
Gene editing monkeys:
Retrospect and outlook

Weizheng Liang1†*, Junli He2†, Chenyu Mao3†, Chengwei Yu4,
Qingxue Meng1, Jun Xue5, Xueliang Wu5, Shanliang Li6*,
Yukai Wang7,8,9,10* and Hongyang Yi11*
1Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China,
2Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China, 3University of
Pennsylvania, Philadelphia, PA, United States, 4School of Future Technology, University of Chinese
Academy of Sciences, Beijing, China, 5Department of General Surgery, The First Affiliated Hospital of
Hebei North University, Zhangjiakou, China, 6Department of Pharmacology, Guangxi University of
Chinese Medicine, Nanning, Guangxi, China, 7State Key Laboratory of Stem Cell and Reproductive
Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 8Institute for Stem Cell and
Regeneration, Chinese Academy of Sciences, Beijing, China, 9Beijing Institute for Stem Cell and
Regenerative Medicine, Beijing, China, 10National Stem Cell Resource Center, Chinese Academy of
Sciences, Beijing, China, 11National Clinical Research Centre for Infectious Diseases, The Third People’s
Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and
Technology, Shenzhen, China

Animal models play a key role in life science research, especially in the study of

human disease pathogenesis and drug screening. Because of the closer

proximity to humans in terms of genetic evolution, physiology, immunology,

biochemistry, and pathology, nonhuman primates (NHPs) have outstanding

advantages in model construction for disease mechanism study and drug

development. In terms of animal model construction, gene editing

technology has been widely applied to this area in recent years. This review

summarizes the current progress in the establishment of NHPs using gene

editing technology, whichmainly focuses on rhesus and cynomolgus monkeys.

In addition, we discuss the limiting factors in the applications of genetically

modified NHP models as well as the possible solutions and improvements.

Furthermore, we highlight the prospects and challenges of the gene-edited

NHP models.
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Introduction

With the development of human medical research, a broader and deeper

understanding of disease pathology and identification of therapeutic strategies has

become quite urgent. The establishment of genetically modified animal models is an

important aspect of human disease studies. The validity of the animal model is based on

its evolutionary similarity to humans. So far, a lot of research has been conducted on the

construction of rodent models such as mice models (Gurney, 2000; Wong et al., 2002).

Though mice models have played a big role in clinical research, models with higher

similarity to humans are needed to study pathogenesis, especially in neurological diseases
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(Wong et al., 2019). Compared to other animal models, primates

are more similar to humans in terms of genetic background and

physiological characteristics (Zhao et al., 2019). With up to 93%

homologous genome between monkeys and humans, the NHP

model has become irreplaceable in studying human diseases

(Gibbs et al., 2007; Yan et al., 2011; Higashino et al., 2012;

Brasó-Vives et al., 2020).

Though scientists have obtained primate models by

screening natural mutations, drug induction, and traditional

genetic engineering methods previously (Chan, 2004; Chen

et al., 2012; Forny-Germano et al., 2014), it was difficult to

obtain by spontaneous mutation. Traditional transgenic

methods are not only inefficient but also require many

embryonic stem cells, which is time consuming and laborious.

In addition, other methods such as retroviral or lentivirus-

mediated gene modification methods, RNA interference

techniques, and sperm vector-mediated methods are subject to

large exogenous random insertion of foreign genes with unstable

expression and low operability accompanied by significant

chimerism. Until recent years, with the development of gene

editing technologies, researchers can use TALEN and CRISPR

technology to achieve precise genetic modification on monkeys

with the advantage of higher efficiency and accuracy which are

unmatched by other methods. Here, we will present recent

developments of gene-modified rhesus and cynomolgus

monkeys and discuss the factors limiting the application of

NHP models and highlight their future applications prospects.

Traditional transgenic methods to
establish NHP models

The classical method of constructing transgenic primates

mainly depends on the retrovirus vector-mediated approach,

which recombines the target gene into the retroviral vector and

integrates the exogenous target gene into the host genome by

infecting the host cells. This method has been applied to mice for

a long time (Gordon et al., 1980). In 2001, Chan et al. (2001)

successfully established a transgenic rhesus monkey termed

ANDi by transducing oocytes with high-titer lentivirus

followed by sperm injection and embryo transfer, which is the

first genetically modified primate in the world. Although the

expression of the exogenous gene GFP was detected in only one

of the three births obtained, this pioneering work marked the

birth of transgenic NHP technology. In the same year, another

group also constructed the transgenic rhesus monkeys with

exogenous eGFP integrated into the placental tissue (Wolfgang

et al., 2001). Taken together, these two studies provide the basis

for the feasibility of exogenous gene integration and lay the

foundation for future functional gene studies. Seven years later,

scientists successfully obtained the transgenic macaque model

expressing the human HTT gene to study Huntington’s disease

(HD) (Yang et al., 2008). This is the first transgenic primate

model with human disease-causing gene integration, which not

only helps to study the pathogenic mechanism of HD and

explores corresponding treatment options but also makes it

possible for studying other genetic diseases such as

Parkinson’s disease and Alzheimer’s disease. Subsequently,

Sasaki et al. (2009) successfully generated germline-

transmissible GFP transgenic marmosets through lentiviral

vector transfection. For the first time, this study demonstrated

germline inheritance of transgenic traits in primates. In addition,

people from other countries also established transgenic monkey

models (Niu et al., 2010; Liu et al., 2016a).

Although some progress has been made in the construction

of NHP models through the retroviral vector methods (Figure 1;

Tables 1, 2), these gene modification sites are random and

uncertain, and precise genetically modified NHP models

cannot be obtained. In addition, the length of the fragment

inserted is also limited since lentiviral vectors can only carry

fragments no larger than 10 kb, which also brings many

uncertainties and limitations to the research. Finally, the low

efficiency of transgenic methods also restricts their application.

Therefore, more precise and efficient gene editing methods are

needed to overcome these limitations.

ZFN and TALEN gene editing
technology to build NHP models

Zinc finger endonucleases (ZFNs) structurally comprise a

zinc finger DNA-binding domain and a Fok I DNA-cleavage

domain (Carroll, 2011; Wood et al., 2011). Transcription

activator-like effector nucleases (TALENs) are gene editing

tools made by TAL effector DNA-binding domains and FokI

DNA-cleavage domains (Cermak et al., 2011; Wood et al., 2011).

After recognizing DNA sequences through DNA-binding

domains, the DNA-cleavage domains will target specific DNA

sequences to introduce double-strand breaks, which

subsequently induce cell repair mechanisms to achieve gene

knockout or knock-in by non-homologous end joining

(NHEJ) or homologous recombination (HR). The ZFN is time

consuming and costly in construction and design, with severe

off-target effects. So far, there are no reports on the application of

ZFNs on rhesus and cynomolgus monkeys. Compared to ZFNs,

TALENs technology is relatively simple to design, less costly, and

has high DNA sequence specificity and fewer off-target events,

which make it a useful and effective tool to achieve gene

modification. Previous studies have witnessed its successful

application in many species, including mice, rats, zebrafish,

Xenopus, Iberian ribbed newts, zebrafish, and maize (Lei

et al., 2012; Qiu et al., 2013; Hayashi et al., 2014; Hisano

et al., 2014; Liang et al., 2014; Chen et al., 2017a). Recently,

more scientists have started to turn their attention to primates. In

2014, one group successfully generated MeCP2 gene mutated

female cynomolgus monkeys with Rett syndrome (RTT) using
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TALENs technology (Liu et al., 2014a). RTT cynomolgus

monkeys have many similarities with RTT patients in both

genotype and phenotype, which is of great significance for

human research on the pathogenesis and treatment of RTT.

Afterward, other groups also obtained MeCP2 gene-modified

monkeys by using TALENs technology (Liu et al., 2014b; Chen

et al., 2017b). In 2016, Ke et al. reported another case that

constructed an MCPH1 gene-modified cynomolgus monkey

model mimicking human microcephaly using TALENs-based

method (Ke et al., 2016).

In sum, the application of TALENs technology has been

widely reported in various studies (Figure 1; Tables 1, 2).

However, the gene editing technique requires the design of

different recognition proteins for different target sites, which

FIGURE 1
Approaches to genetically modify monkeys. Current techniques to genetically modify monkeys include virus, ZFN, TALEN, CRISPR-Cas9, and
base editor. Chimerism exists in gene editing monkeys, and there is the potential for off-targeting.

TABLE 1 Rhesus monkey models established by various gene editing technologies.

Modified
gene

Method Success
rate

Disease model Year References

GFP Retrovirus-mediated gene transfer 20% None 2001 Chan et al. (2001)

HTT-84Q, GFP Lentivirus-mediated gene transfer 22% Huntington’s disease 2008 Yang et al. (2008)

EGFP Simian Immunodeficiency Virus (SIV)-based lentivirus-mediated gene
transfer

50% None 2010 Niu et al. (2010)

MeCP2 TALEN 67% Rett syndrome 2014 Liu et al. (2014a)

Dystrophin CRISPR/Cas9 61% Duchenne muscular
dystrophy

2015 Chen et al. (2015b)

α-Syn Lentivirus-mediated gene transfer 85% Parkinson’s disease 2015 Niu et al. (2015)

MCPH1 Lentivirus-mediated gene transfer 100% Brain development 2019 Shi et al. (2019)

PINK1 CRISPR/Cas9 73% Parkinson’s disease 2019 Yang et al. (2019)

MeCP2 CBE 30% (embryo) Rett syndrome 2020 Qin et al. (2020)

Success rate: number of transgenic monkeys/number of pregnancies (birth).
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involves huge protein modification work and is time consuming,

labor intensive, and costly. These limitations seriously restrict the

wide application of TALENs.

Application of CRISPR/Cas9 gene
editing technology in NHPs

The CRISPR/Cas system, which is short for clustered

regularly interspaced short palindromic repeats and

CRISPR-associated protein, was originally characterized as

a defense mechanism that bacteria use against viruses

(Horvath and Barrangou, 2010). It was subsequently

engineered to cleave DNA in eukaryotes (Cong et al.,

2013; Mali et al., 2013). Due to its simplicity, efficiency,

and technical flexibility, CRISPR/Cas technologies became

strong tools in biological and biomedical studies of various

cell types and living organisms.

As for primates, there are also gratifying results. In 2014,

for the first time, the researchers obtained twin cynomolgus

monkeys carrying targeted mutation genes and achieved

simultaneous knockout of two genes PPARγ and RAG1 by

using CRISPR/Cas9 technology (Niu et al., 2014), and it’s

important for studying immune system related diseases. This

was the first application of CRISPR gene editing technology

in primates. More importantly, this study achieved the

simultaneous knockout of two target genes in one step. In

addition, the DNA samples extracted from the umbilical cord

and placenta of newborn monkeys were detected and

analyzed, and no off-target phenomenon was found.

Finally, they also found the mutation appeared in germ

cells, which demonstrated that genetic mutations mediated

by CRISPR technology can enable germline transmission

(Chen et al., 2015a). The success of this study makes it

possible to establish animal models of some complex

diseases controlled by multiple genes. Duchenne muscular

dystrophy (DMD) is a genetic disorder characterized by

muscle degeneration due to the mutant muscle protein

dystrophin. In order to study this disease, Chen et al.

generated mutant rhesus monkeys by using CRISPR/

Cas9 technology to target the dystrophin gene (Chen

et al., 2015b). They analyzed the muscle tissue of monkeys

who died of dystocia, finding that the expression of

dystrophin protein was significantly decreased, which was

similar to that of DMD patients. And the degeneration of

muscle cells at an early stage was observed in both monkey

TABLE 2 Cynomolgus monkey models established by various gene editing technologies.

Modified
gene

Method Success
rate

Disease model Year References

MeCP2 TALEN 16.7% Rett syndrome 2014 Liu et al. (2014a)

Pparg, Rag1 CRISPR/Cas9 100% None 2014 Niu et al. (2014)

P53 CRISPR/Cas9 66.7% P53 related tumor 2015 Wan et al. (2015)

Dax1 CRISPR/Cas9 25% adrenal hypoplasia congenita, hypogonadotropic
hypogonadism

2015 Kang et al. (2015)

GFP Embryo stem cell
transplantation

— None 2015 Chen et al. (2015c)

MeCP2 Lentivirus-mediated gene
transfer

100% Rett syndrome 2016 Liu et al. (2016a)

GFP Lentivirus-mediated gene
transfer

50% None 2016 Seita et al. (2016)

MCPH1 TALEN 33% Microcephaly 2016 Ke et al. (2016)

SHANK3 CRISPR/Cas9 100% Autism spectrum disorders 2017 Zhao et al. (2017)

MeCP2 TALEN 81% Rett syndrome 2017 Chen et al. (2017b)

mCherry CRISPR/Cas9 — None 2017 Yao et al. (2017)

SIRT6 CRISPR/Cas9 100% developmental retardation 2018 Zhang et al. (2018)

Oct4-GFP CRISPR/Cas9 62% None 2018 Cui et al. (2018)

SHANK3 CRISPR/Cas9 55% Autism spectrum disorders 2019 Zhou et al. (2019)

BMAL1 CRISPR/Cas9 62% Circadian disruption 2019 Qiu et al. (2019)

PKD1 CRISPR/Cas9 80% Autosomal dominant polycystic kidney disease 2019 Tsukiyama et al. (2019)

HBB CRISPR/Cas9 100% β-Thalassemia 2019 Huang et al. (2019)

LMNA CBE 83% Hutchinson-Gilford progeria syndrome 2020 Wang et al. (2020)

Multiple targets CBE, ABE — None 2020 Zhang et al. (2020b)

Pten, p53 CRISPR/Cas9 87% Primary and metastatic liver tumors 2021 Zhong et al. (2021)

— means no data for live monkeys.
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models and DMD. In the same year, one group obtained a P53

gene (tumor suppressor gene) biallelic mutant cynomolgus

monkey model without germline mating by optimizing the

CRISPR/Cas9 technology (Wan et al., 2015). Meanwhile,

another group generated a cynomolgus monkey model

with DAX1 gene deletion via CRISPR/Cas9 technology

(Kang et al., 2015). This DAX1 mutant monkey exhibited

adrenal developmental defects and aberrant testicular

architecture which were very similar to the clinical

features of AHC-HH patients. Another study reported a

rhesus monkey model with hemoglobin beta gene modified

by CRISPR/Cas9 technology, and they found a way to

improve the gene editing efficiency and reduced

unfavorable outcomes such as off-target effects by

optimization of sgRNAs concentrations (Midic et al.,

2017). In 2019, scientists utilized CRISPR/Cas9 to

establish SHANK3 gene mutated cynomolgus macaques

and their F1 offspring (Zhou et al., 2019), which could

lead to sleep disorders, movement disorders, increased

repetitive behaviors, and social and learning disabilities

similar to what happened in autism spectrum disorders.

Another example is the SIRT6 gene, the scientists

successfully generated SIRT6 gene-modified cynomolgus

monkeys, which showed a deficiency in SIRT6 function

(Zhang et al., 2018). SIRT6 has been identified as a

longevity protein in mice (Mostoslavsky et al., 2006). As

expected, the model monkey died shortly after birth and

displayed severe developmental retardation. A recent study

reported a new method to generate gene-modified monkeys

by in situ CRISPR-mediated technique (Zhong et al., 2021).

This study utilized CRISPR/Cas9 to knock down Pten and

p53 genes in adult cynomolgus, thus modeling primary and

metastatic liver tumors rapidly, which was effective in situ

gene editing approach. Other groups also generated gene-

edited monkeys using this method (Figure 1; Tables 1, 2).

Limitation factors affecting the
application of gene-edited NHP
models

Whether it is transgenic monkeys obtained by lentiviral

vector transduction or gene-edited monkeys generated by

targeting nucleases, most of the founder monkeys exist in

the form of chimeras. For surviving chimeric founder

monkeys, it is difficult to precisely map the transgene or

target gene mutation to the underlying phenotype. When

using lentiviral vectors to construct transgenic monkeys,

various numbers of lentiviral vector sequences can be

integrated into the monkey genome at different time points

in early embryos, accompanied by the randomness of

integration numbers and time. This leads to the possibility

that the number of transgene copies and the transgene

integration sites of individuals obtained from different

embryos injected with the same batch of viral vectors may

vary greatly, and the number of transgenes and integration sites

contained in different cells of the same transgenic individual

may also be different (Liu et al., 2016a). Then the same batch of

transgenic founder monkeys obtained by the same lentivirus

may have phenotypic differences. To overcome this problem, a

non-integrating lentiviral vector (NILV) has been developed by

integrase mutation to reduce the risks of random insertion

(Wanisch and Yáñez-Muñoz, 2009). Currently, NILVs have

shown efficacy in different preclinical mice models, such as

Parkinson’s disease and Hemophilia B, with relatively lower

expression levels than integrating lentiviral vectors though (Lu-

Nguyen et al., 2014; Suwanmanee et al., 2014). So, whether

NILV can construct transgenic NHPmodels with fewer random

insertion risks still remains to be seen.

Similarly, when using targeted nucleases such as ZFN,

TALENs, and CRISPR/Cas9 to construct gene editing

monkeys, the founder monkeys obtained always exist in the

form of chimeras (Niu et al., 2014; Chen et al., 2015b; Guo and Li,

2015) (Figure 1). Due to the long growth cycle of NHPs, it takes a

lot of time and money to screen animal models with purely

targeted gene modification through multi-generational mating.

Chimeric mutations can also seriously affect the functional

studies of target genes and the pathological analysis of related

diseases, so it is particularly necessary to reduce the generation of

chimeras. Two main reasons account for chimeric mutation.

First, after Cas9 modifies the target site, the DNA repair activity

between dividing cells may differ, resulting in different degrees of

mutation of the target gene between different cells and tissues.

Second, random insertion and deletion (Insertion/deletion,

indel) will occur in the process of the NHEJ-mediated DNA

repairing, resulting in various indels at the target site, leading to

the formation of multi-genotype chimeric mutants.

Another problem in constructing gene editing monkeys

using targeted nucleases such as ZFNs, TALENs, and

CRISPR/Cas9 is off-targeting (Figure 1; Tables 3, 4). Previous

studies did by multiple groups showed significant off-target

activity in the CRISPR/Cas9 system (Fu et al., 2013;

Pattanayak et al., 2013; Cho et al., 2014). Although no off-

target effects have been found in NHPs models built by the

CRISPR/Cas9 system which may be due to the limitation of the

number of detection sites, it is difficult to conclude that these

founder monkeys did not have off-target mutations. Therefore,

the existence of the off-target phenomenon is also one of the

unavoidable factors that potentially limit the in-depth study of

gene editing monkeys as animal models.

The third problem is the low efficiency of gene knock-in. The

incidence of HR repair for gene editing is very low in the current

use of the CRISPR/Cas9 system for NHPs. The only successful

results are the knock-in of small DNA sequences (Wan et al.,

2015). However, no successful knock-in of large segments of gene

sequences has been reported in NHPs.
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Refinement of strategies to overcome
these deficiencies

All the factors mentioned above strictly limited the broad

application of NHPs as animal models for human diseases. So,

there is an urgent need for some improvements to overcome

these deficiencies. With the development of technology, some

effective methods start to appear. As for chimerism, current

researches show that the continuous expression of Cas9 protein

may increase chimeric mutation. So, it is easy to imagine that

restricting Cas9 expression only at the one-cell stage may be an

effective method to reduce chimeric mutation. One group

established a new method in which they linked ubiquitin-

proteasome to the N-terminus of Cas9 protein, which can

facilitate the degradation of Cas9 protein in cynomolgus

monkey embryos whereby reducing the mosaic mutations (Tu

et al., 2017). Similarly, other ways of controlling the Cas9 activity

can also be applied in the future establishment of gene-edited

NHPs models such as small molecules, light, inhibitors, and

degraders (González et al., 2014; Nihongaki et al., 2015a;

Nihongaki et al., 2015b; Zhou et al., 2018; Gangopadhyay

et al., 2019; Maji et al., 2019). Another alternative approach to

avoid mosaic mutations is the F1 offspring. As is well known, no

matter what form of chimerism it is in the founder monkey, the

F1 offspring can only get a specific edited genotype. Since the

sexual maturation cycle of NHPs is very long, which takes about

4–5 years to reach sexual maturity for commonly used rhesus and

cynomolgus monkeys, the development of methods to shorten

the sexual maturation cycle of NHPs to achieve accelerated

reproduction will promote the application of NHPs research.

For this purpose, one group has developed testis

xenotransplantation to accelerate spermatogenesis. By

transplanting juvenile cynomolgus monkey testis tissue blocks

to the back of adult male nude mice, the spermatogenesis time of

cynomolgus monkeys was successfully shortened to 24 months,

and the obtained sperm was used for embryo construction and

transplantation to obtain healthy offspring of cynomolgus

monkeys (Liu et al., 2016b). Therefore, the development of

other methods to accelerate the reproduction cycle of NHPs

will also be an important research direction for future NHP

genetic modification models. Finally, one group generated

complete gene knockout monkeys in one step by multiple

sgRNAs, which provides another method to reduce the

chimerism rate (Zuo et al., 2017).

In addition, for the off-target phenomenon, some

improvements have been made to avoid this. One method is

to screen and predict potential off-target sites in silico and

optimize the gRNA design accordingly to minimize the off-

target effects. Sangsu et al. developed a tool termed Cas-

OFFinder, which can search for potential off-target sites in a

given genome or user-defined sequences (Bae et al., 2014).

Another method is Cas9 protein optimization. People from

various groups have utilized different ways to optimize the

Cas9 protein including fusion protein and mutated protein to

achieve lower or no off-target efficiency (Koo et al., 2015;

Anders et al., 2016; Kleinstiver et al., 2016; Slaymaker et al.,

2016). In addition, controlling Cas9 protein expression can be

used as another strategy to circumvent the off-target. Some

groups have used inducible Cas9 protein and Cas9 inhibitory

protein to achieve this goal (Nihongaki et al., 2015a; Rauch

et al., 2017). All these methods are worth trying on monkeys in

the future.

TABLE 3 Comparison of the three main used genome editing technologies in monkeys: ZFN, TALEN, and CRISPR.

ZFN TALEN CRISPR

Target recognition Protein-DNA Protein-DNA RNA-DNA

Number of target sequence (bp) 18–36 bp 24–40 bp ~23 bp

Sequence recognition 3 bp as a unit Requires a T at 5′-end of the target sequence Requires NGG sequence at 3′-end
Build difficulty Difficult Easy Very easy

Editing RNA No No Yes

Off-target High High Low

Cytotoxicity High Low Low

TABLE 4 The advantage and disadvantages of the three main used gene editing technologies.

ZFN TALEN CRISPR

Advantage Mature technology High specificity, simpler design than ZFN, high success
rate

Low off-target effects, low cytotoxicity,
cheap

Disadvantage Low success rate, high off-target effects, high
cytotoxicity

Cumbersome process, heavy workload, high cost The possibility of off-target
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As for low knock-in efficiency, there are also some promising

results. In principle, two ways can be used to improve the knock-

in efficiency, one is to block non-homologous end joining, and

the other is to increase homologous repair. Previous studies have

shown that Scr7 which can bind to Ligase IV, a key component in

the NHEJ process, can be used to block the NHEJ pathway

whereby improving the precise repair (Chu et al., 2015; Vartak

and Raghavan, 2015; Maruyama et al., 2016). In addition,

another group enhanced the HR efficiency by optimizing

donor DNA (Richardson et al., 2016).

Lastly, base editor systems can also be used to achieve precise

gene editing, by which one base can be converted to another base

precisely without requiring DNA cleavage, thus decreasing

insertion or deletion events that happened randomly at the

specific sites caused by DSB.

Single-base editing technology mainly realizes gene editing

through the complex formed by deaminase, Cas9 variant, and

sgRNA, in which sgRNA is responsible for guiding the complex

to target the target sequence, and deaminase is responsible for

deamination to achieve single-base editing (Komor et al., 2016;

Gaudelli et al., 2017). According to different editing sequences

and editors, the developed single-base editing technologies can be

divided into two categories, namely cytosine base editing (CBE)

technology and purine base editing (ABE) technology. CBE

technology mainly realizes C→T or G→A conversion through

sgRNA, inactive Cas9 protein (dCas9), and cytosine deaminase

(Komor et al., 2016), there are various types of CBEs such as

CBE1, CBE2, CBE3, CBE4, HF-CBE, SaBE4, CBE4-Gam, eCBE

et al. ABE technology mainly realizes A→G or T→C base editing

through sgRNA, adenosine deaminase and Cas9n, in which

FIGURE 2
Joint application of gene editing and nuclear transfer technique in producing gene-modified monkeys. Using gene editing technology to
modify the genome of monkey cells, and screen out specific types of positive cells. The nuclei of the positive cells are transferred to the enucleated
monkey eggs, and the fusion cells are transferred to the surrogate mother monkey to obtain the gene-edited cloned monkeys.

FIGURE 3
The application of gene-edited monkey models in drug
development and treatment for the disease. A transgenic monkey
model constructed by gene editing can be applied to drug
screening for human diseases such as neurodegenerative
diseases and cancer, thus providing an opportunity for disease
treatment.
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sgRNA is responsible for guiding the complex to target the target

sequence, and adenosine deaminase is responsible for catalyzing

the deamination of adenine in the target sequence (Gaudelli et al.,

2017). Various types of ABEs have been developed such as xABE,

SaABE, VRER-ABE, ScCas9-ABE, et al. Until now, there are

different types of base editor systems developed and applied

(Komor et al., 2016; Gaudelli et al., 2017; Komor et al., 2017;

Koblan et al., 2018; Molla and Yang, 2019; Zhang et al., 2020a). In

addition, point mutation is a key cause of genetic diseases.

Therefore, the base editor systems can be used in constructing

gene-edited monkeys mimicking the diseases caused by point

mutations. One group successfully generated base-edited

cynomolgus monkeys with multiple target sites simultaneously

modified using cytidine- and adenine-base editors (Zhang et al.,

2020b).

Conclusion and perspectives

The role primates play in the field of biomedical research is

unmatched by other species. It is well known that the odds for a

newly discovered drug to come to the market are lower than 10%.

The primary cause for this situation is that there are no ideal

animal models available that mimic human diseases, such as

cancer. Currently, two animal models are commonly used

clinically for drug and vaccinee valuation in the antitumor

market, which in rodents and NHPs. The former is preferred

by many scientists due to its short reproduction cycle, cheap,

small, clean genetic background, and genetic operability.

However, the large species divergences between humans and

rodents render many failures in clinical trials though the drug has

shown satisfying safety and efficacy in preclinical trials. NHPs,

however, such as cynomolgus monkeys and rhesus monkeys,

display considerable similarities to humans in terms of genetic

background, physiological composition, and immunological

nature. As such, NHP has an advantage over other animal

models to be applied in drug research and development and

preclinical animal trials for safety and efficacy evaluation.

Monkeys and chimpanzees share many cancer genes with

humans. However, they are seldomly used in cancer research

and drug development because of high costs and ethical issues.

Furthermore, generating loss-of-function or gain-of-function

mutations in NHPs by breeding remains cumbersome and

challenging compared to rodents due to their longer sexual

maturity cycle. On the other hand, using nuclear transfer

(NT) technology to obtain cloned transgenic animals is the

most direct and reliable method, which is a very mature

technology in some species (Zhou et al., 2015). One group

successfully obtained healthy cloned monkeys using somatic

cell nuclear transfer technology, which provides important

technical support for gene editing and model construction of

NHPs (Liu et al., 2018). Therefore, combining gene editing

technology with nuclear transfer and other technologies in the

future is expected to contribute to constructing primate disease

models more efficiently (Figure 2). Meanwhile, with the

continuous updating and improvement of technology, the

establishment of primate models of human diseases will

eventually provide more possibilities for scientists to deeply

study disease mechanisms and explore new disease treatments,

which will eventually bring a boon to human health (Figure 3).
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