
RESEARCH ARTICLE

A geospatially resolved wetland vulnerability

index: Synthesis of physical drivers

Zafer DefneID
1*, Alfredo L. AretxabaletaID

1, Neil K. Ganju1, Tarandeep S. Kalra2,

Daniel K. JonesID
3, Kathryn E. L. Smith4

1 Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, MA, United States

of America, 2 Integrated Statistics, U.S. Geological Survey, Woods Hole, MA, United States of America,

3 Utah Water Science Center, U.S. Geological Survey, Salt Lake City, UT, United States of America,

4 St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, FL, United

States of America

* zdefne@usgs.gov

Abstract

Assessing wetland vulnerability to chronic and episodic physical drivers is fundamental for

establishing restoration priorities. We synthesized multiple data sets from E.B. Forsythe

National Wildlife Refuge, New Jersey, to establish a wetland vulnerability metric that inte-

grates a range of physical processes, anthropogenic impact and physical/biophysical fea-

tures. The geospatial data are based on aerial imagery, remote sensing, regulatory

information, and hydrodynamic modeling; and include elevation, tidal range, unvegetated to

vegetated marsh ratio (UVVR), shoreline erosion, potential exposure to contaminants, resi-

dence time, marsh condition change, change in salinity, salinity exposure and sediment con-

centration. First, we delineated the wetland complex into individual marsh units based on

surface contours, and then defined a wetland vulnerability index that combined contributions

from all parameters. We applied principal component and cluster analyses to explore the

interrelations between the data layers, and separate regions that exhibited common charac-

teristics. Our analysis shows that the spatial variation of vulnerability in this domain cannot

be explained satisfactorily by a smaller subset of the variables. The most influential factor on

the vulnerability index was the combined effect of elevation, tide range, residence time, and

UVVR. Tide range and residence time had the highest correlation, and similar bay-wide spa-

tial variation. Some variables (e.g., shoreline erosion) had no significant correlation with the

rest of the variables. The aggregated index based on the complete dataset allows us to

assess the overall state of a given marsh unit and quickly locate the most vulnerable units in

a larger marsh complex. The application of geospatially complete datasets and consider-

ation of chronic and episodic physical drivers represents an advance over traditional

point-based methods for wetland assessment.

Introduction

Coastal wetlands provide a multitude of ecosystem services, including habitat provision, recre-

ational activities, coastal protection, and carbon sequestration. However, the stability of coastal
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wetlands is affected by processes that compromise their structural integrity. These processes

include, but are not limited to, shoreline erosion, eutrophication, sediment supply [1–3], expo-

sure to salinity changes [4], and other external forces. External forces include anthropogenic

modification (e.g., urban encroachment, mosquito ditching), episodic events such as coastal

storms [5, 6], climate change [7–9], and sea level rise [10–12]. Quantifying these processes

may be based on field measurements, historical and modern geospatial data, and numerical

modeling. Field measurements usually have higher accuracy and temporal coverage, but lim-

ited spatial extent. However, they can be used as ground truth data for geospatial datasets from

remote sensing, which can cover much larger areas, and as calibration data for numerical

model simulations, which can provide better spatiotemporal coverage. Geospatial datasets and

numerical model solutions are therefore valuable resources for robust assessment of entire

wetland systems, in comparison to point or transect-based methods. Geospatial datasets based

on remote sensing and aerial imagery have already been widely been used to inventory and

classify coastal wetlands [13, 14]

Considering the rate of vegetative cover loss as a sign of vulnerability, a group of indicators

can be identified. For example, lower elevation marshes are more vulnerable to inundation

under sea-level rise than higher elevation marshes. They are also more likely to be exposed to

wave attack because of their proximity to shoreline [15]. Additionally, for parts of marshes

adjacent to water, shoreline change can be used as an indicator of vegetated-land loss over

time. Recently the unvegetated-vegetated marsh ratio (UVVR) has been proposed as an inte-

grative metric of wetland vulnerability, as it correlates with net sediment budgets across a

range of microtidal marshes [16]. The UVVR therefore links open-water conversion and sedi-

ment transport, and is a necessary quantity for estimating ecosystem services that are reliant

on total vegetated marsh area (e.g., wave attenuation, carbon storage).

Eutrophication through excessive nitrogen loading destabilizes marsh vegetation by

increasing above-ground biomass while decreasing below-ground biomass [1]. Increasing

urbanization in the watersheds tends to intensify nutrient loads to the estuaries [17]. Estuaries

with poor flushing and long residence times tend to retain nutrients within the system, leading

to eutrophication and possibly destabilization of marsh vegetation.

Sediment supply contributes to the resiliency of salt marshes through vertical accretion

[18]. Consequently, biomass production in salt marshes is positively correlated with mean

tidal range, and therefore has the potential to increase vertical stability with respect to sea-level

rise [19, 20]. Generally, a higher suspended sediment concentration (SSC) in the water column

can be an indication of increased sediment availability, but associating it with the net sediment

supply to the marsh system requires understanding the hydrodynamic setting and sediment

transport mechanisms of the system [3]. Episodically, storm surges in micro- and meso-tidal

regimes have been shown to be major sources of sediment [21].

Salinity tolerance by estuarine marsh vegetation varies between species. Generally, moving

towards the wetland-upland interface soil salinity starts to decline. However, storm surge due

to hurricanes may induce high salinity further inland. Studies have implicated elevated salinity

and surge persistence as factors contributing to marsh dieback [22, 23].

Similarly, episodic releases of toxic contaminants during destructive events expose flora

and fauna within the marsh to potentially deleterious impacts. These impacts may reduce the

ability of marshes to provide suitable habitat or may result in the storage of such contaminants

in marsh soils. The contaminant exposure was considered as potential vulnerability that can be

triggered by episodic events such as coastal storms.

Each of these indicators explain a different aspect of vulnerability, has different units, scales

and ranges, there confounding a simple vulnerability assessment. A straightforward solution is

to normalize all external variables and aggregate them to form a single, dimensionless index.

A geospatially resolved wetland vulnerability index
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This comes with some loss of information, such as a high value of an aggregated index at two

different locations within a system will not reveal which factors are leading to the elevated

value [24–26]. Sometimes, even after normalization the distribution of values can be influ-

enced by the formulation (e.g., step, asymptotic, exponential functions) [27]. Nevertheless, the

use of a single index as vulnerability metric is practical for present-day assessment and may

facilitate forecasting. For example, researchers developed a coastal vulnerability index as a met-

ric of potential coastal response to changes such as sea level rise [28, 29]. For their evaluation,

they first ranked and then aggregated a set of parameters that included tidal range, wave

height, coastal slope, shoreline change, geomorphology, and historical rate of relative sea level

rise. This index was then used in a Bayesian statistical approach to the provide future estimates

of coastal vulnerability to sea level rise [30]. Another study used a combination of geospatial

bio-geophysical data and climate model outputs to create and map indexes of coastal vulnera-

bility in an urbanized coastal ecosystem for the past, current and future scenarios [31]. Other

examples for the use of an aggregated index includes a submergence vulnerability index that

assesses the vulnerability of coastal zones of Louisiana to submergence due to local sea level

rise using the wetland elevation and hydrologic data [32]; a vulnerability index to study the

coastal wetlands of Yangtze river estuary China to sea level rise [33]; and a single vulnerability

index based on different biochemical parameters to study the role of vegetation in coastal wet-

land ecosystems [34]. More recently, multimetric indices have been used in various studies for

integrated assessments of ecosystem conditions of coastal wetlands; such as evaluating salt

marsh restoration success [35]; developing condition indices based on rapid assessment of

coastal tidal wetlands in New England, USA; and Gulf of Mexico [36]; and assessing condition

and detecting change at the salt marshes from five national parks along the northeastern coast

of USA based on vegetation and nekton metrics [37]. Similarly, based on a conceptual ecologi-

cal model, researchers also created salt marsh metrics to monitor for sustainable management

of Northern Gulf of Mexico [38]. These studies depend on on-site point measurements and

useful in assessment of specifically selected locations, but results can be extended to larger

areas only if the measurements are considered to be representative at larger scales.

In this study, we synthesize geospatial data from numerous sources to establish a vulnerabil-

ity index with spatially continuous coverage for coastal wetlands. The proposed aggregated

index is based on an equal weighted combination of all the available variables and quantifies

relative vulnerability within the given domain. We introduce a novel approach to divide a

marsh complex in to hydrologically defined marsh units and summarize the index at each

unit. The index is customizable according to the interest, and extensible allowing for inclusion

of new indicators. To demonstrate this, we explore its dependency to different temporal scales

for its dependency on chronic (persistent) and episodic (extreme) indicators, specifically asso-

ciated with Hurricane Sandy, which made landfall near the study area in October 2012 [39].

Extreme storms are expected to induce salinity stress, lateral erosion, and enhanced sediment

transport in estuary and wetland environments, and are therefore important to a vulnerability

assessment. We then apply Principal Component Analysis (PCA) to explore the parameter

space and provide weights for the relative contribution of each parameter to the vulnerability

index. Additionally, we apply a clustering algorithm to separate the domain into a set of subre-

gions that share common characteristics.

We demonstrate the application of these approaches within the salt marsh complex of E.B.

Forsythe National Wildlife Refuge (EBFNWR), which spans the Barnegat Bay-Little Egg Harbor

(BBLEH) estuary and Great Bay in New Jersey, USA (Fig 1). The system has strong longitudinal

spatial gradients from south to north: the watershed transitions from undeveloped to devel-

oped, tidal range decreases, and oceanic exchange decreases. Additionally, the northern bay has

more freshwater input and a higher incidence of sediment bound contaminants [40–43].

A geospatially resolved wetland vulnerability index
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Fig 1. Overview map. E.B. Forsythe National Wildlife Refuge (EBFNWR) spans over Barnegat Bay, Little Egg Harbor,

and Great Bay in New Jersey. The bay is connected to the ocean through Little Egg Inlet, Barnegat Inlet, and Pt.

Pleasant Canal (via Manasquan Inlet in the north). Developed areas source: Multi-Resolution Land Characteristics

Consortium’s National Land Cover Database 2011. World Imagery source: Esri, DigitalGlobe, GeoEye, Earthstar

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0228504.g001
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Data and methods

The vulnerability index is based on various data sources including field observations, remote

sensing, regulatory information and numerical models. first the underlying data has been sum-

marized over the newly defined conceptual marsh units. Then the indicators were defined by

rearranging the source data so that the larger values indicate higher vulnerability and were cat-

egorized as chronic or episodic indicators (Fig 2). The indicators were then ranked and aggre-

gated to create a wetland vulnerability index. PCA, CA and hot spot analysis were used to

further analyze the data. Marsh units definition and each source dataset are described in detail

below and are available at https://www.sciencebase.gov/catalog/item/

5b69d9b4e4b006a11f77597b.

Conceptual marsh units

A union of wetland classification [44] and delineation of water bodies in emergent wetlands

in coastal New Jersey [45] was used to define the domain boundaries. Conceptual marsh

units were defined by geoprocessing of surface elevation raster data within the domain. Spe-

cifically, flow accumulation based on the relative elevation of each raster cell was used to

determine the ridge lines that separated each marsh unit, while the surface slope was used

to automatically assign each unit a drainage point, where water was expected to drain

through. This procedure generally resulted in two types of marsh units: predominantly

larger units inland, where drainage points were constrained by the topographic ridges, and

predominantly smaller units near the marsh-estuary boundary, where there was a relatively

stronger elevation gradient towards the edge. Because most of the smaller units were

peripheral and not geographically relevant individually, these isolated units were merged

with the nearest adjacent unit iteratively until a minimum surface area of 5,000 m2 was

achieved. If a cluster of isolated units were not adjacent to a larger unit, they were aggre-

gated to create a new unit [46].

Chronic indicators

Chronic indicators include data layers that describe the geospatial boundaries of the data (e.g.,

elevation and shorelines) or define a characteristic delineation of vegetation (e.g., ratio of

unvegetated to vegetated area in a marsh unit). These are typically variables that are modified

by annual-to-decadal scale processes, and do not vary over tidal-to-seasonal timescales. In

some cases, specifically tide range and residence time, these are external variables that act on

the marsh system.

• Lower elevation (ELEVA): The elevation data are derived from the 1/9 arc-second resolu-

tion U.S. Geological Survey National Elevation Data (USGS NED). Geological Survey

National Elevation Data (USGS NED) at 1/9 arcsecond resolution. These elevation data were

resampled to 1 meter and a mean elevation for each marsh unit was computed. [47].

• Lower tidal range (TIDER): Mean tidal range was calculated as the difference in height

between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5)

software (http://vdatum.noaa.gov/). The values were interpolated over a 0.0003˚ (*30 m)

resolution grid and extended to the entire marsh domain with a nearest neighborhood

method. These were then averaged over each marsh unit [48].

• Shoreline change rate (SHORE): Evolution of shoreline position is determined by the bal-

ance between erosion and accretion along the coast. Shoreline change rates calculated from

A geospatially resolved wetland vulnerability index
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Fig 2. Wetland data layers. Underlying geospatial data has been averaged over the conceptual marsh units. Top row (from left to

right): Elevation, mean tidal range, shoreline change, unvegetated to vegetated marsh ratio, and mean residence time. Bottom row:

suspended sediment concentration, maximum salinity change, salinity exposure change, marsh condition change, and sediment-

bound contaminant index.

https://doi.org/10.1371/journal.pone.0228504.g002
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digital vector shorelines acquired from historic topographic sheets, aerial photography, and/

or lidar [49], were averaged along the shoreline of each salt marsh unit to generate this layer.

• Higher unvegetated to vegetated ratio (UVVR): The ratio of unvegetated area to vegetated

area was calculated from wetland map code delineation [44].

• Higher residence time (RESID): The residence time data layer was derived using particle

tracking from a 7-month hydrodynamic simulation [50, 51], and projected on the marsh

units [52].

Episodic indicators

Episodic indicators include event-based impacts and are mainly derived from hydrodynamic

modeling of the estuary [52]. We used the aforementioned hydrodynamic model for Barnegat

Bay, implemented for Hurricane Sandy [53], to characterize the change in sediment supply,

salinity, and salinity exposure. Given the infrequent occurrence of events such as Hurricane

Sandy, this analysis is used as an example of how chronic and episodic forcings can be consid-

ered in tandem.

• Lower sediment supply (SEDIM): During storm surges the flow over the marsh loses its

momentum, thereby allowing sediment to deposit. Fine sediment is also trapped by adhering

to the marsh vegetation. For this reason, the modeled change in SSC during Hurricane

Sandy [53] has been used as an indicator of the geospatial variation of sediment supply to

each marsh unit.

• Larger change in salinity (SALIN) and longer salinity exposure (EXSAL): The change in

the maximum salinity and the maximum value of the salinity exposure were calculated by

the Hurricane Sandy simulation [53] and summarized over the marsh units.

• Marsh condition change (CONDC): Marsh condition change and surge persistence due to

Hurricane Sandy has been assessed using radar and optical data collected before and after

the storm [54]. The marsh condition change rankings were averaged within each marsh unit

to provide this layer.

• Exposure potential to environmental health stressors (SCORR): Exposure potential to

environmental health stressors was calculated with the Sediment-bound Contaminant Resil-

iency and Response (SCoRR) ranking system [55]. SCoRR is a ranking system based on

potential sources of contamination as denoted by the U.S. Environmental Protection

Agency’s Toxic Release Inventory and Facility Registry Service, related literature [56], and

an expert review panel. SCoRR values were calculated at a 0.0003˚ (*30 m) resolution grid

and averaged over each conceptual salt marsh unit to create this layer [57].

Ranking and wetland vulnerability index formulation

We ranked values in each dataset to indicate relative vulnerability, with four categories: low,

moderate, high, and severe. (Table 1). The thresholds for each indicator were determined with

a percentile classification method to maintain the same number of values in each category.

The original values in each dataset were reorganized prior to categorizing so that a higher rank

indicates higher vulnerability, e.g., lower tidal range is assigned a higher rank, indicating

higher vulnerability. Ranking allowed for values in each dataset to be categorized with a similar

distribution, ensuring a consistent definition of relative vulnerability across different layers

within the study area.

A geospatially resolved wetland vulnerability index
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We defined the wetland vulnerability index (WVI) as the arithmetic mean of the ranked

values (Eq 1),

WVI ¼
I1 þ I2 þ I3 þ :::þ IN

N
ð1Þ

where Ii is the ranked indicator for data layer i and N is the total number of data layers. Simi-

larly, separate wetland vulnerability indexes were defined considering only chronic or only

episodic indicators (WVIC and WVIE, respectively).

Principal Component Analysis (PCA)

To compensate for limitations of using a single aggregated index, researchers discussed the

application of Principal Component Analysis (PCA) to group co-varying indicators into

orthogonal components for socio-ecological studies [26, 27, 58, 59]. Through an analysis of

variance, such as PCA, the contributions that share the same spatial variability are isolated into

certain principal components and their contribution to the index adequately weighted. The

PCA method, described in detail by [60] and [15] is a statistical tool to transform data from a

n-dimensional variable space to a smaller sub-space of reduced dimensions. The expectation

in PCA analysis is that the first few components account for the majority of the variance in the

dataset. There are numerous methods to select the number of PCs to retain [61]. We have con-

sidered three methods, a scree plot of eigenvalues that displays a deflection point, which can be

used in the selection of PCs; selecting PCs with the largest eigenvalues until a threshold per-

centage is achieved (> 85%); and selecting PCs with eigenvalues larger than the average of

eigenvalues. PCA also allows for relationships between different variables to emerge from the

analysis. This implies that for a single indicator, one can have a positive or negative value asso-

ciated with the observed variables affecting a specific location. This provides information of

the interaction among different variables affecting a given location.

Cluster analysis

Cluster analysis, a technique used in machine learning algorithms [62], groups data points that

share certain characteristics and are distinct from other points in the parameter space. After

the grouping, an analysis of variance for each of the clusters that share distinct features can be

performed. Then, the main PCs of each cluster can be combined into a global index. A potential

Table 1. Vulnerability indicators. Thresholds for each indicator were determined by percentile classification for each data layer. The original values in each dataset were

reorganized for higher rank to indicate higher vulnerability.

Label Indicator Units Rank

Low Moderate High Severe

CONDC Marsh condition change – 0.50–1.50 1.50–2.50 2.50–3.50 3.50–4

SCORR More contaminant prone – 0–2.35 2.35–4.50 4.50–6.15 6.15–39.62

ELEVA Lower elevation m 0.60–3.45 0.44–0.60 0.31–0.44 0–0.31

EXSAL Longer salinity exposure g kg−1 d 0.25–56.44 56.44–69.87 69.87–82.18 82.18–114.95

RESID Higher residence time d 0.03–0.32 0.32–0.75 0.75–10.42 10.42–50.63

SALIN Higher salinity change g kg−1 0.29–10.99 10.99–16.63 16.63–25.80 25.80–32.69

SEDIM Lower sediment supply kg m−3 0.66–0.77 0.62–0.66 0.49–0.62 0–0.49

SHORE Shoreline change m y−1 [-0.20 .. 9.48] -0.40–-0.20 -0.74–-0.20 -0.74–-9.29

TIDER Lower tidal range m 1.02–1.13 0.29–1.02 0.20–0.29 0–0.20

UVVR More unvegetated – 0–0.04 0.04–0.11 0.11–0.25 0.25–4.05

https://doi.org/10.1371/journal.pone.0228504.t001
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benefit of the approach is that it allows for a simpler interpretation, as marsh units with similar

characteristics are grouped together, while maintaining the main features of the variability

within a global index. Several approaches are available for cluster separation (e.g., k-means, c-

means) and in the present study we used Expectation-Maximization (EM) to estimate the

parameters that characterize each of the clusters. The EM algorithm [63] finds the best Gauss-

ian Mixture Model describing the data distribution. In previous studies, EM was used to esti-

mate missing values for oceanographic datasets [64, 65].

In the present study, we first identified individual subdomains by applying cluster analysis

to the ranked indicators. We first determined the number of clusters, component distributions

(each with a mean and a covariance), and their respective likelihoods, and then conducted the

PCA analysis on the covariances to analyze the variability within each cluster.

To determine the number of clusters, we chose the empirical Bayesian Information Criterion

(BIC) [66], which identifies the number of component distributions in the data. In general, the

goodness of fit improves as the number of clusters is increased. BIC optimizes goodness of fit

while including a term to penalize overfitting that increases with increasing number of clusters.

Hotspots and contributing variable classification

We identified vulnerability hotspots based on individual marsh units with a vulnerability

index above a threshold value that corresponded to the mean plus one standard deviation

(WVI> 0.625). We defined potential vulnerability hotspots in the vicinity of these units based

on proximity (marsh units with their centroids within 1 km distance from the vulnerable unit),

and a requirement of more than one unit within that distance (n> 1) with a threshold surface

area (area� 2 km2). The distance and surface area criteria were imposed to limit the number

of zones to be considered in spatial trend analysis. Specifically, we created a 1 km buffer around

the marsh units that exceed the vulnerability threshold. Then the marsh units within each

buffer polygon were grouped to create the zones and the minimum area and minimum num-

ber of marsh units requirements were imposed to define the vulnerability zones.

Results

Spatial variation of indicators

Some of the indicators had steady gradients along the bay while others had less organized trends

Fig 2. Considering the persistent indicators, there was a general longitudinal gradient in eleva-

tion, with higher elevation marshes in the south, and lower elevation marshes in the north. Sim-

ilarly, tidal range in the study area attenuated gradually from more than a meter at Little Egg

Inlet to less than 0.2 m in the north. Residence time also had a strong longitudinal gradient with

longest values in the northern Barnegat Bay and shortest values in Great Bay, a trend mainly

influenced by the size of each inlet and connectivity of the bay with the ocean. The shoreline

change values were less spatially organized (positive for accretion and negative for erosion). The

largest accretion rates occurred at the southward migrating tip of the southern barrier island

(north of Little Egg Inlet), whereas the largest erosion rates were along the bay-side shorelines

of the back-barrier marshes in Great Bay. UVVR was generally larger in the marshes in Barne-

gat Bay than in Little Egg Harbor and Great Bay. On the contrary the largest UVVR was also in

Great Bay; in two managed open-water areas that were disconnected from normal tidal flows.

In terms of episodic indicators, sediment supply was largest in northern Barnegat Bay due

to lower elevation and stronger wind-wave resuspension. Additionally, sediment supply was

expectedly larger at estuary-adjacent marsh units as opposed to inland units. The model results

indicated that storm surge caused the largest salinity changes to occur at inland marshes. The

change in salinity exposure was smaller in northern Barnegat Bay, because of the increased
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freshwater input through Toms River and the setdown induced by northerly hurricane winds

during the initial phase of the storm. In terms of marsh condition change previous research

[54] found the change to be correlated with surge persistence, with inland marshes appearing

more resilient due to fresh water discharge.

Wetland vulnerability index

A cross-correlation analysis of the vulnerability indicators (Table 2) showed that the largest

correlation was between the vulnerability to tidal range (TIDER) and vulnerability to residence

time (RESID). This was consistent with earlier findings [51] that showed a strong along-estu-

ary gradient in residence time and tidal range. The correlation between vulnerability to eleva-

tion (ELEVA) and TIDER was consistent with studies that show increased belowground

biomass production and vertical growth with increasing tide range [20, 22]. On the other

hand, vulnerability related with suspended sediment supply (SEDIM) was inversely correlated

with TIDER (i.e., during Hurricane Sandy sediment supply was higher in the north opposed to

lower tide range). The vulnerability to potential contamination from registered facilities was

lower in the south than the north, similar to the vulnerability from tidal range. This emerged

as a coincidental correlation between the vulnerability to potential contamination (SCORR)

and TIDER. A significant positive correlation was between ELEVA and UVVR indicators

resulting from the fact that marsh units with lower elevations had higher UVVR (i.e., larger

unvegetated areas). The rest of the variables had smaller or mostly no significant correlation.

The wetland vulnerability index (WVI) showed higher vulnerabilities in the northern part

of the domain (Fig 3a). In general, the bay-wide average for WVI was higher in the Barnegat

Bay (BB) marshes than Little Egg Harbor (LEH), which was higher than Great Bay (GB). Clus-

ters of marsh units had the lowest vulnerability (0—0.25) in Great Bay in the south, and a series

of marsh units had severe vulnerability (0.75—1) in Barnegat Bay in the north. The most severe

WVI occurred in Barnegat Bay. Mapping the standard deviation of all of the vulnerability indi-

cators at a single marsh unit provided more insight into the nature of vulnerability (Fig 3b).

When the standard deviation was small the contribution from the layers were likely to be in

the same direction, and they were likely to be less uniform as it increased. For example, both at

the southern tip of the Little Egg Marshes (location L) and the northern tip of the Manahawkin

marshes (location M) vulnerability was severe. However, the contribution from the underlying

indicators to vulnerability was more uniform at location M (SHORE and EXSAL were severe

and all others were high) in comparison to location L (SHORE was low, CONDC was moder-

ate, SCORR was high and all others were severe). When the vulnerability was low or severe,

Table 2. Table of correlation coefficients. Correlation between the vulnerability indicators shown in Table 1. Positive indicates contribution to vulnerability in the same

direction. Blue indicates correlations above 0.4. Red shows correlations lower than -0.4.

CONDC SCORR ELEVA EXSAL RESID SALIN SEDIM SHORE TIDER

CONDC 1

SCORR -0.21 1

ELEVA -0.01 0.13 1

EXSAL 0.15 -0.13 0.25 1

RESID -0.10 0.41 0.43 -0.21 1

SALIN -0.23 0.29 -0.09 0.15 0.12 1

SEDIM 0.28 -0.31 -0.25 0.28 -0.53 -0.08 1

SHORE 0.10 -0.04 0.05 -0.10 0.13 -0.07 -0.18 1

TIDER -0.14 0.45 0.50 -0.18 0.93 0.11 -0.57 0.13 1

UVVR 0.00 -0.11 0.51 0.21 0.14 -0.05 -0.08 0.15 0.20

https://doi.org/10.1371/journal.pone.0228504.t002
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Fig 3. Wetland vulnerability index. a) Wetland vulnerability index (WVI) based on all of the data layers, and b) the

standard deviation of parameters at each marsh unit (BB: Barnegat Bay, LEH: Little Egg Harbor, GB: Great Bay). L and

M are two locations where vulnerability was severe, but contribution from indicators were more uniform at L.

https://doi.org/10.1371/journal.pone.0228504.g003
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standard deviation tended to be smaller by definition. In contrast, when it ranged from moder-

ate to high the largest standard deviations existed more often (e.g., across the middle of Mana-

hawkin marshes, scattered throughout BB, and some locations in GB).

When only the chronic indicators are considered, a similar north-south gradient can be

seen between WVI and WVIC. However, larger WVIC values and lower values of WVIE in

the northern part of Barnegat Bay indicated that the contribution to WVI in this area was

from chronic conditions (Fig 4a). The spatial variation of marsh vulnerability in LEH, was

determined by both the episodic and chronic factors (Fig 4b). The cross-shore gradient seen in

WVI at the Manahawkin marshes (Fig 1) was a result of the cross-shore variation WVIE in

this area. The contribution of episodic factors to vulnerability was low at the bay-side Mana-

hawkin marsh units and in the northern Barnegat Bay. Overall the variation in marsh vulnera-

bility was explained mainly by the chronic indicators in the north in BB, by episodic factors in

the south in GB, and by a combination of both episodic and chronic indicators in LEH.

PCA results

When PCA was applied to the entire dataset of 10 indicator variables, the resulting principal

components explained a similar percentage of the total variability. The scree plot of the eigen-

values did not have a clear inflection point and at least six principal components were required

to explain 85% of the variance. The variance explained by the first six components were 31%,

17%, 13%, 10%, 9% and 6% (Table 3). Only the first three PCs had eigenvalues that were above

the average eigenvalue.

PC1 was correlated with RESID and TIDER, two variables that also had a strong correlation

(Table 2). The spatial distribution of PC1 (Fig 5a) showed a north-south gradient following the

characteristics of the major PC1 contributors, RESID and TIDER (Fig 2). SEDIM also had a

moderate north-south gradient, but its contribution to PC1 was opposite of RESID and

TIDER. Therefore, larger values in the PC1 map highlight the lower vulnerability to RIDER

and RESID, but higher vulnerability to SEDIM.

PC2 was mainly correlated with UVVR and ELEVA, which were also positively correlated

among each other. The other positive correlation described with these two components was

between CONDC and EXSAL. PC2 separated EXSAL from SALIN (-0.42 vs. 0.25), highlight-

ing the marsh units where there was larger salinity variation during the hurricane, but the

salinity exposure was limited by the shorter duration of inundation. Consequently, larger val-

ues of in PC2 map indicates lower vulnerability to ELAVA, UVVR and SEDIM (Fig 5b).

PC3 on the other hand, had the largest positive contributions from EXSAL and SALIN and

the largest negative contribution from SHORE. Therefore, larger values of PC3 map indicates

marsh units that are vulnerable to both salinity change and exposure to salinity but resilient to

shoreline change. These are mainly the units that are more inland (Fig 5c). East-west gradient

of EXSAL and SALIN in Fig 2 across the Manahawkin marsh can clearly be seen in PC3.

None of the variables in the first three PCs were likely to individually dominate (because of

similar contribution from many variables and magnitude of maximums less than 0.6). Because

PCA does not use the location information for the data and considering the low percentage of

explained variance by the first three PCs, a direct decomposition of the data with PCA might not

be the optimal approach. However, it is still a powerful tool discover the general trends in the

underlying data. Effects of a cluster analysis on the PCA results are presented in the next section.

Cluster analysis results

The BIC selected for three component distributions in the dataset (Fig 6). The clustering was

conducted on the normalized dataset (mean of each variable subtracted and result divided by
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Fig 4. Chronic versus episodic wetland vulnerability index. a) Based on chronic indicators (WVIC; consisted of

elevation, mean tidal range, shoreline change rate, UVVR, residence time vulnerability indicators), and b) based on

episodic indicators (WVIE; consisted of change in sediment concentration, change in salinity and salinity exposure,

marsh condition change, and exposure to contaminants vulnerability indicators).

https://doi.org/10.1371/journal.pone.0228504.g004

A geospatially resolved wetland vulnerability index

PLOS ONE | https://doi.org/10.1371/journal.pone.0228504 January 30, 2020 13 / 27

https://doi.org/10.1371/journal.pone.0228504.g004
https://doi.org/10.1371/journal.pone.0228504


standard deviation of that variable). The three components had distinct spatial characteristics

(Fig 6a). The first cluster included most marsh units in the interior of the BBLEH system that

were relatively less exposed to the influence of the inlets. The majority of the second cluster

included units in the BBLEH and Great Bay systems that were influenced by the exchange

through the inlets (most of them in close proximity to inlets). The third cluster included most

of the marsh units inside Great Bay.

The first cluster (Cluster A, BBLEH interior) had higher than global average (mean of val-

ues from all marsh units regardless of cluster) residence time and tidal range effect on vulnera-

bility (smaller tidal range) and lower than normal sediment contribution to vulnerability

(more available sediment) (Fig 6b) and included more than 50% of the marsh units. The sec-

ond component (Cluster B, inlet influence, 18% of marsh units) had higher than average con-

dition and UVVR means and lower than the global average shoreline and elevation

contributions to vulnerability (higher elevation and less shoreline erosion). The third compo-

nent (Cluster C, Great Bay, 31% of marsh units) had higher than average sediment and lower

than global mean values for contaminants, residence, and tidal range contributions to

vulnerability.

The overall effect was that Cluster A (BBLEH interior) exhibited more vulnerable condi-

tions (sum of all normalized variables in that cluster is 1.5), the second cluster was slightly less

vulnerable (-0.37 normalized sum) than the average of the system (global average is zero), and

the third cluster was even less vulnerable (-1.2 normalized sum) when compared with the

entire system. This result suggested that in general the GB marsh units were less vulnerable

(e.g., smaller WVI) than the BB units. We also determined the variables that contributed more

to the differentiation between regimes. The variables that contributed more to the cluster sepa-

ration were elevation, residence time, sediment supply, and tidal range. Salinity was the vari-

able that contributed least to the separation.

In general, the benefit of PCA after clustering is that it characterizes variance in groups that

share common features. When applied separately to each cluster, PCA resulted in a slightly

better decomposition of components than then applied globally to the entire dataset (Fig 7).

The variation explained by the first three components at each cluster was slightly larger than

with the global PCA (69%, 77%, and 74%, respectively, versus 61% globally). Each cluster can

be individually characterize further following the approach from the global PCA. For instance,

the first PC of Cluster A (BBLEH interior) was related to exposure and salinity variability (32%

of variance), while the first PC of Cluster B (inlet influence) was associated with variability in

Table 3. Principal components analysis. Principle component loadings (PC1–PC10) for each vulnerability indicator. Blue indicates loadings with a magnitude greater

than 0.4.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

CONDC 0.16 -0.30 -0.28 0.75 -0.09 0.24 0.15 0.38 0.07 0.03

SCORR -0.32 0.29 0.24 0.31 -0.04 -0.72 0.26 0.27 -0.08 -0.04

ELEVA -0.32 -0.49 0.14 -0.02 0.21 -0.18 -0.13 -0.06 0.73 -0.05

EXSAL 0.12 -0.42 0.53 0.17 -0.17 -0.12 -0.54 0.00 -0.40 -0.01

RESID -0.51 0.00 -0.08 0.23 0.05 0.23 0.00 -0.35 -0.23 -0.67

SALIN -0.10 0.25 0.58 0.05 -0.51 0.44 0.19 0.04 0.31 0.01

SEDIM 0.41 -0.14 0.17 0.24 0.03 -0.19 0.45 -0.70 0.04 0.04

SHORE -0.10 -0.16 -0.44 -0.11 -0.80 -0.27 -0.08 -0.18 0.06 0.00

TIDER -0.53 -0.03 -0.04 0.18 0.07 0.15 -0.01 -0.27 -0.20 0.74

UVVR -0.16 -0.55 0.11 -0.38 -0.04 0.06 0.60 0.25 -0.31 -0.03

Proportion 0.31 0.17 0.13 0.10 0.09 0.06 0.06 0.05 0.03 0.01

https://doi.org/10.1371/journal.pone.0228504.t003
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elevation and UVVR (32% of variance), and finally the first PC of Cluster C (Great Bay) was

related to marsh condition variability (41% of variance). The number of PCs required and the

amount of variability explained in both the global and clustered PCA were similar, which sup-

ported the earlier assumption of equal weight contributions to WVI from all indicators.

Transect analysis results

An east-west cross-section (transect T1) across the marsh units at Manahawkin Marshes (Fig

8a) showed a uniformly decreasing WVI pattern moving from mainland towards estuary. The

Fig 5. Map of principal components. Spatial distribution of the first three principal components over the entire domain.

https://doi.org/10.1371/journal.pone.0228504.g005
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WVI pattern was a result of decreasing contributions from multiple variables in the same

direction, including mainly the vulnerability related with less sediment supply (SEDIM),

change in salinity (SALIN) and potential of exposure to contamination (SCORR). Some of the

other variables also contributed to vulnerability but remain close to constant in the transect:

vulnerability to low tide range (TIDER) and low elevation (ELEVA) were severe (close to one)

at every marsh unit along transect T1 and vulnerability to shoreline change (SHORE) was con-

stantly moderate.

Another fairly uniform gradient in WVI was along transect T2 across the back-barrier

marshes in Great Bay (Fig 8b), but with decreasing vulnerability going from estuary towards

barrier island. This was because of a similar trend in TIDER, UVVR and CONDC, but was

Fig 6. Cluster classification. a) Spatial distribution of the three clusters obtained using Expectation-Maximization to separate the

sub-components. b) Departure from the mean of each indicator variable for all clusters. The values of the variables have been

normalized with positive values representing cluster means higher than global average. A value of one represents a departure of one

standard deviation from the global mean of that variable. The values in the legend represent the sum of all normalized contributions

for each cluster.

https://doi.org/10.1371/journal.pone.0228504.g006
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also a combination of different indicators. The contributions from RESID and CONDC were

negligible (close to 0) for the marsh units along transect T2. When the two transects were com-

pared, the pattern of vulnerability increased from marsh units near the bay toward inland

units in the BBLEH system, whereas in GB the pattern was reversed with less vulnerable units

being farther from the bay towards the barrier island.

Hotspot results

Based on our definition of vulnerability hotspots (WVI > 0.625 with n> 1 within 1 km, and

area� 2 km2), we identified six vulnerability hotspots (Fig 9a). The total area (and the number

of marsh units) for zones one to six was 14.6 km2 (173), 28.6 km2 (125), 23.6 km2 (158), 7.7

km2 (95), and 2.6 km2 (45), respectively. Grouping together marsh units in hotspot zones

allowed for identifying vulnerability characteristics that may be common for a specific area.

The contribution of each of the variables to each hotspot zone showed distinct differences

between areas. Hotspot HS1 in GB exhibited significantly higher than average shoreline

change and UVVR vulnerability (SHORE and UVVR > 1 in Fig 9b). Hotspot HS2 at mainland

marshes in LEH had higher than average EXSAL with smaller contributions SALIN and

Fig 7. PCA analysis of the entire dataset and the three different clusters obtained using Expectation-Maximization to separate

the components. First row: PCs of the entire dataset without cluster separation. Second row: Means and PCs of Cluster A (BBLEH

interior). Third row: Means and PCs of Cluster B (inlet influence). Fourth row: Means and PCs of Cluster C (Great Bay). v is the

fraction of total variance explained by that PC component. m is fraction of total marsh units included in each cluster.

https://doi.org/10.1371/journal.pone.0228504.g007
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SHORE. Hotspot HS3 (Manahawkin marsh) exhibited the largest normalized contribution to

vulnerability and it was caused by UVVR. TIDER and EXSAL were also contributing signifi-

cantly to the vulnerability of this hotspot. The marshes near Barnegat Inlet (hotspot HS4) were

more influenced by TIDER, EXSAL, SALIN, and RESID. Hotspot HS5 (mainland marshes in

BB) exhibited high vulnerabilities associated mainly with TIDER, RESID, SALIN and SCORR.

Finally, the vulnerability of Hotspot HS6 (northern marshes) was linked to the same factors

(TIDER, RESID, SALIN and SCORR) with the additional contribution of shoreline change.

Several factors (TIDER, RESID, SALIN, EXSAL) exhibited higher than average contribu-

tions to high vulnerability in multiple (3-4) hotspots. Meanwhile, CONDC, ELEVA and

SEDIM were not significantly different than the mean in any hotspot. This fact did not imply

that they were not contributing to marsh vulnerability, but rather that their contributions were

either constant across all hotspots (e.g., ELEVA) or that some marsh units in each of the hot-

spots contributed to lower the overall pattern of that variable in that hotspot (e.g., SEDIM).

Discussion

In this section we discuss the results of our data synthesis to assess the vulnerability of

EBFNWR salt marsh complex by looking into pairwise relations between the underlying

parameters, and presenting the advantages and relevance of the study to coastal wetland

management.

Pair correlation

Certain pairs of parameters exhibited significant correlations (Fig 10). For instance, UVVR

and elevation relation followed an exponential decay function (R = −0.41, p< 0.001, Fig 10a),

with low elevations being related to high values of UVVR. The rates of exponential decay func-

tion for most of the hotspot regions (except hotspot HS1) were larger than the global relation-

ship, indicating that highly vulnerable areas (hotspots) tended to be associated with higher

UVVR values than normal marshes at low elevations.

Fig 8. Change in underlying parameters. a) along a west-east transect T1 over the Manahawkin marsh; and b) along a

transect T2 from the barrier to the estuary in Great Bay. The values are in terms of WVI in the entire estuary. The

transect locations are indicated in the adjacent map.

https://doi.org/10.1371/journal.pone.0228504.g008
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There was a significant positive correlation (R = 0.33, p< 0.001) between residence time

and contaminants (Fig 10b) that explained around 10% of variance. Most vulnerability hotspot

areas tended to have contaminant values above the global linear relationship. One exception

was hotspot HS4 that included marshes along the barrier island near Barnegat Inlet, which was

relatively far from any of the contaminant point sources. This can be attributed to having

more registered facilities and encroachment of marshes by development towards the northern

part of the domain. The resulting higher vulnerability to contaminants showed similarity to

the vulnerability to low tidal range in the north.

Tidal range and sediment availability exhibited a significant negative correlation (R =

−0.66, p< 0.001; Fig 10c). Areas of large tidal range in the south (e.g., hotspot HS1 in Great

Bay) had less sediment, while areas in the northern part of Barnegat Bay had larger sediment

concentration during the storm as sediment was transported from south to north.

Fig 9. Vulnerability hotspot zones and trend analysis. a) The zones that satisfy both the minimum area and the

minimum number of marsh units are marked as vulnerability hotspots and assigned a number. Lines indicate the 1 km
buffer used to define the zones. The zones that satisfy only the area criterion are shown in color other than light gray.

b) Contribution of each normalized parameter to vulnerability in each of the hotspot zones. Positive values represent

above average contributions to vulnerability with values exceeding 1 (one standard deviation from average) being

significantly different from the global mean.

https://doi.org/10.1371/journal.pone.0228504.g009
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Tidal range and residence time were correlated (R = −0.76, p< 0.001) for this domain (Fig

10c) but the correlation was not high enough to exclude one of them from the vulnerability

index. In fact, one variable explains less than 60% of the variance from the other, so excluding

one would have removed substantial and, in some areas maybe critical, information. Addition-

ally, in other estuaries where stronger riverine discharge enhances flushing, residence time

Fig 10. Relation between pairs of variables with significant (P< 0.001) correlations. a) UVVR vs elevation; b)

Contaminants vs residence time; c) residence time vs tidal range; and d) sediment vs tidal range. The data points are

color coded by each hotspot (see Fig 9 for hotspot location). The black line is the linear regression fit for each pair with

equation and coefficient of determination indicated. For UVVR vs elevation individual regression lines for each

hotspot are also displayed color coded.

https://doi.org/10.1371/journal.pone.0228504.g010
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and tidal range may not be highly correlated. For these reasons, we included both of these

parameters for contrasting to prospective applications of the method to other estuaries.

Spatial footprint

Coastal wetlands usually extend continuously over large areas, which makes it difficult to plan

for systematic management. Our physics based delineation of the marsh system into coastal

marsh units provides flexibility. Dividing a large complex into smaller units reveals spatial var-

iation of physical state within a complex and facilitates prioritizing parts of it for action.

Field measurements are an essential part of wetlands research. Here we have used results

from numerical models calibrated with field measurements and supplemented them with

remote sensing measurements where appropriate. Spatial coverage is scattered when only a

limited number of point measurements can be provided by field campaigns. In comparison, as

we demonstrated here, aerial imagery and remote sensing data provided seamless geospatial

coverage over an entire domain. We combined geospatial data with image analysis methods to

provide interpretive results that are consistent and complete over the entire domain. There are

many studies (e.g., [11, 67–69]) that rely on point measurements (e.g., surface-elevation tables

and marker horizons) and metrics defined in the vertical direction to assess the resilience of

marshes at locations such as the National Estuarine Research Reserve System (NERRS; e.g.,

Great Bay National Estuarine Research Reserve) or Long Term Ecological Research program

(LTER; e.g., Plum Island Estuary) monitoring and research sites. These vertical metrics and

our geospatial approach should complement each other when used in tandem. Additionally,

synthesizing various datasets enabled investigating the correlation between multiple factors

and assess their cumulative impact.

Relevance of vulnerability index

The vulnerability index approach provides a way to combine the sensitivity of the marsh sys-

tem to external and internal forcing (susceptibility) and the ability to adapt to changing envi-

ronmental conditions (resiliency). While the index should not be used as an indication of

specific changes in the marsh system, it provides a method to highlight areas that are more

likely to suffer change. By examining the contributions of different layers to the index at spe-

cific locations, it can also help identify the main factors leading to marsh changes. In most

cases the socioeconomic cost of restoration may be lower at sites with a relatively small num-

ber of severe problems than at sites with less severe but many problems [70]. With this

approach coastal mangers can explore the marsh system to quickly locate the most severely

vulnerable units and then strategize how to allocate resources to tackle the major drivers by

examining the contribution from underlying datasets. We have demonstrated this with the

hotspot analysis. We selected marsh units with high vulnerability and analyze the indicators to

discover local relationships among the indicators. In a case where the resources are already

allocated for action against certain drivers, then the same approach can also be used to identify

locations where the best return on investment is likely (i.e., prioritize shoreline protection for a

unit with less vulnerability to the rest of the drivers rather than for a unit that is already

severely impacted by them).

There are many challenges in designing a wetland vulnerability index: having heteroge-

neous datasets which may describe diverse physics and may involve units of different scales

and values with unbounded limits; having parameters with unknown or yet to be established

critical values; having a combination of datasets that are of episodic and chronic nature; having

unclear relative weights of each parameter, etc. Many of these require assumptions to be made

starting with the intermediate steps. Additionally, the method should be applicable to different
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domains and should be able to accommodate the technological progresses in data quality and

data processing. Because of these reasons, a method that is flexible, reproducible and that can

support a recurrent re-synthesis and re-analysis approach is ideal. In this study we have pro-

vided a framework demonstrating how this can be achieved with the existing datasets and our

current understanding of their role in wetland vulnerability. This framework should be used

in the exploratory sense and updated when a re-synthesis and re-analysis is necessary to

accommodate technological changes, changes to the domain and changes in our understand-

ing of the problem. As suggested in an earlier study [24], the imperative we have should be to

apply the best possible solution while revising the methods for possible improvements instead

of waiting for the perfect solution in the face of escalating impacts.

Link to management

Aggregating all the related indicators into a single vulnerability index has the benefit of priori-

tizing the most critical marsh units in a systematic way. Coastal wetlands provide a broad

range of ecosystem services ranging from providing natural habitat to sequestering carbon and

any salt marsh loss means reduction in the capacity of these services. Loss can be caused by

any combination of marsh shoreline change, exposure to contaminants, limited nutrient and

sediment supply, etc. The benefit of aggregating indicators into a single vulnerability index is

that it immediately reflects the overall state of the system rather than each individual indicator

separately. The method we present here satisfies this condition, but also provides the underly-

ing data and interrelations for further interpretation. Additionally, using a ranking system

facilitates assessing the relative vulnerability within each dataset. Without the prior knowledge

of absolute vulnerability, the parameters can be classified from low to severe based on their rel-

ative vulnerability. This makes the method consistent and applicable to any study area. A per-

centile ranking provides equal number of members in each bin, which assigns the same weight

to each bin.

In cases with limited resources, planners can decide which marsh units to prioritize based

on the ecosystems value of the marsh unit and the level of vulnerability. For example, if a

coastal manager is interested in the habitat suitability for coastal waterbirds in the Forsythe

complex, they can estimate the physical evolution of these habitats using the vulnerability

index. They can further investigate the underlying datasets to see if there is any general, spa-

tially uniform pattern in any specific indicators (e.g., shoreline retreat everywhere) or any

severe vulnerability because of contributions from several factors locally (e.g., vulnerability to

exposure to contaminants, lack of sediment supply, etc). This sort of analysis should be benefi-

cial to identify the type of vulnerability and allocate resources accordingly early in the project

lifetime.

Conclusion

Marsh vulnerability is often not determined by a single indicator. A combination of several

indicators is needed to properly assess the state of a marsh and its ability to recover from dis-

turbances. We considered several data layers to provide information to researchers and coastal

managers to evaluate wetland vulnerability. To standardize the steps taken in creating an

index, we proposed a reproducible method that can also be applied to other domains. First, we

introduced a novel approach to divide a marsh complex in to hydrologically defined marsh

units, which facilitated assessing the parts of a large complex for relative vulnerability while

reducing the subjectivity in definition of each unit. Then, we considered variables from various

sources ranging from observational data to numerical models and ranked them to obtain spa-

tially varying vulnerability indicators. The synthesis of data was done through an aggregation
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of the indicators to obtain a wetland vulnerability index that is customizable and extensible.

We demonstrated the customization by creating two different vulnerability indices for chronic

and episodic indicators separately. The extensibility comes with inclusion of new indicators.

Our analysis highlighted the strong correlation between the residence time and tide range

in the E.B. Forsythe NWR. It also indicated correlation between elevation and unvegetated to

vegetated marsh ratio. Sediment budgets of microtidal marsh complexes on the Atlantic and

Pacific coasts of the United States consistently scale with unvegetated to vegetated marsh ratio

despite differences in sea-level rise, tidal range, elevation, vegetation, and stressors [16]. This

highlights UVVR as one of the strongest indicators of microtidal marsh stability. Because of its

correlation with UVVR we could also conclude that the vulnerability to low elevation was a

major factor that determined the regional structure in the Forsythe complex. Overall, the wet-

land vulnerability was highest in Barnegat Bay, and decreased slightly in Little Egg Harbor and

more substantially in Great Bay. This pattern was also seen in the vulnerability index based

only on the chronic indicators, while the index based on episodic indicators had a structure

opposite of the chronic index in northern Barnegat Bay and Great Bay.

We provide a comprehensive set of datasets that can be used for various approaches to

determine the vulnerability of coastal wetlands. The set of data from this study can be com-

bined with other prospective studies (specifically the ones that investigate the biogeochemical

aspects, such as invasive species, herbivore access, increased carbon dioxide concentration etc)

to establish alternative or more comprehensive indicators. At the estuary scale, we used the

marsh unit elevation as an indicator of vulnerability to sea-level rise. When applied at larger

scales the spatial variability of climate change, sea-level rise become important and these can

be incorporated as additional layers to construct a global index. Therefore, the index approach

described in this study can be conducted in almost any spatial scale and with data layers repre-

sentative of specific regional marsh characteristics. As such, it represents a flexible methodol-

ogy to assess vulnerability at multiple scales and, when used properly, it can facilitate marsh-

related planning and decision-making.
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