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ABSTRACT

A wealth of clustering algorithms are available for
single-cell RNA sequencing (scRNA-seq) data to en-
able the identification of functionally distinct sub-
populations that each possess a different pattern
of gene expression activity. Implementation of these
methods requires a choice of resolution parameter
to determine the number of clusters, and critical
judgment from the researchers is required to deter-
mine the desired resolution. This supervised process
takes significant time and effort. Moreover, it can be
difficult to compare and characterize the evolution of
cell clusters from results obtained at one single reso-
lution. To overcome these challenges, we built Multi-
resolution Reconciled Tree (MRtree), a highly flexible
tree-construction algorithm that generates a cluster
hierarchy from flat clustering results attained for a
range of resolutions. Because MRtree can be cou-
pled with most scRNA-seq clustering algorithms, it
inherits the robustness and versatility of a flat clus-
tering approach, while maintaining the hierarchical
structure of cells. The constructed trees from multi-
ple scRNA-seq datasets effectively reflect the extent
of transcriptional distinctions among cell groups and
align well with levels of functional specializations
among cells. Importantly, application to fetal brain
cells identified subtypes of cells determined mainly
by maturation states, spatial location and terminal
specification.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a recently de-
veloped technology that enables the identification of func-
tionally distinct subpopulations of cells that each possess a
different pattern of gene expression activity (1). These sub-
populations can indicate different cell types with relatively
stable, static behavior or cell states in intermediate stages of
a transient process. Unbiased discovery of cell types from
scRNA-seq data can be automated using a wealth of unsu-
pervised clustering and integration algorithms (2–7); how-
ever, a major challenge regarding clustering algorithms is
that they explicitly or implicitly require the resolution pa-
rameter, in most cases the number of clusters, to be supplied
as an input parameter.

There are some computational methods available to
guide the choice of the resolution parameter; however, these
methods are often shown to be ineffective. Some testing-
based methods are too sensitive to heterogeneity (8), espe-
cially for large samples, while other methods tend to favor
a coarse resolution, with clearly separated clusters, and fail
to identify closely related and overlapping cell types. There-
fore, judgment from the researchers is often required to se-
lect the desired resolution. A common practice in scRNA-
seq data analysis is to run a clustering algorithm repeatedly
for a range of resolutions, followed by careful inspections
of individual results by examining the cluster compositions
and the expression of published marker genes to select the fi-
nal partition. This supervised process takes significant time
and effort and is limited by the current state of the investi-
gator’s and field’s knowledge about cell type and cell state
diversity. It would be a substantial advantage in terms of
efficiency and veracity to be able to reach the same level of
resolution in an unsupervised manner.

Hierarchical clustering (HC) offers another approach to
identify cell-populations (see (9–11) and references therein).

*To whom correspondence should be addressed. Tel: +1 412 268 577; Fax: +1 412 268 7828; Email: roeder@andrew.cmu.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-7625-3683


e91 Nucleic Acids Research, 2021, Vol. 49, No. 16 PAGE 2 OF 14

HC has the advantage of being able to determine relation-
ships between clusters of different granularities since the re-
sult can be visualized as a dendrogram. This hierarchical
structure helps identify multiple levels of functional special-
ization of cells. Classical hierarchical agglomerative cluster-
ing (HAC) based on ‘average’ linkage is adopted in SC3
(4), a popular clustering algorithm. However, an impor-
tant limitation of HAC is that it is prohibitively expensive
in terms of computation for large datasets. A few scRNA-
seq tools expand upon the idea of hierarchical clustering;
for instance, pcaReduce (12) introduces an agglomerative
clustering approach by conducting dimension reduction af-
ter each merge, starting from an initial clustering, and Cell-
BIC (13) performs bisecting clustering in a top-down man-
ner leveraging the bi-modal gene expression patterns. But
these methods either require a good initial clustering solu-
tion, which is implicitly equivalent to the choice of K, or are
highly dependent on restrictive assumptions.

In this study, we build a useful tool to bridge the gap be-
tween two separate lines of inquiry, flat and hierarchical
clustering. Empirically, scRNA-seq data analysts observe
that the partitions obtained from flat clustering at multiple
resolutions, when ordered by increasing resolution, produce
a layered structure with a tree-style backbone (14). This pro-
duces a useful representation to help visually determine the
stability of clusters and relations among them. We build
on this idea and propose a method called Multi-resolution
Reconciled Tree (MRtree) that reconstructs the underlying
tree structure by reconciling partitions obtained at differ-
ent granularities (see Figure 1 for illustration) to produce a
coherent hierarchy that is as similar as possible to the origi-
nal flat clustering at different scales. It can work with many
specially designed flat clustering algorithms for single-cell
data, such as Louvain clustering from Seurat (2), thus in-
heriting the scalability and good performance in clustering
the single-cell data; meanwhile, it recovers the intrinsic hier-
archy structure determined by the cell types and cell states.

Applications of MRtree on a variety of scRNA-seq
datasets, including mouse brain (9), human pancreas
(15,16) and human fetal brain (17), showed improved per-
formance for clustering of scRNA-seq data over initial
flat clustering methods. The hierarchical structure discov-
ered by MRtree easily outperformed a variety of tree-
construction methods. Moreover, the results accurately re-
flect the extent of transcriptional distinctions among cell
groups and align well with levels of functional specializa-
tions among cells. Particularly, when applied to developing
human brain cells, the method successfully identified major
cell types and recovered an underlying hierarchical struc-
ture that is highly consistent with the results from the orig-
inal study (17). Subsequent analysis on each major type via
MRtree revealed finer sub-structure defining biologically
plausible subtypes, determined mainly by maturation states,
spatial location and terminal specification.

MATERIALS AND METHODS

MRtree aims to recover a hierarchical tree by denoising
and integrating a series of flat clusterings into a coherent
tree structure. The algorithm starts by applying a suitable
flat clustering algorithm to obtain partitions for a range of

resolution parameters. The multi-scale results can be rep-
resented using a multi-partite graph, referred to as a clus-
ter tree, where the nodes represent clusters, and edges be-
tween partitions of adjacent resolutions indicate common
cells shared. We propose an efficient optimization procedure
to reconcile the incoherent cell assignments across resolu-
tions that produces the optimal underlying tree structure
following the hierarchy constraints, while adhering to the
initial flat clustering to the maximum extent. Formally, this
is achieved by minimizing (among valid hierarchical tree
structures), the difference between initial multi-level cluster
assignments and the cluster assignments in the resulting tree
structure. By representing the partitions as a multi-partite
graph, the clustering assignments that violate the hierarchy
constraint can be identified as merging directed edges and
thus penalized in the objective function. The optimization
procedure proceeds by iteratively and greedily identifying
those tree nodes, which, when corrected by reassigning the
associated conflicting cell lineages, contribute to maximum
descent in the defined objective function. The outcome of
the proposed optimization procedure is a reconciled tree,
named the hierarchical cluster tree, representing the optimal
tree-based cluster arrangement across scales (see Figure 1).

Our method is motivated by consensus clustering (also
known as ensemble clustering); however, instead of gath-
ering information over repeated runs of algorithms at the
same resolution, we leverage the cluster structure revealed
at multiple scales to build an ensembled hierarchy. The com-
mon features across resolutions are identified and averaged
to reduce noise, while the distinctions between resolutions
are utilized to uncover different scales of geometric struc-
ture, which are further reconciled to conform to a robust
hierarchical tree. We stress that consensus clustering is es-
sentially a noise-reduction technique that aims to deliver
robust, interpretable results.

Another key distinguishing feature of our procedure is
that we build a cluster hierarchy directly from the raw par-
titions in an ‘in place’ way. This is in comparison to exist-
ing methods for which a hierarchical clustering algorithm
is applied to the similarity matrix or the co-classification
consensus matrix built from an ensemble of partitions.
For instance, Dendrosplit (18), a recently developed hier-
archical clustering method, deploys HAC on the cell-by-
cell distance matrix, followed by additional steps of merg-
ing pairs of clusters if their separation score is below a
threshold. The performance of the clusters relies heavily
on the HAC performance. However, it is widely recognized
that no single clustering method will perform best across
all datasets. MRtree adapts to this challenge by accept-
ing multi-resolution clustering results from most state-of-
the-art clustering methods. It uses an optimization frame-
work to edit the original partitions through a similar voting
scheme. At the same time, it aims to preserve the original
splitting order of the hierarchy determined by the cluster-
ing algorithm. The proposed method is efficient in terms of
memory cost and time complexity (Supplementary Infor-
mation). Moreover, MRtree enables a direct comparison of
partitions before and after tree reconciliation to examine the
stability of the clustering algorithm at different scales. As a
benefit, we are able to trim the tree to the maximum depth
within the stable range to obtain reliable final clusters.
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Figure 1. Overview of MRtree framework. The algorithm starts by performing flat clustering on scRNA-seq data for a range of resolutions, where the
partitions between adjacent resolutions are matched to form a graph as an entangled cluster tree. Then reconciliation is performed through optimization
with the hierarchical structure enforced by constraints. The obtained final optimal solution represents the recovered hierarchical cluster tree.

Optimization scheme

For X, an n-by-p matrix of transcriptomes for n cells on p
genes, clustering is performed using algorithm A at a range
of m resolutions. Here the resolution parameters, {k1, . . . ,
km}, are loosely defined where it corresponds explicitly to
the number of clusters for some algorithms, while it implic-
itly determines the number of clusters for other algorithms.
To formally state the problem and the hierarchical reconcil-
iation algorithm, we first introduce some notation.

Definition 1. A cluster tree Tc(k1, . . . , km) at resolution
levels (k1, . . . , km) is a directed m-partite graph with vertex
set V(Tc) and edge set E(Tc). Denote the set of all cluster
trees as Tc(k1, . . . , km).

Here the vertex set V(Tc) is the union of m subsets,
where each set Vj(Tc) consists of kj nodes denoted as
{v j,1, . . . , v j,kj }. Each node represents a cluster in the parti-
tion of n cells into kj clusters, namely, vj, k represents the k-th
cluster at the j resolution level. Each direct edge ev j,k,v j+1,k′ is
defined between adjacent layers pointing from a lower reso-
lution cluster vj, k to a higher resolution cluster v j+1,k′ when-
ever there are overlapping samples between these two clus-
ters at different resolutions. Further, Let vin(e) and vout(e)
be the in-vertex and out-vertex of edge e.

Definition 2. We call a cluster tree a hierarchical cluster
tree, denoted as Th(k1, . . . , km), if it satisfies the following
constraint:

Constraint A1: Each node vj + 1, k has one and only one in-
vertex edge.

Denote the set of all hierarchical cluster trees at resolu-
tion (k1, . . . , km) as Th(k1, . . . , km).

Condition A1 ensures that any cluster in a higher reso-
lution belongs to one and only one cluster in the adjacent
lower resolution. It further implies that the hierarchical tree
can only be a branching tree as the resolution increases (top-
down), and the clusters in lower levels should be intact in

levels above it. Compared to the cluster trees, hierarchical
cluster trees respect the clustering structure at higher reso-
lutions in the sense that they keep samples that are together
at higher resolutions in the same cluster for lower resolu-
tions. Similarly, those samples that are far away from each
other at a lower resolution do not enter the same clusters at
high resolutions. We illustrate an example of a hierarchical
cluster tree and its noisy companion in the form of a cluster
tree in Supplementary Figure S1.

Arrange the the clustering results at each resolution in-
side a an n-by-m label matrix L(Tc) := [L1, . . . , Lm], where
the j-th column denotes the corresponding labels for each
data point at resolution kj.

Definition 3. For each data point xi, i = 1, . . . , n, define
its clustering path p(xi ) := (v1,li1 , . . . , vm,lim ) where v j,li j is
the label for xi at resolution kj. Let P(Tc) := {p(xi ) | i =
1, . . . , n} be the set of all unique paths.

Let Tc(k1, . . . , km) be the initial cluster tree by apply-
ing clustering algorithm A on X, and let T∗

h (k1, . . . , km) be
the underlying true hierarchical cluster tree. Further denote
the two respective n-by-p label matrices as L(Tc) and L(T∗

h ).
Our goal is to recover the unknown hierarchical tree from
the observed initial cluster tree, working from the multi-
resolution flat clustering. Assuming that Tc(kj) is an estima-
tor of T∗

h (kj ), j = 1, . . . , m, if Tc(k1, . . . , km) satisfies con-
straint A1, it naturally yields an estimator of T∗

h (k1, . . . , km),
though this is rarely the case. Following this idea, we con-
struct the estimator by building a hierarchical cluster tree
that mostly preserves the cluster structures from the ob-
served cluster tree Tc(k1, . . . , km) constructed from the ini-
tial flat clustering results. To achieve this, we define a loss
function as the distance between the solution tree and the
initial flat clusterings Tc(k1, . . . , km). We seek to minimize
the loss under the constraint that the solution tree satisfies
constraint A1. To measure the difference between two trees,
which is equivalent to measuring mismatch between two
sets of partitions, we adopt hamming distance between the
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respective label matrices. Hamming distance computes the
number of location-mismatches of a pair of matrices, com-
monly used for measuring the distance between two paired
partitions.

The problem formulated above is equivalent to finding
the optimum km distinct paths from the set of all feasible
paths (Def. 3) of a cluster tree, to which all data points
are assigned, and the induced multi-scale partitions pre-
serve the most flat clustering structures. It is a combinatorial
optimization problem. The complexity grows exponentially
with the depth and number of clusters in each layer of the
tree, and therefore is computationally intractable. To allevi-
ate the computational burden, we introduce an equivalent
objective function and propose a greedy algorithm to solve
it. Formally, define Ṽ(T) to be the set of ‘bad’ vertices that
have more than one in-vertex edge. Then for any proposed
hierarchical cluster tree this set is empty. The hierarchy is
therefore estimated by solving the optimization problem re-
spective to the newly formulated constraint,

T̂h = arg min
T

min
π

DHamm (L(T), π (L(Tc))) (1)

subject to Ṽ(T) being an empty set, whereDHamm(·, ·) rep-
resents the hamming distance. The objective is minimized
over permutation of labels π = πkj , j = 1, . . . , m within
each partition since the error should not be depending on
how we label the classes.

We employ a greedy optimization procedure. The for-
mulated problem (1) is first transformed to a soft con-
straint problem that shares the same solutions which allows
for constraint violation during the optimization procedure.
This enables initializing the solution with the observed flat
cluster tree Tc(k1, . . . , km). The objective is then minimized
by sequentially ‘cleaning’ one bad vertex at a time. Here
‘cleaning’ refers to eliminate all but one edge that have this
node as its in-vertex, followed by re-routing data points be-
longing to the eliminated path to remaining nearest viable
paths. The increase in the objective as the results of cleaning
the node is considered as the cost of eliminating the viola-
tion from Ṽ(T). In each iteration, the vertex in set Ṽ(T) is
evaluated for its elimination cost, where the one with the
minimum cost is selected. The tree is then updated with
the selected node being cleaned and affected data points
re-assigned to the nearest remaining paths. The procedure
is repeated until no violations remain. The full algorithm
is summarized in Algorithm 1. In Supplementary Informa-
tion we analyze the key properties of the algorithm: Theo-
rem 1 provides the convergence properties, while Theorem 2
describes the memory and time complexity. In addition, we
introduce methods for sampling implicit resolution param-
eters with uniform coverage for modularity-based cluster-
ing (Seurat clustering), including linear sampling, exponen-
tial sampling, and most preferably, Event Sampling method
(Supplementary Figure S2). We also discuss ways of speed-
ing up the algorithm in case of large sample size or a large
number of initial flat clusterings through layer-wise recon-
ciliation and performing within-resolution consensus clus-
tering as the first step.

Stability analysis to determine tree cut

We consider clustering stability to determine the tree cut
based on a basic philosophy that clustering should be a
structure on the dataset that is ‘stable’. That is, if applied
to datasets from the same underlying model, a clustering al-
gorithm should consistently generate similar results. Higher
stability across resolutions is reflected as greater consistency
of individual initial flat clustering with the resulting cluster-
ing in the reconciled tree. To measure the stability, we calcu-
late the similarity using ARI between clusterings in corre-
sponding layers from the initial cluster tree and the resulted
hierarchical cluster tree. This will generate a line plot show-
ing the similarity with increasing resolution. The tree cut
can then be determined by finding the ‘change point’ where
the stability is high at the current point and decrease sharply
by further increasing the resolution.

Evaluation metrics

To quantify the clustering performance in each layer of
the hierarchical tree, we utilize a novel modified version of
Adjusted Rand Index (ARI) (19), called Adjusted Multi-
resolution Rand Index (AMRI, Supplementary Informa-
tion, Supplementary Table S1), as the accuracy metric to
compare the multi-resolution cluster structures with the
true labels. The adjustment allows for comparisons across
resolutions, accounting for the reduced ability to uncover
details in lower resolutions, thus avoiding a bias towards
fine-grained clustering results.

Tree construction accuracy. To evaluate the accuracy of
tree construction, given the true tree is known, we reduce the
actual and resulted trees to similarity matrices and measure
the distance between them. Each entry of the matrix repre-
sents the length of branch two data points share. The longer
branch a pair share, the more similar they are. In this way,
we convert the measurement of the difference between hi-
erarchies (dendrograms) to measure the difference between
two similarity matrices. The between-similarity distance is
measure with the L1 norm of the difference, defined by

D(T1, T2) = ‖A1 − A2‖1 =
∑

i, j

|A1,i j − A2,i j |, (2)

where A1, A2 are the similarity matrices of tree T1, T2 re-
spectively. The similarity between pairs of samples is defined
by Aij = 1 − Dij/2 where Dij is the sum of distances of node
i and j from the least common ancestor in the given tree.
Given the certain tree structure, the induced similarity met-
rics can be visualized in Supplementary Figure S3.

Cluster stability. Apart from examining the performance
of MRtree for clustering accuracy, we also access the stabil-
ity of the clusters at multiple resolutions prior to and post to
tree reconciliation. Clustering stability has been considered
as a crucial indicator of goodness of the clusters, given that
well-performed partitions tend to be consistent across dif-
ferent sampling from the same underlying model or of the
same data generating process (20). In practice, a large vari-
ety of methods has been devised to compute stability scores.
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Here we adopt the sub-sampling procedure, where the same
clustering method is repeatedly performed on the indepen-
dently sub-sampled datasets and compute the average sim-
ilarity among the repetitions. Formally given a dataset of
n points Sn, let Ck(Sn) be the resulted clustering outcome
with k clusters. Let S̃(b)

n be a sub-sampling of Sn by randomly
choosing a subset of size �n without replacement. Then the
stability score is obtained by averaging the partition simi-
larity on the shared data points,

Stab(k, n) = 1
B

B∑

b=1

ARI(Ck(Sn), Ck(S̃(b)
n )). (3)

The higher the stability score, the more stable the clustering
procedure is regarding the noise in the data. We use � = 0.95
in our experiments.

RESULTS

Simulation study

To investigate how well MRtree is able to recover the clus-
ter hierarchy and improve the clustering across resolutions,
we harness the tools provided by the SymSim package
(21) to simulate scRNA-seq data given a known tree struc-
ture, using the SymSim parameters estimated from a UMI-
based dataset of 3005 mouse cortex cells (9) (Supplemen-
tary Information). Motivated by major cell types identified
in brain tissues, we constructed a hypothetical tree (Figure
2A,B) as the ground truth representing the hierarchy of the
cell types/states.

Repeated simulations were performed by first generating
single-cell data with SymSim from a hypothetical tree struc-
ture, followed by multi-resolution flat clustering using a va-
riety of clustering methods. Then MRtree was applied to
form the hierarchical cluster tree that reconciled the multi-
level clusterings. MRtree can be coupled with most flat clus-
tering methods; hence we evaluated the performance us-
ing a variety of algorithms, including Seurat (2), SC3 (4),
SOUP (22), K-means applied to a UMAP projection, and
jSRC (23). The clustering results from MRtree-constructed
trees were evaluated and compared with the raw flat clus-
tering results and hierarchical clustering outcomes in three
aspects: the accuracy of clustering regarding label assign-
ments at different resolutions, the tree structure estimation
accuracy and the clustering stability.

We first sought to quantify how well MRtree performed
regarding clustering accuracy, measured using Adjusted
Multiresolution Rand Index (AMRI) between the obtained
labels and true labels known from the simulation. An
AMRI close to 1 indicates perfect clustering given the
resolution. MRtree achieved higher accuracy almost uni-
formly across resolutions compared to raw flat clustering
for all five methods (Figure 2C and Supplementary Fig-
ure S4). It is worth noticing that the reconciliation proce-
dure even improved upon SC3 results, which already em-
ployed an ensemble-based method for each fixed resolution.
This demonstrates that applying an ensemble approach
across resolutions captures additional structural informa-
tion within the data. In addition, the gain was more pro-
nounced for coarse clustering and when there was more

room for improvement. It worth noting that MRtree is not
a competitor to other clustering techniques, such as Seurat,
jSRC and SC3, rather it aims to enhance clustering tech-
niques by borrowing strength across resolutions. Since the
Seurat and SC3 packages both provide tools for construct-
ing hierarchical trees, we also investigated whether MRtree
was able to generate superior clusters compared to exist-
ing methods in each layer of the tree structure. For Seurat,
an agglomerative hierarchical cluster tree was built start-
ing with the identified Seurat clusters, while for SC3, a full
HAC was performed from the consensus similarity matrix
constructed by aggregating clustering results with different
dimension reduction schemes. Similarly, we built a HAC
tree from jSRC clusters with the jSRC low dimensional
representations. Compared with these hierarchical results,
MRtree-constructed trees were judged significantly more
accurate and stable based on the higher AMRI and lower
variance observed across repeated simulations.

Next, we evaluated the ability of MRtree to recover the
tree structure. For comparison, we again leveraged the tools
that build hierarchical trees in Seurat and SC3. MRtree pro-
duced a significantly improved tree structure compared to
the competing methods, as demonstrated by the reduced
error of tree reconstruction (Figure 2D,E; Materials and
Methods).

Finally we evaluate the clustering stability before and
after tree reconciliation, coupled with multiple clustering
methods. The stability score is calculated following the sub-
sample procedure described in Methods. For K less than
the true number of clusters, the measured stability is con-
founded by the instability induced by the incorrect reso-
lution. Therefore, we restrict our comparison to the mea-
sured stability at the true resolution. Clustering stability
with MRtree is clearly improved compared to the initial
clustering across all methods (Supplementary Figure S5),
demonstrating the improved robustness of MRtree, which
successfully employs the consensus mechanism to denoise
the individual clustering with collective information across
resolutions.

scRNA-seq data

Mouse brain cells. We illustrate MRtree using a scRNA-
seq dataset containing 3005 cells of somatosensory cor-
tex and hippocampal-CA1 region from mice, collected be-
tween postnatal 21 and 31 days. We call this the mouse
brain data (9). The authors have assigned the cells to
seven major types: pyramidal CA1, pyramidal SS, interneu-
rons, astrocytes-ependymal, microglia, endothelial-mural
and oligodendrocytes. For comparison, these labels are
treated as the gold standard in the following analysis.

We chose SOUP (22) for multi-resolution clustering due
to its superior performance on these data. The clustering
labels were obtained by varying the resolution parameter
for a targeted number of clusters from 2 to 12 (note that
SOUP hard-clustering can produce fewer clusters than the
supplied resolution parameter if the data clearly fit better
with a more parsimonious choice). With MRtree, we were
able to construct a hierarchical cluster tree from the flat se-
quential clusterings. The initial cluster tree is visualized with
nodes colored by the major type referencing the gold stan-
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Figure 2. Evaluate the performance of MRtree via simulations and analysis on mouse brain data (9). (A) The hypothetical tree structure of the cell states
from which cells are generated. (B) tSNE plot of the simulated cells in one experiment, colored by the cell types indicated in the leaf of the actual hierarchical
cluster tree. The difficulty of the simulation varies from simple (strong signal with higher cluster separation) to challenging (weaker signal with stronger
noise) in panels (C–E) for each method. (C) Comparing the accuracy of MRtree clusters with the clusters from initial flat clustering, and hierarchical
clustering at multiple resolutions using Seurat (left panels) and SC3 (right panels). The accuracy is measured by the Adjusted Multi-resolution Rand Index
(AMRI). (D and E) Evaluate tree construction accuracy of MRtree with dendrogram from hierarchical clustering obtained with Seurat (D) and SC3 (E).
(F–I) MRtree applied to scRNA-seq data from the mouse brain. (F) Initial flat clustering by SOUP on 3005 cells (9) by varying the resolution parameter
specifying the targeted number of clusters, colored by the gold standard labels. (G) The MRtree-constructed tree from initial SOUP clusterings. The pie
charts on tree nodes represent the cell type composition referencing the gold standard. (H and I) Comparing tree construction and clustering accuracy on
mouse brain data using different methods, hierarchical cluster tree generated by HAC starting with SOUP clusters (H) and starting with individual cells
(I).
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dard, and the recovered tree from MRtree is shown on the
right, with the proportion of cell types in each node visu-
alized by a pie chart (Figure 2F,G). The tree successfully
split the neurons and glial cells at an early stage, followed
by splitting pyramidal cells from two regions (CA1,SS) from
the interneurons. Finally, cells from the same type but dis-
tinct brain regions were identified. The tree reconciliation
step also improved the clustering performance by increasing
the accuracy measured by AMRI in multiple layers (Supple-
mentary Figure S6a).

To further compare the performance of MRtree with
HAC, we applied HAC using complete linkage on the
first 20 principal components, starting either from single-
tons (individual cells) or the 9 SOUP clusters obtained at
the maximum resolution (Figure 2H,I; only the top lay-
ers of HAC from singleton are shown for comparison pur-
poses). Compared to MRtree, HAC shared a similar over-
all tree structure, but it generated clusters at lower accu-
racy for each layer. The results support the argument that
MRtree is able to improve accuracy upon initial cluster-
ing by pooling information across resolutions. HAC from
singletons performed much worse regarding both accuracy
and tree structure, possibly owing to the sensitivity of HAC
to outliers and linkage selection. For completeness, we also
demonstrate the accuracy from two widely applied cluster-
ing methods, Seurat and SC3, where the HAC results were
generated from the built-in functions provided as part of
the toolkits. In both cases, MRtree outperformed both the
initial flat clustering and the HAC (Supplementary Figure
S6b,c).

In addition to improving the clustering accuracy, we were
able to infer the resolution that achieved the highest stabil-
ity by inspecting the difference between the initial tree and
the reconstructed tree. It indicated that both the SOUP and
Seurat algorithms should stop splitting at K = 7, which was
consistent with the gold standard (Supplementary Figure
S7). Stability analysis on SC3 results showed a preferred res-
olution of 6 clusters. Indeed, we observed steep drop in ac-
curacy for any resolution >6 (Supplementary Figure S6c).
By comparison, using available K-selection methods sup-
ported in multiple single-cell analysis pipelines, the optimal
number of clusters selected varied widely (Supplementary
Table S2). For instance, SC3 supported 22 clusters. In addi-
tion, the large gap between MRtree and initial Seurat clus-
terings indicated the inability of Seurat to identify accurate
and stable clusters on this dataset. This observation was fur-
ther supported by the lower accuracy (AMRI < 0.6) of the
resulting Seurat clusters (Supplementary Figure S6b).

Human pancreas islet cells. To evaluate performance on
cell types that are fairly well separated, we investigated the
hierarchical structure identified by MRtree for cells from
human pancreatic tissues. We first analyzed single-cell RNA
sequencing of 635 cells on islets from Wang et al. (15),
which come from multiple donors, including children, con-
trol adults and individuals with Type 1 or Type 2 diabetes
(T1D, T2D). Among them, 430 cells were annotated by the
authors into seven cell types, while 205 cells were consid-
ered ambiguous and unlabeled. We applied MRtree to con-
struct the hierarchical cluster tree based on SC3 flat cluster-
ing with the number of clusters ranging from 2 to 15. The

tree was then trimmed to eight leaf nodes based on stabil-
ity analysis (Figure 3A and Supplementary Figure S8A).
The first split created two large interpretable cell groups:
gene ontology (GO) shows enrichment of exocrine func-
tions such as terms related to ‘Putrescine catabolic process’
(adjusted P-value = 2.3E − 02) and ‘Cobalamin metabolic
process’ (adjusted P-value = 5.48E − 05) for the left branch,
and enrichment of endocrine functions such as ‘Insulin
secretion’ (adjusted P-value = 3.4E − 5) and ‘Enteroen-
docrine cell differentiation’ (adjusted P-value = 2.1E − 2)
for the right branch. The exocrine group was further divided
into acinar (PRSS1) and ductal cells (SPP1). The right
branch further separates a previously undiscovered cluster
composed mainly of ambiguous cells and a few previously
labeled alpha and mesenchyme cells. This cluster expresses
marker genes with significant GO terms such as ‘Collagen
metabolic process’ and ‘regulation of endothelial cell migra-
tion’, pointing to endothelial and stellate cells (Supplemen-
tary Table S3) that were not labeled in the original analysis.
The remaining endocrine cells were further divided into a
group containing � cells (GCG) and pancreatic polypeptide
cells (PPY), and another group containing � (INS) and �
cells (RBP4) (Supplementary Table S4).

In addition to recapitulating a logical tree for all cell
types, the eight clusters improved upon the initial SC3 clus-
ters. In particular, seven of the clusters match well with the
identified seven major cell types from Wang et al., achiev-
ing AMRI >0.95 (Supplementary Figure S8B–D). By con-
trast, a competing tree construction method, CellBIC (13),
revealed a similar tree structure, but it failed to identify the
group of � cells (13). Finally, because it is well accepted
that � cells are heterogeneous, especially in conditions of
metabolic stress, such as obesity or type 2 diabetes (15), we
further applied MRtree on the subset of 111 � cells. We ob-
tained five � subclusters that corresponded to key biologi-
cal features, including two clusters composed mainly of cells
from T2D individuals, and one control group containing
90% cells from children (Supplementary Figure S8E–G).

Next, we considered a more challenging dataset, again
from the human pancreatic islet, produced by merging data
from five technologies (16). In total, 14 892 cells were anno-
tated and grouped by respective studies into 13 major cell-
types with cluster sizes varying by magnitude. We first inte-
grated the cells using Seurat MNN integration tools using
2000 highly expressed genes (Figure 3B). Despite the ob-
servation that SC3 demonstrates superior performance on
the smaller datasets, we utilized Seurat graph-based clus-
tering because it demonstrates greater scalability to large-
scale analysis. Flat clusterings were obtained for 50 differ-
ent resolution parameters sampled via Event Sampling in
the range of [0.001, 2]. The resulting tree identified all 13
major types with high accuracy and also uncovered many
subtypes organized as subtrees (Figure 3C). Very distinct
cell types separated early and fall into remote branches,
while cell types that share similar functions share internal
branches and split later in the process. For instance, en-
dothelial, schwann and stellate cells are very different from
other endocrine and exocrine cells and thus split out first.
Two types of endocrine cells, acinar and ductal, fall into a
common subtree. Likewise, five types of exocrine cells are
organized in the same subtree. Finally, subtypes from the
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Figure 3. MRtree applied on pancreas islet cells datasets reveals the transcriptional distinctions and similarities between cell types. (A) MRtree-constructed
tree with SC3 clusterings on 635 cells from Wang et al. (15). The tree was trimmed to the layer with eight leaf clusters (K = 8). The pie charts overlying
on tree nodes represent the cell type composition for corresponding clusters. Colors indicate the cell-type labels by Wang et al., where a fraction of cells
(marked in gray) were considered ambiguous cells by the authors and unlabeled. The leaf labels demonstrate the inferred cluster identity. (B–D) Jointly
constructing the cell type hierarchical tree for pancreas islet cells integrated from five technologies. (B) UMAP project of 14 892 cells integrated from five
technologies using Seurat MNN integration tools, colored with the cell type labels from respective studies. (C) MRtree-constructed tree from the integrated
data with Seurat initial flat clusterings. Pie charts on tree nodes show the cell-type composition given the referencing labels from the studies. Leaf labels
indicate the inferred labels of cells in each leaf node. (D) Hierarchical tree constructed by Seurat agglomerative hierarchical clustering starting from Seurat
flat clustering results obtained with the highest resolution, annotated similarly by cell type compositions.

same major type are organized in the same subtree, with
one exception. A small subset of � cells was inappropri-
ately placed in the tree. However, evidence suggests these
cells represent an anomaly, possibly due to batch correction.
These � outliers appear in the UMAP projection separated
from other � cells and near the activated stellate cells.

For comparison, we produced a hierarchical tree us-
ing Seurat agglomerative clustering (Figure 3D). Given the
well-separated cluster structure of cell types in the projected
PCA space, it is not surprising that the tree also identi-
fies all the major cell types; however, the hierarchical struc-
ture appears less reasonable. For instance, the activated and
quiescent stellate cells were placed far from each other in
the tree, and two endocrine types were grouped in differ-
ent subtrees. In summary, MRtree produced a more useful
tree than competing methods for both applications, and the
interpretable subtree structure observed across applications
shows promise for further investigation of the cell subtypes
identified here.

Human fetal brain cells. We applied MRtree to cells from
the mid-gestational human cortex, which we call the hu-

man brain data (17). These data were derived from ∼40 000
cells from germinal zones (ventricular zone and subventric-
ular zone) and developing cortex (subplate (SP) and cor-
tical plate (CP)) separated before single-cell isolation. By
performing Seurat clustering (2), the authors assigned the
cells into 16 transcriptionally distinct cell groups (Supple-
mentary Table S5). For convenience, here we refer to these
expert classifications as the Polioudakis labels.

Our analysis began with the same preprocessing steps as
conducted in the study (17) using the pipeline supported by
Seurat V3. The multilevel clustering results are visualized
by increasing resolution from the top layer (resolution =
0.001) to bottom layer (resolution = 2), where each layer
corresponds to one clustering (Supplementary Figure S9A).
Notably there were a considerable number of cells assigned
to clusters inconsistently over changing resolutions, which
made it challenging to determine the optimal resolution and
the final cluster memberships. By applying MRtree, we were
able to construct the organized hierarchical tree, which was
represented by a dendrogram with the cell-type composi-
tion of clusters referencing Polioudakis labels shown by pie
charts on tree nodes (Figure 4A). MRtree first separated
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Figure 4. MRtree applied to scRNA-seq data from human brain cells. (A) MRtree produces the hierarchical cluster tree from the initial flat clusterings at
multiple resolutions obtained from Seurat. The nodes correspond to clusters, with a pie chart displaying the cluster composition referencing the Polioudakis
labels. Tree cut is placed at tree layer corresponding to K = 13 based on stability analysis, above which the clusters are stable. (B) tSNE plot of all 40 000
human brain cells colored by which of the 13 major clusters the cells belong to, with cell-type identities names hovering over clusters in black. (C) The 13
major clusters were obtained by cutting the tree at the level indicated by the dashed line in (A), indicating the identified major cell types and the associated
stable hierarchical structure. (D) Heatmap of the top 10 significant marker genes (FDR-adjusted P-value<0.05) for the identified 13 major clusters ranked
by average log fold change, arranged according to the display of tree leaf nodes.

interneurons and pericytes, endothelial and microglia, fol-
lowed by splitting excitatory deep layer neurons from radial
glia to maturing excitatory neurons, representing the rest of
a closely connected lineage (upper layer enriched). By fur-
ther increasing the resolution, the radial glia cells and ex-
citatory neurons were isolated, where the intermediate pro-
genitors were more closely connected with maturing excita-
tory neurons. The finer distinctions of excitatory neurons
were subsequently identified as migrating, maturing and
maturing upper enriched subtypes supported by differential
gene expression and canonical cell markers (Supplementary
Table S6). The results were consistent with the group-wise
separability visible through a 2-dimensional tSNE projec-
tion (Figure 4B). The cluster stability was inspected by com-
paring the initial Seurat clusters at each resolution with the
MRtree results (Supplementary Figure S9B), which sug-
gested that the clusters were stable up to around K = 15.
We decided to cut the tree at K = 13, which corresponded
fairly closely to the 16 major gold standard cell types of
the midgestational brain by examination of differentially
expressed marker genes (Supplementary Table S6, Figure
4C,D). For comparison, an agglomerative hierarchical tree
was generated starting from the Seurat clusters obtained at
the highest resolution (Supplementary Figure S9C). These

results were distance-based and consequently more vulner-
able to outliers, which appear to have caused several anoma-
lies: subsets of ExM, ExM-U and ExDp1 were grouped
together, and two subsets of IP were separated from each
other.

Identify subtypes. Next, we scrutinized the fine-grained
structure by re-clustering the 13 major cell types obtained
from the hierarchical cluster tree of all cells. The cells were
pre-processed from the raw count data as performed in the
first iteration, followed by clustering using the Seurat graph-
based method. By setting the resolution parameters from
0.05 to 1 and applying MRtree, we obtained one hierarchi-
cal tree for each major cell type, determined by trimming
the full tree to the stable top layers (ExDP and InMGE are
depicted in Figure 5A,B). This resulted in 21 transcription-
ally distinct cell types from 7 of the identified major types,
expanding IP, ExN, ExM, ExM-U, ExDp, InCGE and In-
MGE (Figure 5C and Supplementary Table S8). The sub-
types’ partitions were first evaluated by assessing whether
the likely technical and biological co-variation, including
brain sample, sequencing run and cortical region, illustrated
somewhat even distribution and appropriate overlap within
each identified cluster. Results show that the clusterings



e91 Nucleic Acids Research, 2021, Vol. 49, No. 16 PAGE 10 OF 14

Figure 5. MRtree clusters cells into known cell subtypes and states that underlie known cellular developmental transcriptional trajectories at a higher res-
olution. (A) Hierarchical cluster tree of subplate/ deep layer excitatory neurons (ExDp) with a heatmap of gene expression within canonical gene ontology
categories showing a gradually increased enrichment of Synaptogenesis, CREB signaling, synaptic signaling (i.e. synaptic long term potentiation, opioid
and dopamine-DARPP32-cAMP signaling) across maturation from ExDP 0 to most mature ExDP 3 cluster. (B) Hierarchical cluster tree of MGE-derived
interneuron with a heatmap of gene expression within canonical gene ontology categories shows a gradually increased enrichment of Synaptogenesis, CREB
signaling and calcium-mediated signaling across maturation from InMGE 2 to most mature InMGE 4 cluster. (C) tSNE projection of all cells colored
by the MRtree identified subtypes from subsequent analysis of the MRtree major cell types. (D) MRtree clusters are driven by biology and not technical
co-variation in the data: Histogram of the percentage of cells that each brain sample (left), sequencing run (middle) and cortical region (right) contribute
to each cellular cluster identified by MRtree. (E) Cells projected onto Monocle pseudotime analysis from Polioudakis et al. with cells colored by MRtree
cell-types and names hovering above. (F) Pseudotime projection of each cluster cell types from MRtree illustrating a continuous developmental trajectory
of excitatory neurons, first: top left; intermediate progenitors IP 1, IP 0, top middle; newly born excitatory neurons ExN 0, ExN 2, ExN 1, and, top right;
maturing excitatory neurons ExM 0, ExM 1, ExM 2, ExM 3, bottom left; followed by maturing upper layer neurons ExM-U 0 through ExM-U 7 and,
bottom left; maturing subplate/ deep layer neurons ExDP 2, ExDP 0, ExDP 1, ExDP 3.

were not driven by these technical features and are likely bi-
ologically meaningful (Figure 5D and Supplementary Fig-
ure S10).

We focus on the results of excitatory neuronal subtypes,
given their critical roles in neurological disorders. Close ex-
amination revealed that MRtree clustered cells into well-
known cell types and states that underlie known cellular de-
velopmental transcriptional trajectories at a higher resolu-
tion. Projection of each cluster of cell types from MRtree

onto Polioudakis Monocle Psuedotime illustrated a contin-
uous developmental trajectory of excitatory neurons, start-
ing from intermediate progenitors (IP) with IP 1 preced-
ing IP 0. The cells then develop into newly born excita-
tory neurons in the order of ExN 0, ExN 2, ExN 1, which
then grow into maturing excitatory neuron subtypes follow-
ing the order of ExM 0, ExM 1, ExM 2, ExM 3. The tra-
jectory finally ends at maturing upper layer neurons ExM-
U 0 through ExM-U 7 and maturing subplate/deep layer
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neurons ExDP 2, ExDP 0, ExDP 1, ExDP 3, with ExDP 3
considered as the most mature subtype (Figure 5E,F). The
estimated hierarchical tree for subtypes corresponded with
gene ontology analysis of differential gene expression be-
tween branch cell types. For ExDp, the most distinct sub-
type was ExDp 3, which was first differentiated from the
other subtypes, followed by the split for ExDp 2, and then
ExDp 0 and ExDp 1 (Figure 5A). The heatmap of gene ex-
pression within canonical gene ontology categories showed
a gradual increase in enrichment of Synaptogenesis, CREB
signaling, synaptic signaling (i.e. synaptic long-term po-
tentiation, opioid and dopamine-DARPP32-cAMP signal-
ing) across maturation from ExDP 0 to the most mature
ExDP 3 cluster. We observed similar functional specializa-
tions of inhibitory neuron subtypes (Figure 5B). The most
mature subtype InMGE 4 was discriminated from the other
MGE interneurons first, followed by splitting the second
and third most mature subtypes from less mature cells,
and finer distinctions were established subsequently in two
branches. The heatmap of gene expression within canoni-
cal gene ontology categories showed a gradual increase in
enrichment of Synaptogenesis, CREB signaling, calcium-
mediated signaling across maturation from InMGE 2 to
most mature InMGE 4 cluster.

MRtree partitioned intermediate progenitor cells into
two subtypes (IP 1 and IP 0; Figure 6A) similar to cell types
revealed in Polioudakis et al., achieved only after multiple
rounds of analysis of flat clustering results. Marker genes
for newly born neurons (i.e. SLA, STMN2 and NEUROD6)
and intermediate progenitors (i.e. EOMES, SOX11, SOX4
and PTN) showed increased expression markers within IP 0
in contrast to expression of more intermediate progeni-
tors and radial glia genes within IP 1 (i.e. SLC1A3, VIM,
SOX2 and HES1) (Figure 6B). Notably, by comparing the
significant protein-protein interacting (PPI) networks (Sup-
plementary Table S7) from differential genes (DGE) ex-
pressed in IP 1 versus significant PPI network from DGE
in IP 0, we observed that IP 1 cells PPI contains a highly
connected radial glial genes surrounding VIM including
MKi67, SOX2, for example, whereas, IP 0 cells contain
more neuronal-committed genes involving early step in neu-
ronal differentiation including MAPT, GAP43, CALM2,
GRIA2 and PTPRD (Figure 6C). Gene ontology analysis
further uncovered a switch in the enrichment of EIF2 sig-
naling, growth factors, and cell cycling pathways (i.e. Sir-
tuin signaling pathway and SAPK/JNK signaling) in IP 1
to more specific neuronal categories like Synaptogenesis,
Ephrin Receptor signaling, Reelin signaling underlying mi-
gration and neurite pathfinding signaling within IP 0 (Fig-
ure 6D).

For ExDP subtypes, a closer examination of the ex-
pression of marker genes for layer 5 (i.e., ETV1, RORB,
FOXP1 and FEZF2), Layer 6 (i.e., TBR1, SYT6 and
FOXP2), shared deep markers (i.e., RORB, TLE4, LMO3,
CRYM and THY1) and subplate makers (i.e., NR4A2
and ST18) showed expression of Layer 5 markers within
the least mature cells, ExDP 2 and layer 6 markers within
ExDP 0, in contrast to the more mature expression of layer
6-CTIP2 markers within ExDP 3 and mature expression
of markers of subplate and layer 6 within ExDP 1 (Figure
6E,F). Surprisingly, ExDP 2 PPI revealed a set of genes and

structure similar to an intermediate progenitor with VIM
at the center of translational control and the expression
of neuronally committed genes SOX4, SOX11, ID2 simi-
lar to IP 1, except that neuronal specificity genes within
this cluster were linked directly to upper Layer 5 cell fate
(i.e., FEZF2, FOXP1, RORB and SYT4) instead of a gen-
eral excitatory neuronal lineage seen in IP 1. ExDP 1 sub-
plate cells PPI exhibited a group of connected genes related
to more mature cellular properties such as synaptic plas-
ticity and Wnt signaling (i.e., GRIN2B, CTNNB1, NR2F1
and NRXN1) but no energy or translational pathways that
were present in ExDP 2. ExDP 3 cells showed the most ex-
tensive and unique PPI that illustrated more committed ax-
onal and synaptic pathways underlying specifically Layer 6
CTIP2+ cells (i.e.CALM2, NRCAM, SNCA and GABAer-
gic postsynaptic machinery) (Figure 6G).

Four other cell types revealed subtypes that were also
related to developmental ordering. ExN was partitioned
into three subtypes that indicate a gradually increased ex-
pression of markers of upper layer excitatory neurons in
contrast to no expression of deep layer neuronal programs
(Supplementary Figure S11). ExM was partitioned into
four subtypes, three of which illustrate gradually increased
expression of upper layer markers, in contrast, a fourth that
expressed deep layer markers indicating layer 4/5 excitatory
neurons (Supplementary Figure S12). InMGE was parti-
tioned into six progressively more mature subtypes (Fig-
ure 5B) that demonstrate distinctions in both maturation
and terminal specification (Supplementary Figure S13). Fi-
nally, the three subtypes of InCGE display a general mat-
uration of CGE interneurons through a gradual decrease
in expression of transcription factors along with a grad-
ual increase in expression of axonal-related genes (Sup-
plementary Figure S14). Meanwhile, although the signal
was sparse, the PPI network for the allegedly most mature
subtype revealed a connection between genes critically in-
volved in post-synaptic glutamate signaling and plasticity,
further supporting this conjecture. Additional characteris-
tics of these subtypes can be found in Supplementary Infor-
mation.

DISCUSSION

In this article, we propose MRtree, a computational ap-
proach for characterizing multi-resolution cell clusters
ranging from major cell groupings to fine-level subtypes us-
ing a hierarchical tree. The approach is based on deriving a
multi-resolution reconciled tree to integrate clusterings ob-
tained for a range of different resolutions. The proposed
method combines the flat and hierarchical clustering results
in a novel manner, inheriting the computational efficiency
and scalability from the flat clustering and the interpretabil-
ity of a hierarchical structure. In comparison, MRtree out-
performs bottom-up and top-down hierarchical clustering
approaches and provides superior clustering for each level
of resolution. MRtree also provides tools for sampling im-
plicit resolution parameters for Louvain clustering. This
enables equal coverage of different clustering scales as in-
put for the tree construction process. All clustering meth-
ods face the challenge of determining the optimal number
of clusters supported by the data. While this problem is in-



e91 Nucleic Acids Research, 2021, Vol. 49, No. 16 PAGE 12 OF 14

ANP32E

MYH10

ASCL1

HES5

DARS

EEF1D

FDPS

PIK3R1

RBMX

E2F3

HDAC9

EIF5B

RPL3

RPL8

GADD45A

GADD45G

GAPDH

ENO1

H1F0

HMGB1

TOX3

HES1
HES6

HNRNPA2B1

HNRNPK

HNRNPM

RPLP1

UBB
YBX1

HNRNPC HNRNPR

MKI67

HSPB1

HSPH1
H2AFV

RPLP0

ID4

MAT2B C14orf166

NEUROG2

PAX6

SOX2

POLR2L

LZTS1

PTPRZ1

MDK

RPN2

VIM

RPS7

SNCAIP

SNRPB

SQLE
NES

SRP9

IVNS1ABP

CALM2

AKAP9

MAPT

TUBA1A

CHGA
CHGB

SCG3

GAP43

GRIA2
GRIA3

PPFIA2

KCNQ3

NFIX

NFIB

PTPRD

SDCBP
SYT1

NRXN1

TUBB

TUBB2A

TUBB2B

IP_0IP_1

IP_1A B C IP_0

D

ABLIM1

ARPC2

VIM

ACTR3B

ARPC5

HNRNPA1 TUBB

ATP5L

ATP5E

ATP6V1G1

ITPA

CDC42EP3

SEPT6

COX4I1

COX7C
COX6B1

CRMP1FXR1

EEF1B2

EEF2

EIF3H
FAU

EPB41L2

EPHA3

ACLY

EPS8

SORL1

RPL8

FGD4

MAPK10

GABRB2
GABRA2

GAP43
TUBA1A

YBX1

ID2

TCF12
TCF4

NACA

FUNDC2

NEFL

NEFM

UCHL1

PABPC1

RPS25

POU3F2
SOX11 POU3F3

PTPN2

JAK1

RPL34

RPL39
RPS10

RPS7

RUNX1T1

SCN1A

SDCBP

SNAP25

SOX4

SPAG9
STMN2

SUMO2

CHN2

SYT4

TOX

HMGCR

DYNC1I1

NCALD

PFDN5

TUBB2B

AJAP1

CTNNB1

CAMK2D

GRIN2B

PLCB4

CTNND2

DLGAP1

GRIA2

GRIP1

NR2F1

HSPA12A

PTPRE

LIN7A

NGEF

NRXN1

SIPA1L1

OSBPL1A

PCDH9

ZMYND8

RAP2B

RAPGEF5

UTRN

MARK1

DMD

AJAP1

CTNNB1
BASP1

AMPH
LIN7BSYT5

C14orf1

FDFT1

CACNG2

PLCB1

CALB2

SLC1A2
CALM2

GRIK2

MYO6

TUBA1A

UNC13B

VSNL1

YWHAZ

CAMK2D PLCB4
TUBA1B

CNR1

GNAI1

CNTN1

CNTN6

DPYSL2

CRMP1

SYT1

ERC2

GABBR1

GABRA1

GABRB2
GABRG2

PIK3R1

GAP43

GNAS

ACAT2

GRID2

HIVEP2

MT3

IL1RAP

KCNAB1

HSPA5

KIFAP3

RAP1GDS1

MAGI1

MAGI2
ACVR2A

MAPK10

MYL6

NCAM1

ST8SIA3

NRCAM

ANK2

PSENEN

ARHGAP12

PTN

CDH10

NAP1L5

PTPRR

RAB3B

RTN1
RTN4

NGFR

SCG2

SCN1A
CUL3

SNAP91

SNCA

MAP1B

SORCS3

NRXN1

SYT13

TJP1

TPM1

TSC22D1

MYO1B
DYNC1I1

KIF1A

TUBB2B

UCHL1

VRK1

WASF3

WWC2

YWHAB

OSBPL3

RASGRF1

ARHGAP21

PGK1

E F G ExDP_1ExDP_2

ExDP_3

ENERGY/TRANSLATION
AXON DEVELOPMENT
SYNAPTOGENESIS

LMO3

TLE4

ETV1

BHLHE22

MEIS2

NEFM

SYT4

CAMK2D

KCNAB1

KCNJ6

B3GAT2

CDH13

SLC17A7

FOXP2

LHX2

CUX2

CALB2

SCN1A

CUX1

FOXP1

RORB

FEZF2

THY1

ST18

NR4A2

CRYM

BCL11B

SYT6

TBR1

SATB2

PCDH9

E
xD

p
_2

E
xD

p
_0

E
xD

p
_1

E
xD

p
_3

G
en
e

0.0

0.5

1.0

1.5
mean_exp

pct_expressed

0.00

0.25

0.50

0.75

0

20

30

Subtype-Specific

MrTree clusters

0

MrTree clusters

MrTree clusters

20

30

MrTree clusters

Figure 6. Known and unique biological states identified by MRtree with sub clustering on human fetal brain data: intermediate progenitors and subplate/
deep excitatory neurons (A) Top: tSNE plot of all cells where intermediate progenitor (IP) cells identified by MRtree are colored by red, bottom: tSNE
projection of MRtree clustering where IP is broken into IP 1, colored in blue and IP 0, colored by red. (B) Gene expression dot plot showing the normalized
mean expression of marker genes for newly born neurons (i.e. SLA, STMN2 and NEUROD6), intermediate progenitors (i.e. EOMES, SOX11, SOX4 and
PTN) and radial glia (i.e. SLC1A3, VIM, SOX2 and HES1) within IP 1 (left) and IP 0 (right), grouped by increasing (top), decreasing (middle) and
neural (bottom) expressions from IP 1 to IP 0. (C) Significant protein-protein interacting (PPI) networks from differential genes expressed in IP 1 on
the left versus significant PPI network from DGE in IP 0 on the right. (D) Heatmap of IP 1 and IP 0 gene expression within canonical gene ontology
categories. (E) Top: tSNE projection where subplate and deep excitatory neurons (ExDP) cells identified by MRtree are colored by red; bottom: tSNE
projection where ExDP are broken into ExDP 2, colored in blue and ExDP 0, colored by red, ExDP 1 colored by green, and ExDP 3 colored by purple.
(F) Gene expression dot plot showing the normalized mean expression of marker genes for layer 5 (i.e. ETV1, RORB, FOXP1 and FEZF2), Layer 6 (i.e.
TBR1, SYT6 and FOXP2), shared deep markers (i.e. RORB, TLE4, LMO3, CRYM and THY1) and subplate makers (i.e NR4A2, ST18) within ExDP 2,
ExDP 0, ExDP 1 and ExDP 3 from left to right. The subtype-specific expressions are marked by brackets. (G) Significant protein–protein interacting (PPI)
networks from differential genes expressed in ExDP 2 on the top left versus significant PPI network from ExDP 1 top right and PPI from ExDP 3 bottom
center.

herently intractable, MRtree uses a stability criterion to de-
termine the maximum resolution level for which stable clus-
tering results can be obtained for a given dataset. Because
MRtree is agnostic to the clustering approach, it can read-
ily utilize input from any flat clustering algorithm. Hence
MRtree is extremely flexible, immediately incorporating the
advantages of available clustering algorithms, while often

providing improved clustering at every resolution due to the
reconciliation procedure.

To illustrate the performance of our method, we apply
MRtree to a variety of scRNA-seq datasets, including cells
from the mouse brain, human pancreas and human fetal
brain tissues. Coupled with suitable initial flat clustering al-
gorithms, MRtree constructs the hierarchical tree that re-
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veals different levels of transcriptional distinction between
cell types and outperforms popular competitors, includ-
ing bottom-up HAC and divisive methods such as CellBIC
(13). For functionally distinct cell types that can be eas-
ily identified, the reconciliation process organizes the clus-
ters obtained under different scales into a unified hierarchi-
cal structure and suggests a proper tree cut to retain the
stable partitions. For instance, the constructed tree from
integrated pancreatic islet datasets successfully identified
endocrine and exocrine groups and subsequent cell types
within each group. The clusters from the tree of mouse cor-
tex datasets accurately recovered the known major cell types
organized into subtrees of neurons and glial cells. Applica-
tion of MRtree on human fetal brain cells uncovered pre-
viously recognized main types organized in a tree structure
along the maturation trajectories.

Our method has a greater impact in challenging situa-
tions where clusters are similar. Apart from validating the
method on the widely acknowledged main cell types, we un-
covered a list of stable subtypes from the fetal brain dataset
that exhibit distinct states and functionality by examining
canonical gene ontology categories and significant PPI net-
works. Specifically, we have shown that two subtypes of in-
termediate progenitors are well-defined by the expression
of radial glia markers versus newly born neurons markers.
The subplate/deep layer excitatory neurons are mainly dif-
ferentiated by the layers the cells will populate. While mi-
grating and maturing excitatory subtypes show a gradual
increase of upper layer excitatory neuron markers, upper
and deep layer excitatory neuron markers, respectively. Sub-
types close in maturation states are reflected in the hier-
archical tree as they are split later down the tree. InMGE
demonstrates the distinction in both maturation and termi-
nal specification with respect to the engagement of synap-
tic programs. At the same time, InCGE subtypes differen-
tiate mainly by maturation, which fits nicely with the fact
that CGE interneurons are born after MGE interneurons.
While both cell types are born in the ventral telencephalon,
their terminal specification happens only upon beginning
Synaptogenesis when they begin to express subtype-specific
markers. Surprisingly, subtypes of ExDP revealed a set of
genes and structures similar to an intermediate progenitor
that can be further investigated in future work.

It is worth noting that the quality of MRtree’s construc-
tion relies on the performance of the chosen flat clusterings.
If the flat clusterings method inputs unstable or biased clus-
ters, these errors will be largely retained and reflected in the
estimated hierarchical cluster tree. Similar to many consen-
sus clustering methods, MRtree can be extended to allow in-
put from multiple sources, each applying different flat clus-
tering methods; however, the quality of the constructed tree
depends on the clustering performance of the full spectrum
of sources. If the input data provide a disparate signal, then
the outcome is likely to be unstable.

Our studies suggest several interesting questions worthy
of future investigations. For instance, our method is a gen-
eral framework that allows for any flat-clustering base pro-
cedure. In practice, how to determine which base procedure
suits better for different datasets still remains open. In addi-
tion, the current framework relies on a rough idea about the
range of resolution. Can we automatically decide the range

of resolution? How can we select this range when the res-
olution is not parameterized by the number of clusters? In
particular, our current method adopts a stability measure to
decide whether to further branch the hierarchical tree. Can
we provide theoretical guarantees for the power of this stop-
ping criterion? Furthermore, our work shed light on how
major cell types evolve to subtypes, and we would like to
further verify these biological findings.

SOFTWARE

MRtree can be constructed using the mrtree R package,
which can work directly with Seurat and SingleCellEx-
periment objects, available on Github (https://github.com/
pengminshi/MRtree).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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