cycle regulators, cy-
clin-dependent kinases 1 and 4 (CDK1 and CDK4), cyclin 
B1, and cyclin D1, induces cell division explicitly in adult 
mitotic mouse, rat, and human CMs. Once the cell-cycle 
regulators are delivered after myocardial infarction, the 
mice will reveal significant cardiac function (98). Overall, 
such knowledge not only deepens our understanding of 
cardiac maturation but may also shed light on the discov-
eries of therapeutic targets to induce host CMs division 
under disease conditions or to expand transplanted cells 
after transplantation into damaged hearts.

Cardiac Maturation Regulation

  Cardiac maturation involves a variety of molecular 
events coinciding. However, the functional implications of 
these cellular changes and interactions have only begun 
to be explored at the molecular level.

Transcriptional Regulation

Transcriptome
  Microarray analysis demonstrates that the gene ex-
pression profile of hPSC-CMs resembles that of the fetal 
heart in the first trimester. However, after inducing matu-
ration under culture conditions containing the T3 hor-
mone, its gene expression profile is analogous to that of 
the fetal heart in the second trimester (99). A finding from 
over 200 microarray data sets from different heart develop-
ment stages indicates that PSC-CMs mature in the early 
stage but stop maturing even after 20 days of culture in 
the late embryonic stage. They found that transcriptional 
regulators, including PPARs, are misregulated in PSC-CMs, 
which is the leading cause of maturation stagnation (97). 
Recently, improvements in single-cell RNA-sequencing 
technology have profound insight into the regulatory net-

works in CMs maturation. Single-cell RNA sequencing is 
performed on more than 1200 mouse cells at seven devel-
opmental time points ranging from embryonic day 9.5 to 
postnatal day 21 (100). They subsequently observe the 
hES-D20 cells equivalent to E14.5 ventricular CMs, while 
hES-year1 cells equivalent to E18.5 ventricular CMs. 
Moreover, they also observe maturity heterogeneity of in-
dividual CMs even at the same target time point. This 
finding suggests that cardiomyocyte maturation state can 
be observed and assessed at a single-cell level. By taking 
advantage of extensive single-cell transcriptomic analyses 
of in vitro cardiac differentiation, another group found 
HOPX (101), as a critical regulator of heart development, 
is not efficaciously triggered during monolayer-based car-
diac differentiation. Overexpression of HOPX increases 
cell size and a penal of known regulators of hypertrophy. 
Loss of HOPX function attenuates hypertrophic growth 
and maturation. 

Master regulators
  Currently, many studies have reported on factors that 
regulate diverse respects of heart maturation. We have al-
ready discussed the structure, metabolism, and electro-
physiological characteristics of cardiomyocyte maturation 
in previous sections. However, a central open problem is 
whether these mature steps are regulated separately, 
whether they have a standard regulatory process or pri-
mary and secondary regulatory relationships. Although 
some studies reveal sarcomere maturation is upstream of 
most other cardiomyocyte maturation aspects, the rela-
tionships between the multiple aspects of CM maturation 
remain mostly unresolved. Here, we highlight a few fac-
tors that are known for regulating nearly every aspect of 
cardiomyocyte maturation. These factors are considered as 
the critical node in the cardiac mature regulatory network 
(Fig. 3).

SRF
  SRF, a MADS-box-containing transcriptional factor, has 
been characterized extensively recently (102). In early em-
bryogenesis, SRF has an essential role in mesoderm for-
mation during gastrulation (103). Also, the cardiac-specif-
ic absence of SRF in the embryo leads to severe cardiac 
defects (104). Besides its impact on development, dis-
ruption of SRF in the adult heart induces progressive im-
pairment of left ventricular function and progression to 
dilated cardiomyopathy (105). Intriguingly, SRF is in-
creasingly well implicated as crucial nodes in the regu-
latory network of cardiac transcription and regulated the 
cardiac transcriptome (106). Guo and colleagues recently 
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Fig. 3. The complicated regulatory 
layers of cardiomyocyte maturation. 
As illustrated, the complex regu-
latory events of cardiomyocyte ma-
turation include transcriptional, post-
transcriptional and epigentic regula-
tion.

discovered that SRF could coordinate almost all aspects 
of CM maturation. They first observe a significant reduc-
tion of mitochondria and metabolism genes after deleting 
SRF by exploiting CASAVA. BioChIP-seq further vali-
dates SRF directly regulates genes that control sarcomere 
expansion, mitochondrial biogenesis, transverse-tubule 
formation (106). However, overexpressed SRF in neonatal 
CMs also dramatically blocks T-tubule formation and 
causes defects in morphological maturation. Thus, the 
SRF dosage should be carefully balanced in promoting 
CM maturation.

Nuclear receptors
  Thyroid hormone T3 profoundly impacts cardiomyocyte 
maturation, including regulating fetal-to-adult titin and 
myosin heavy chain isoform transition (107), increasing 
cardiomyocyte width polyploidization, augmenting ex-
pression of phospho-mTOR, ANP, and SERCA2a, re-
ducing proliferation and cyclin D1 protein (88).
  T3 functions via THRA and THRB nuclear receptors, 
which are the central thyroid hormone receptors. Mutation 
of THRA impairs cardiomyocyte maturation. Likewise, 
glucocorticoids have a critical role in late gestational heart 
maturation (108). Glucocorticoids bind to glucocorticoid 

receptors (GRs), which belong to the nuclear receptors 
superfamily. Mice deficient in glucocorticoid receptors in 
CMs and vascular smooth muscle reveals aberrant cellular 
behavior, including poorly aligned and disorganized my-
ofibrils with only a few sarcomeres (109). Additional nu-
clear receptors (NRs) play a central role in regulating met-
abolic maturation. Such factors are PPARs (peroxisome 
proliferator-activated receptors), which interact with the 
retinoic acid X receptor and activate downstream targets 
engaged in fatty acid and carbohydrate metabolism by 
binding to the promoter region. It has been believed that 
PPARα is activated by fatty acids and a primary cardiac 
fatty acids metabolism regulator. PPARα-mediated acti-
vation of fatty acid β-oxidation promoted the pro-
liferation of CMs at P4 in infant mice, while this phenom-
enon did not exist in P2 and P5. However, in P5, PPARα
-mediated activation of fatty acid β-oxidation enhances 
the hypertrophic growth and maturation of CMs. These 
facts highlight the role of PPARα in distinct cellular 
functions during perinatal environmental changes (60). 
PPARγ coactivator–1 (PGC-1) promotes transcription via 
complex assembly that anchors active nuclear receptors 
with chromatin remodeling complexes. Mice deficient in 
both PGC-1α and PGC-1β demonstrated signatures of a 
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maturational defect, including reduced growth, arrested 
mitochondrial biogenesis, and persistence of a fetal pat-
tern of gene expression (110). Of note, depletion of PGC-1
α and PGC-1β during postpartum heart development 
leads to significant defects in mitochondrial maturation 
and structure, related to decreased expression of genes in-
volved in mitochondrial fusion-fission, such as Mfn1, 
Opa1, and Fis1, resulting in progressive, lethal cardiomy-
opathy (111). More recently, a study shows PGC1 is essen-
tial for postnatal CM growth, calcium handling, and mi-
tochondrial activity beyond metabolism, which suggests 
that PGC1 has a multi-faceted role in coordinated car-
diomyocyte maturation (112). Mechanistically, PGC1/PPAR 
signaling can regulate Yap1 and SF3B2, which are up-
stream regulators of cellular hypertrophy and calcium 
handling. 
  Apart from ligand-dependent nuclear receptors, li-
gand-independent (orphan) nuclear receptors such as the 
ERRs (estrogen-related receptors α, β, and γ) might al-
so be essential for the maturational transition of develop-
ing CMs by directly regulating genes vital for mitochon-
drial functions, CM contraction, calcium homeostasis, and 
conduction (65, 113).
  Therefore, NRs deserve more attention as potentially 
promising candidates for metabolic variations and tran-
scriptional regulation during cardiac maturation.

Posttranscriptional Regulation 

  miRNAs have been established as critical factors in co-
ordinating the sophisticated regulatory network in car-
diomyocyte maturation. For example, miR-1 is the most 
abundantly occurring cardiac microRNA (miRNA) in ma-
ture CMs, verified to facilitate their electrophysiological 
maturation (114). Moreover, Let-7 is the most upregulated 
miRNA family member during the one-year culture of 
hESC-CMs in vitro (115). Cell size, sarcomere organ-
ization, contraction force, and respiratory capacity en-
hancements are observed after let-7 family overexpression 
in hESC-CMs. By contrast, miR-200c overexpressing 
hESC-CM reveals Ca2＋ influx inhibition (116). It is re-
ported that microRNA maturation cocktail (that is, over-
expression of Let7i and miR-452 and knockdown of 
miR-122 and miR-200a) while significantly enlarges 
hiPSC-CMs cell area and creates a more mature tran-
scription profile (117). Similar to the cocktail strategy, de-
livering four microRNAs, miR-125b-5p, miR-199a-5p, 
miR-221, and miR-222 (termed as miR-combo), to m/hESC- 
CMs also leads to improvement of sarcomere alignment 
and calcium handling, mitochondrial cristae formation, 

and enhance expression of cardiomyocyte maturation 
markers (118). 
  Epigenetic regulation is central to establish and main-
tain vast various cellular functions. Epigenetic marks or 
factors, such as DNA methylation and histone tail mod-
ifications, are dynamically changed during cardiac devel-
opment and maturation. Emerging evidence indicates the 
epigenetic alterations are closely associated with car-
diomyocyte maturation. As expected, epigenetic changes 
are relevant to transcriptional activity and silencing. In 
postnatal CMs, fetal cardiac genes are decked with re-
pressive chromatin configuration, characterized by hyper-
methylated and H3K27me3. Whereas actively expressed 
genes in adult CMs are hypomethylated and maintain ac-
tive histone modifications, such as H3K27ac, H3K9ac, 
H3K4me1, and H3K4me3 (119, 120). Valproic acid, the 
histone deacetylase inhibitor, increases active histone 
modifications H3K4me3 on the whole genome level, in-
duces hypertrophic growth, and augments cardiac gene ex-
pression hPSC-CMs (121), but it does not have an impact 
on electrophysiological properties. DNMT3A/B-mediated 
DNA methylation can inhibit the slow skeletal troponin 
I subtype (Tnni1).
  Similarly, genes involved in converting fetal into adult 
energy metabolism are also methylated after birth. 
H3K27me3 is particularly related to suppressed and deme-
thylated genes in CMs (119). In another study, early car-
diac progenitor cells stimulated with polyinosinic-poly-
cytidylic acid (pIC) have been shown to augment the ma-
turation of CMs (122). Mechanistically, pIC treatment reg-
ulates early Notch signaling and increases the epigenetic 
activating modification H3K9ac in cardiac myofilament 
genes promoter regions. In a recent study, in vivo CRISPR 
screening identifies RNF20/40 (123), which monoubiqui-
tinates H2B at lysine 120 by exerting E3 ligase activity. 
RNF20/40 is essential for CMs maturation, which is pro-
ven to regulate metabolism during CM maturation directly. 
  Chromatin organization is believed as another funda-
mental regulatory layer of CM maturation. Chromatin-re-
modeling protein, BRG1, maintains cardiomyocyte in an 
embryonic state. When encountering cardiac stress in 
adulthood, BRG1 is reactivated and cooperates with his-
tone deacetylase (HDAC) and poly ADP–ribose polymer-
ase (PARP) to induce myosin heavy chain isoform con-
version (124). CTCF (CCCTC-binding factor), one of the 
best described architectural proteins, hearts of its mutant 
reveal mitochondrial function and protein production 
genes upregulation; however, mitochondrial do not mature 
correctly (125).
  In conclusion, these findings suggest that histone and 
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Fig. 4. Approaches to acquire CM 
maturation. Representative strategies 
that promote hPSC-CMs maturation.

DNA modification play a significant role in regulating 
cardiomyocyte maturation. Nevertheless, we are still in the 
early stages of understanding how epigenomes regulate 
this sophisticated progress; the target and mechanism of 
CM maturation need to be further explored.
  Cardiac proteomics promotes our understanding of reg-
ulating CM maturation. As anticipated, the global pro-
teome of hESC-CMs is fetal-like, and hESC-CMs have the 
lowest level of sarcomeric protein, a protein engaged in 
energy transfer. Pathway analysis highlighted the perox-
isome proliferator-activated receptor α signaling (PPAR
α) as a key regulator for cardiac maturation. Activation 
of PPARα with molecular agonist significantly increases 
fatty oxidative enzyme activity, hyperpolarizes mitochon-
drial membrane potential, and induces a more organized 
morphology (126). Using a mass spectrometric approach 
to investigate protein expression in vitro over 30 days of 
hiPSC-CM, the finding suggests proteins associated with 
protein translation/synthesis and ubiquitination are re-
duced, followed by an increase in oxidative phosphor-
ylation and a decrease in glycolytic proteins. Although 
most proteins involved in excitation-contraction coupling 
are increased, this is insufficient to cause functional en-

hancement because of no change in calcium transient am-
plitude (126). In a recent study, Cai et al. (127) develop 
an unbiased proteomics strategy integrating high-through-
put top-down targeted proteomics and bottom-up global 
proteomics to appraise precisely hPSC-CM maturation. 
This finding identifies several candidate maturation-re-
lated factors critical for sarcomere tissue, cardiac excit-
ability, and calcium homeostasis.

Approaches to Acquire CM Maturation

  The ability of hPSC-CM to mature into an adult-like 
phenotype after transplantation denotes that the standard 
cell culture conditions lack key elements in the in vivo en-
vironment (128). On the other hand, isolated adult CMs 
are observed to either die or dedifferentiate after being 
cultured in a cell medium for several days (129). The 
above limitation has been recognized for many years. 
Thus, many researchers are attempting to improve the in 
vitro systems to promote mature CMs better (Fig. 4).
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Biophysical Stimuli

  Using matrigel-coated polyacrylamide substrates with a 
physiologically relevant stiffness in rectangles [length： 

width=1.5∼1.7：1], micropatterns make CMs more ma-
ture concerning electrophysiology, calcium flow direction, 
mitochondria organization, and T-tubules formation. 
hPSC- CMs growth on hydrogel also displays action po-
tential propagation and myocardial contractility (130). 
hPSC-CMs island geometry has a significant effect on ac-
tion potential and calcium dynamics. hiPSC-CM in larger 
islands demonstrate maturity enhancements, explained by 
nearest-neighbor contact interactions (131). Similar find-
ings were observed when GSK-3β inhibitor withdrawal 
combined with high cell-cell contact (132).
  The mechanical force also modulates maturation. 
hPSC-CMs cultured on physiologically stiff 16 kPa show 
sarcomeric alignment and SERCA2a spreading and reloc-
alization (133). hiPSC-CMs seeded on Matrigel with ＞0.4 
mm thickness exhibit enhanced sarcomere alignment, 
rod-shaped and robust hiPSC-CM shortening (134). A re-
cent study reports CMs derived from early-stage display 
significant plasticity instantly after the occurrence of 
spontaneous contractions, under the conditions of physical 
conditioning with growing density for four weeks, while 
cardiac tissue generated from human iPSCs display 
adult-like characteristics, such as organized ultrastructure, 
physiological sarcomere longitude and mitochondria den-
sity, the presence of transverse tubules and oxidative me-
tabolism (135). However, electromechanical properties 
have not reached the maturity degree recapitulating the 
in vivo adult myocardium. 
  Applying electrical signals can also substantially en-
hance cell function. Suprathreshold electrical field stim-
ulation and chronic pacing at a constant rate both amelio-
rate the neonatal rat ventricular myocytes’ functional phe-
notype (136, 137). 
  The above strategies have also been applied for 
hPSC-derived cardiac tissues. Nunes and colleagues have 
generated a platform termed biowire that combines 3D 
and electrical stimulation with an increased frequency 
ranging from 1 to 6 Hz to create a microenvironment fa-
vorable to cardiac maturation (138). Strikingly, these 
stimulated conditions remarkably improved cell and my-
ofilament structure enhanced electrophysiological and Ca2＋ 
handing and upregulated potassium inwardly-rectifying 
channel gene. However, M-lines, T-tubules defects, and 
downregulation of structural proteins mRNA are observed 
in this system. The same group developed the second ver-
sion, named Bioware II (139), which enables electro-

physiologically distinct atrial and ventricular tissues. 
Electrical stimulation matures CMs via increasing con-
nexin expression and adapting an autonomous beating 
rate; this adaptive effect can maintain for up to 2 weeks.

Biochemical Stimuli

  The hormone-insulin-like growth factor 1 (IGF-1) sig-
naling has vital roles in regulating several cellular proc-
esses, including contractility, metabolism, hypertrophy, 
autophagy, aging, and apoptosis in the heart (140). The 
canonical IGF1 pathways involve MAPK(RAS/RAF/MEK) 
and PI3K/AKT/Mtor pathways (141). IGF1 binds to the 
IGF1 receptor (IGF1R), a cell surface tyrosine kinase re-
ceptor needed in physiological stresses-induced hyper-
trophy (142) to activate pathways. IGF1, in turn, activates 
PI3K–AKT1 signaling to promote the proliferation of CMs 
derived from hESCs (143). Cardiac hypertrophy with an 
increase in myocyte size and enhanced systolic function 
is observed in the heart of overexpressing IGF1R mice 
(144). hESCs-CMs in engineered cardiac tissues (ECTs) 
stimulated with IGF1 and neuregulin 1β (NRG1) exhibit 
increased area and improved force-frequency relationship 
(145). 
  A switch from glycolysis to fatty acid metabolism is the 
hallmark of postnatal cardiomyocyte maturation, which is 
exploited for developing methods to improve in vitro CM 
maturation. Fatty acid supplementation can further ad-
vance hPSC-CM maturation, accompanied by enhanced 
force generation and augmented mitochondrial respiratory 
reserve capacity (146). In one study of a synergistic im-
pact, galactose and fatty acid are added and vastly im-
proved hPSC-CM maturation, characterized by a higher 
oxidative metabolism, increased myofibril density, and 
alignment enhanced AP durations, and higher upstroke 
velocities (147). Glucose deprivation of hESC-CMs is more 
elongated and displays functional maturation at the meta-
bolic, electrophysiological, and biomechanical levels. In 
terms of mechanism, nucleotide biosynthesis via the pen-
tose phosphate pathway is the pivotal regulator of the 
promitotic/anti-maturation effect of glucose (148). Mean-
while, glucose aberrantly induces hypoxia-inducible factor 
1-alpha (HIF1α) and its downstream glycolysis-related 
genes. HIF1α/LDHA inhibition results in oxidative phos-
phorylation improvement. Conversely, this promotes met-
abolic and functional maturation of hPSC-CMs (149). 
  As described above, the administration of T3 or gluco-
corticoid facilitates cardiomyocyte maturation (150, 151). 
The synergetic effect of biochemical signals on car-
diomyocyte maturation has also been investigated. During 
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the cardiac differentiation, combined thyroid and gluco-
corticoid hormones motivate T-tubule development and 
more ventricular-like EC coupling. Treatment CMs with 
thyroid hormone, dexamethasone, and IGF1 in 3D cardiac 
microtissues (CMTs) yields a more adult-like cardiac per-
formance (152). 

Co-Culture and 3D Culture

  CMs account for about 25∼35% of all cells in the heart. 
Conversely, non-CMs include endothelial cells, hema-
topoietic-derived cells, immune cells, and fibroblasts, which 
make up the vast majority of the heart’s cell (153). Co-cul-
ture of non-CMs and CMs promotes the maturation of 
hPSC-CM. For example, it is reported that non-CMs in 
embryoid bodies (EBs) drive electrophysiological matura-
tion of early-stage cultures of hESC-CMs (154). Co-culture 
enables hiPSC-CM to be more mature partially through 
paracrine factors secreted from non-CMs (155). Fibroblasts 
have stage-specific roles in modulating cardiac function. 
Embryonic cardiac fibroblasts induce the proliferation of 
CMs, whereas adult cardiac fibroblasts promote myocyte 
hypertrophy (156). Co-culture of hPSC-derived ECs with 
hPSC-derived cardiac progenitor cells (CPCs) can increase 
CM size, enhance sarcomere proteins and their organ-
ization (157). 
  The use of hiPSC-CM and other cardiac cell types for 
3D culture is a promising approach to improve maturation. 
Many research groups have demonstrated 3D culture sys-
tems (such as engineered tissues and organoids) can im-
prove maturity (135, 158-160). For example, hESC-CMs 
are mixed with human primary cardiac microvascular en-
dothelial cells and cardiac fibroblasts in spheroid micro-
tissue, which leads to greater Ca2＋ transient amplitudes 
and enhances spontaneous contraction rate, and remark-
ably accelerates contractile function (161). Similar results 
are obtained in another study. The tri-cellular cocultiva-
tion of hiPSC- CMs, cardiac fibroblasts (CFs), and cardiac 
endothelial cells also enhances maturation in three-dimen-
sional microtissues (MTs) (162). They found cyclic AMP 
(cAMP) is responsible for connexin 43-mediated hiPSC- 
CM maturation. As mentioned above, additional bio-
chemical (T3, dexamethasone, IGF1, palmitate) and bio-
physical stimulation (electrical pacing; mechanical stress) 
on these 3D contexts are essential to produce adult-like 
CMs (152, 163).
  In summary, these studies demonstrated that co-cultur-
ing hPSC-CMs with fibroblasts and endothelial cells mim-
ics the intercellular crosstalk environment in vivo. 3D sys-
tems further boost maturation in vitro. These technologies 

can significantly promote CMs maturation and are benefi-
cial to discover novel cardiomyocyte maturation regulators. 
Notably, tissue-engineering techniques are challenged to 
widely spread because it is expensive, time-consuming, 
and challenging to understand downstream mechanisms. 
Therefore, we will need additional studies to develop a 
more economical and convenient technique for clinical 
application.

Transplantation

  Neonatal and adult rat heart transplantation can pro-
mote the maturation of hiPSC-CMs. In both stage hearts, 
engrafted cells develop partially mature myofibrils accom-
panied by cell enlargements, sarcomere lengthening, and 
more cardiac troponin I expression (164). However, com-
pared with the host cells, engrafted derivatives are still 
much more minor. This phenomenon could be related to 
species incompatibility. A landmark study from the same 
group reported that after transplantation hESC-CMs into 
the myocardial infarcted heart, cardiac function is recov-
ered at unprecedented levels accompanied by forming 
electromechanical junctions with the host heart (165). 
  Together, these studies demonstrate that hearts can pro-
vide the native environmental cues essential for guiding 
PSC-CMs to mature toward a nearly adult-like state. The 
cues might come from chemical signaling through gap 
junctions, paracrine factors from neighboring cells, and 
systemic circulation factors (such as metabolic or hor-
mone-related). Further analysis will be needed to explore 
the novel factors and investigate their impact on morpho-
logical and functional maturation. 

Conclusions

  In conclusion, we review the main features of car-
diomyocyte maturation and the known regulators in this 
sophisticated process. Although the significant differences 
between immature CMs and mature CMs have been well 
documented, the details of the molecular mechanisms in-
volved in the transition from immature to mature states 
remain ripe for discovery. Indeed, accumulated evidence 
shows maturation can be a complex trait governed by mul-
tiple signaling networks in the cytoplasm and nucleus. 
Therefore, the research in this field should focus on in-
dividual characteristics and how to synchronize the events. 
  On the other hand, although individualized intervention 
has promoted the development of CMs to a more mature 
phenotype in vitro, these methods are not enough. It seems 
that combinatorial approaches might be necessary.
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  With the development of the model system and the in-
creasingly close cooperation between basic scientists and 
tissue engineers, a more comprehensive map of car-
diomyocyte maturation can be guaranteed in the foresee-
able future. This work is essential for designing better 
strategies to mature PSC-CM, stimulate cardiomyocyte re-
generation, and treat diseases involving defects in car-
diomyocyte maturation.
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