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Abstract

Aim: High-risk pedigrees (HRPs) are a powerful design to map highly penetrant risk genes. 

We previously described Shared Genomic Segment (SGS) analysis, a mapping method for single 

large extended pedigrees that also addresses genetic heterogeneity inherent in complex diseases. 

SGS identifies shared segregating chromosomal regions that may inherit in only a subset of 

cases. However, single large pedigrees that are individually powerful (at least 15 meioses between 

studied cases) are scarce. Here, we expand the SGS strategy to incorporate evidence from two 

extended HRPs by identifying the same segregating risk locus in both pedigrees and allowing for 

some relaxation in the size of each HRP.
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Methods: Duo-SGS is a procedure to combine single-pedigree SGS evidence. It implements 

statistically rigorous duo-pedigree thresholding to determine genome-wide significance levels that 

account for optimization across pedigree pairs. Single-pedigree SGS identifies optimal segments 

shared by case subsets at each locus across the genome, with nominal significance assessed 

empirically. Duo-SGS combines the statistical evidence for SGS segments at the same genomic 

location in two pedigrees using Fisher’s method. One pedigree is paired with all others and the 

best duo-SGS evidence at each locus across the genome is established. Genome-wide significance 

thresholds are determined through distribution-fitting and the Theory of Large Deviations. We 

applied the duoSGS strategy to eleven extended, myeloma HRPs.

Results: We identified one genome-wide significant region at 18q21.33 (0.85 Mb, P = 7.3 × 

10−9) which contains one gene, CDH20. Thirteen regions were genome-wide suggestive: 1q42.2, 

2p16.1, 3p25.2, 5q21.3, 5q31.1, 6q16.1, 6q26, 7q11.23, 12q24.31, 13q13.3, 18p11.22, 18q22.3 

and 19p13.12.

Conclusion: Our results provide novel risk loci with segregating evidence from multiple HRPs 

and offer compelling targets and specific segment carriers to focus a future search for functional 

variants involved in inherited risk formyeloma.

Keywords

High-risk pedigrees; gene mapping; multiple myeloma; disease susceptibility

INTRODUCTION

Multiple myeloma (MM) is the second most common adult-onset lymphoid neoplasm and 

has the worst 5-year survival[1]. Inherited germline susceptibility for MM is consistently 

supported[2]: excess MM risk among relatives has been observed in family aggregation[3,4], 

epidemiologic case-control[5–9], and registry-based[10,11] studies. Disease rarity, short 

survival, clinical and locus heterogeneity challenge study ascertainment and genetic 

discovery[12]. Genome-wide association studies have identified 23 loci harboring common-

risk single nucleotide polymorphisms (SNPs) for MM[13–19]. Family-based studies have 

identified rare germline variants in ARID1A and USP45[20], KDM1A[21], and DIS3[22] 

in exome sequencing. However, considerable missing heritability remains. Additional 

approaches are needed to aid the detection of the remaining risk loci and genes.

We recently described a novel strategy to map genes involved in complex disease risk using 

extremely large high-risk pedigrees and allowing for intra-familial heterogeneity, called 

Shared Genomic Segment (SGS)[20]. Cases sharing genomic segments from a common 

ancestor through 15 meioses or more are unexpected at a genome-wide level[23], and hence 

a single large high-risk pedigree (HRP) can provide the power to identify novel loci with 

genome-wide significance[24]. Our resource of eleven large myeloma pedigrees included 

several with 3–4 cases and meioses in the 8–14 range[20]. While these remain extremely 

large families, they may lack sufficient power individually for genome-wide significance. 

Also, a multi-pedigree strategy is attractive. Evidence for the same risk locus in two 

extended pedigrees adds confidence to the locus and can build on the power of both. The 
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remaining challenge for any multi-pedigree approach, however, is to adequately address 

heterogeneity between pedigrees[25].

Here, we expand the SGS method based on combining evidence from pairs of HRPs, 

while still allowing for intra-familial heterogeneity within each pedigree. In our approach, 

duo-SGS, we fix one pedigree and optimize over all pedigree pairs to balance discovery with 

multiple testing. Both pedigrees must have a segregating genomic segment at the same risk 

locus. The method is robust to allelic heterogeneity as different alleles at the same locus may 

be shared within each pedigree. We apply the duo-SGS approach to eleven MM HRPs to 

identify novel loci involved in myeloma risk.

METHODS

Duo-SGS method

An overview of the duo-SGS approach can be found in Figure 1. After identifying HRPs and 

genotyping cases, the observed shared genomic segments in single pedigrees are established 

and compared between pedigrees, and genome-wide thresholds are determined.

Observed duo-SGS sharing

The single pedigree SGS approach has been described previously[20]. Briefly, the single 

SGS approach identifies shared observed genomic segments by defining consecutive runs 

of SNPs that are identity-by-state in a group of cases (Figure 1, Step 2). If the length 

of an observed segment is significantly longer than it would be by chance, inherited 

sharing (identity-by-descent) is implied. The nominal significance of each segment is 

assessed empirically. Expected length sharing under the null hypothesis is generated using 

a gene-dropping algorithm (Figure 1, Step 3). Chromosomes are assigned to the pedigree 

founders (those with no parents in the pedigree) randomly and according to a population 

linkage disequilibrium model. These simulated chromosomes are “dropped” through the 

pedigree structure using Mendelian inheritance expectations according to a genetic map for 

recombination. All members of the pedigree receive genotypes under the null hypothesis, 

and simulated genomic segments from this null configuration are established. These 

simulations are repeated at least one million times. The empirical P-value for an observed 

segment is the proportion of simulated segments that are identical or encompass the 

observed segment to the number of simulations. All subsets of at least two cases within 

a pedigree are assessed for observed segments. Then, at every position across the genome, 

the best evidence (lowest empirical P-value) for an excessive length of sharing is established 

(Figure 1, Step 4). This process results in a final optimized set of shared segments for a 

single pedigree. Each optimal segment corresponds to a specific subset of cases and has a 

nominal empirical P-value.

For two pedigrees, the duo-SGS evidence is the combination of the nominal empirical 

P -values for the optimal segments at the same genome position in the two pedigrees. 

Specifically, the Fisher method to combine P-values was used. All possible pedigree pairs 

could be considered as separate analyses, but there are nC2 pedigree pairs (ways to select 2 

pedigrees from n total pedigrees), and hence multiple testing can rapidly become an issue. 
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Alternatively, a single analysis comprising optimization across all pedigree pairs could be 

considered, but this global approach may cloud individual pedigree-pair findings. To balance 

these two extremes, we propose a fixed-pedigree duo-SGS strategy (Figure 1, Step 5). The 

procedure is as follows: (1) fix a pedigree of interest; (2) calculate genome-wide duo-SGS 

evidence for the fixed pedigree with each of the other pedigrees; and (3) optimize across the 

duo-SGS findings to identify the most significant duo-SGS result at each point across the 

genome. The optimized findings over pedigree pairs are the duo-SGS results for the fixed 

pedigree. In this approach, we identify the best two-pedigree results that include the fixed 

pedigree. The procedure is then repeated for each pedigree, thus producing duo-SGS results 

for each pedigree.

Genome-wide thresholds for duo-SGS

Critical to interpreting the observed duo-SGS results are genome-wide significance duo-SGS 

thresholds for each pedigree (Figure 1, Step 6). To establish these, we echo the same 

optimization process in null data. Establishing these thresholds is similar to the calculation 

described for the single pedigree SGS method[20]. Under the reasonable assumption that the 

vast majority of the genome represents chance sharing (i.e., most of the genome does not 

contain a disease risk gene) we model the distribution for null sharing on the distribution of 

the empirical P-values for each pedigree. To avoid comparing the findings to themselves or 

skewing to possible true-positives, the empirical-P-values are perturbed, and the distribution-

fitting is performed at 1 million simulations. The latter is to avoid inappropriate distribution-

fitting to extreme outliers, the few results from the alternate hypothesis if included at 

their final resolution. To perturb an empirical P-value we determine its Wilson score 95% 

confidence interval (CI) (Equation 1) and randomly sample a value from within it.

CI = 1
1 + z2

n

p + z2

2n ± z
1 + z2

n

p(1 − p)
n + z2

4n2 Equation 1

where p is the empirical P-value, z is 1.96 (for the 95%CI), and n is the number of 

simulations (here, 1,000,000). The Wilson interval was selected because it always produces 

non-negative confidence bounds for the P-values. The genome-wide set of perturbed 

empirical P-values for a pedigree are considered the “null” P-values for that single pedigree. 

The duo-SGS procedure (described above) is performed using the single pedigree genome-

wide null P-values. The result of this process is a set of optimal duo-SGS null P-values.

Genome-wide significant and suggestive thresholds are determined following our previously 

described method for single pedigree SGS[20]. Briefly, the null duo-SGS P-values are log-

transformed and fitted to a gamma distribution. The shape (k) and rate (σ) parameters of 

the fitted distribution are applied using the Theory of Large Deviations to calculate the 

significance thresholds by solving:

μ(X) = [C + 2GX]α(X) Equation 2

where μ(X) is the genome-wide false positive rate, C is the number of chromosomes, α(X)
is the probability of exceeding X ∼ χ2k

2 , and G is the genome length in Morgans[26]. The 
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false-positive rate is set to 0.05 for the genome-wide significant threshold and 1.0 for the 

genome-wide suggestive threshold. After solving for X, the threshold, T is determined by 

T = 10
−Xσ

2 . Thresholds are specific to each fixed pedigree to assess their duo-SGS results.

MM high-risk pedigrees

The statewide Utah Cancer Registry (UCR) has been an NCI-supported Surveillance, 

Epidemiology, and End Results (SEER) Program registry since its inception in 1966. 

The UCR was utilized to invite all individuals with myeloma in the state to participate. 

Peripheral blood was collected for DNA extraction from individuals who completed 

informed consent.

The Utah Population Database (UPDB) is a unique resource[27]. It includes a 16-generation 

genealogy of approximately 5 million people with at least one event in Utah that is record-

linked to the UCR and state vital records. Using the UPDB, ancestors whose descendants 

have an excess of disease based on internal cancer rates and years at risk can be identified 

and studied as HRPs. The UPDB was used to identify ancestors whose descendants showed 

a statistical excess of MM (P < 0.05). The expectation was based on internal disease rates 

based on birth cohort, sex, birthplace (in/outside Utah), and years at risk. The total number 

of myeloma cases in each HRP identified ranged from 4 to 37 cases. After annotating the 

pedigrees with those with DNA, 11 pedigrees were identified to contain 3 or 4 myeloma 

cases with DNA (28 individuals; 8 individuals were in more than one pedigree). In each 

pedigree, the cases were separated by 8 to 23 meioses.

DNA from the 28 cases was genotyped on the Illumina Omni Express high-density SNP 

array at the University of Utah. Only high-quality bi-allelic SNPs and individuals with 

adequate call rates across the genome were included. The PLINK software[28] was used for 

quality control. SNPs with < 95% call rate across the 28 individuals were removed. After 

filtering, 678,447 SNPs remained. These SNPs were transformed to match 1000Genomes 

strand orientation.

Individuals were removed if < 90% of the filtered SNPs are called. One myeloma case had 

a < 90% call rate and was eliminated from the study. We also checked for sex inconsistency 

based on the genotypes - all cases passed. PLINK relationship estimates were compared 

with the UPDB pedigree structures - no issues were found.

The duo-SGS method was applied to the MM pedigrees to identify regions with genome-

wide suggestive or significant evidence. Post-hoc, some duo-SGS regions were removed 

from consideration. Duplicate regions occur when the same pair of pedigrees identify the 

same region in both their fixed-pedigree results. In these situations, duo-SGS P-values are 

identical, but thresholds vary by which pedigree is fixed, potentially leading to different 

significance levels. The most significant result was reported, and the lesser removed. If an 

individual resided in two pedigrees and also shared the region in both pedigrees, the region 

was removed. If the region spanned a centromere, it was removed. Forty-two suggestive 

regions were removed as duplicates, involving an overlap individual or at the centromere.
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RESULTS

Duo-SGS findings were identified for each of the eleven MM HRPs. The significance 

thresholds for each fixed pedigree are in Table 1. One region at 18q21.33 reached genome-

wide significance and 13 regions were genome-wide suggestive. Table 2 shows the details 

of the significant or suggestive regions identified, including the duo-SGS P-value, expected 

rate per genome μ(t), the two pedigrees involved, each segregating shared region in the 

pedigrees, and the overlapping region.

The genome-wide significant region at 18q21.33 [duo-SGS P = 7.3 × 10−9, μ(t)] was found 

in pedigree pair UT-549917/UT-48833. A 1.2 Mb chromosomal segment (chromosome 

18 57,945,60259,167,836 bp) segregated to three MM cases separated by 17 meioses in 

pedigree UT-549917 (single pedigree P = 2.8 × 10−5). A nested 0.8 Mb chromosomal 

segment (58,208,260–59,059,262 bp) was observed in four MM cases separated by 23 

meioses in pedigree UT-48833 (single pedigree P = 1.1 × 10−5). The intersecting 0.8 Mb 

region overlaps one gene: Cadherin 20 (CDH20). Figure 2 shows the two regions and the 

overlap.

Thirteen loci were found with genome-wide suggestive evidence [Table 2]. In four of these 

loci, several pedigree pairs provide duo-SGS evidence beyond genome-wide suggestive. 

The locus at 6q16.1 was previously identified as significant in single pedigree SGS in 

UT-571744, with risk variants in USP45 implicated[20]. Here, we find five pedigree pairs, all 

including UT-571744, and provide suggestive evidence, including one pair which achieves 

the second-highest duo-SGS significance in the study [μ(t) = 0.121, P = 7.8 × 10−8]. The 

6q26 region achieves suggestive evidence in four pedigree pairs and harbors the PARK2 
gene. At 5q21.3 four pedigree pairs show suggestive evidence and the locus contains the 

gene FBXL17. The locus at 7q11.23 is also supported by two genome-wide suggestive duo-

SGS results. The remaining suggestive loci were supported by one pedigree pair: 1q42.2, 

2p16.1, 3p25.2, 5q31.1, 12q24.31, 13q13.3, 18p11.22, 18q22.3 and 19p13.12. Genes in each 

of the duo-SGS regions are shown in Table 3.

DISCUSSION

We expanded the shared genomic segment method to identify segregating chromosomal 

segments with overlapping statistical evidence from two HRPs. The strategy allows for 

genetic heterogeneity within each pedigree and provides formal significance thresholds 

for interpretation. The approach circumvents issues of intra-familial heterogeneity that can 

hinder mapping in large pedigrees. For complex diseases, large HRPs are likely enriched 

for multiple susceptibility variants[24] and sprinkled with sporadic cases; hence methods 

that require all cases to share to attain discovery power are not suitable. Here we optimize 

over subsets within pedigrees and consider pairing with all other pedigrees to provide the 

flexibility required. The method also specifically defines which pedigrees and cases share 

evidence at a locus, which is imperative for follow-up sequencing. Additional value may be 

gained by comparing demographic or clinical characteristics of the sharers in each pedigree 

to nuance the phenotype which may aid future gene mapping and provide insight into the 

nature of the mechanism of risk at a locus.
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Application of the novel duo-SGS approach to eleven MM HRPs implicated a novel 

genome-wide significant region at 18q21.33 in MM risk, as well as 13 suggestive regions. 

Other than 6q16.1, which overlaps with our previous single pedigree SGS study, all 

loci identified in this study provide novel regions of interest in myeloma. None of the 

regions overlapped with existing genome-wide association study loci or other prior rare 

risk variants implicated in MM. A next step would be to investigate the loci for rare and 

deleterious coding variants or regulatory variants. Pedigree segregation methods can provide 

statistically compelling regions to concentrate efforts to identify and characterize regulatory 

risk variants. Also, SGS results can be used as genomic annotations of prior evidence 

to layer with additional omic information or provide a focused region for interrogating 

regulatory risk variants.

The literature supports a role of some of the genes found in our duo-SGS regions in MM. 

The genome-wide significant region at 18q21.33 contained CDH20, a gene that plays a role 

in intracellular adhesion by forming cadherin junctions. Cadherins have been suggested in 

solid tumor invasion, and metastasis as disruption to cell-cell junctions is a prerequisite[29]. 

Solid tumors co-aggregate in MM families suggesting a shared genetic background[10]. At 

6q26, several pedigree pairs were genome-wide suggestive, and the overlapping segments 

fall in PARK2 which mediates proteasomal degradation. PARK2 is a tumor suppressor[30] 

and the gene harbors risk variants for lung cancer[31].

While the duo-SGS approach is useful for analyzing pedigrees smaller than those typically 

required for the single pedigree SGS approach, a large number of meioses are still required. 

The HRPs in this study are still substantially larger than those available in most family-

based resources (8–23 meioses between sampled cases). Hence the method has practical 

limitations in other settings. Nonetheless, the interesting regions identified in large pedigrees 

provide evidence that can be used to narrow the search for risk variants in smaller families as 

well, as demonstrated in our prior study[20].

As in all family-based genetic studies, our results could be sensitive to inaccurate pedigree 

structures. However, relationship and ethnicity checks are standard protocols and mitigate 

the possibility of error. Another limitation to this study is the observational nature. 

Additional functional studies will be required to describe causation and characterize the 

mechanisms involved in these loci and myeloma risk.

We have identified several novel loci that segregate in at least two myeloma HRPs. These 

loci are likely to harbor genes and rare risk variants for MM and are compelling new targets 

for inherited risk to MM.

In conclusion, we developed a novel strategy for gene mapping in complex traits that uses 

multiple large high-risk pedigrees. The approach is robust to heterogeneity both within 

and between pedigrees and formally corrects for multiple testing to allow for statistically 

rigorous discovery. We applied this strategy to MM, a complex cancer of plasma cells, and 

identified one novel genome-wide significant locus at 18q21.33 and 13 suggestive loci. Our 

study offers a new technique for gene mapping and demonstrates its utility to narrow the 

search for risk variants in complex traits.
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Figure 1. 
Overview of the duo-SGS method. SGS: Shared genomic segment; SNP: single nucleotide 

polymorphism.
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Figure 2. 
Duo-SGS genome-wide significant region. +/− indicates genotyped cases and SGS carrier 

status. Squares indicate male and circles female. Filled in shapes have a MM diagnosis. 

Pedigrees are trimmed to descendants with a MM case. SGS: Shared genomic segment; 

MM: multiple myeloma.
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Table 1.

Multiple myeloma high-risk pedigrees and duo-SGS thresholds

Pedigree
Multiple myeloma cases Duo-SGS thresholds

Total Genotyped Meioses Significant Suggestive

260 31 3 16 3.82 × 10−8 4.31 × 10−7

2122 5 3 18 3.10 × 10−8 3.66 × 10−7

4823 4 3 13 1.02 × 10−7 8.92 × 10−7

20245 4 3 13 8.56 × 10−8 7.71 × 10−7

34955 12 3 16 3.94 × 10−8 4.35 × 10−7

48833 20 4 23 1.01 × 10−8 1.21 × 10−7

546699 14 2 11 2.21 × 10−7 1.92 × 10−6

549917 18 4 21 1.11 × 10−8 1.29 × 10−7

571744 37 3 20 2.23 × 10−8 2.90 × 10−7

576834 9 4 16 2.80 × 10−8 2.61 × 10−7

651626 6 3 13 8.32 × 10−8 7.50 × 10−7
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Table 3.

Protein coding genes in duo-SGS regions by locus

Locus Gene name Start End

1q42.2 KCNK1 233,749,750 233,808,258

3p25.2 TIMP4 12,194,551 12,200,851

PPARG 12,328,867 12,475,855

TSEN2 12,525,931 12,581,122

C3orf83 12,556,433 12,602,558

MKRN2 12,598,513 12,625,212

RAF1 12,625,100 12,705,725

TMEM40 12,775,024 12,810,956

CAND2 12,837,971 12,913,415

RPL32 12,875,984 12,883,087

IQSEC1 12,938,719 13,114,617

5q21.3 FBXL17 107,194,736 107,717,799

5q31.1 C5orf15 133,291,201 133,304,478

VDAC1 133,307,606 133,340,824

TCF7 133,450,402 133,487,556

SKP1 133,484,633 133,512,729

CTD-2410N18.5 133,502,861 133,561,762

PPP2CA 133,530,025 133,561,833

CDKL3 133,541,305 133,706,738

6q16.1 POU3F2 99,282,580 99,286,660

FBXL4 99,316,420 99,395,849

FAXC 99,719,045 99,797,938

COQ3 99,817,276 99,842,080

PNISR 99,845,927 99,873,207

USP45 99,880,190 99,969,604

CCNC 99,990,256 100,016,849

PRDM13 100,054,606 100,063,454

6q26 PARK2 161,768,452 163,148,803

7q11.23 CCL24 75,440,983 75,452,674

RHBDD2 75,471,920 75,518,244

POR 75,528,518 75,616,173

STYXL1 75,625,656 75,677,322

MDH2 75,677,369 75,696,826

SRRM3 75,831,216 75,916,605

HSPB1 75,931,861 75,933,612

YWHAG 75,956,116 75,988,348

SRCRB4D 76,018,651 76,039,012

ZP3 76,026,835 76,071,388

DTX2 76,090,993 76,135,312
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Locus Gene name Start End

UPK3B 76,139,745 76,648,340

POMZP3 76,239,303 76,256,578

CCDC146 76,751,751 76,958,850

FGL2 76,822,688 76,829,143

GSAP 76,940,068 77,045,717

12q24.31 HNF1A 121,416,346 121,440,315

C12orf43 121,440,225 121,454,305

OASL 121,458,095 121,477,045

13q13.3 DCLK1 36,345,478 36,705,443

18p11.22 RAB31 9,708,162 9,862,548

18q21.33 CDH20 59,000,815 59,223,006

19p13.12 CYP4F3 15,751,707 15,773,635

CYP4F12 15,783,567 15,807,984

OR10H2 15,838,834 15,839,862

OR10H3 15,852,203 15,853,153

OR10H5 15,904,761 15,905,892

OR10H1 15,917,817 15,918,936

CYP4F2 15,988,833 16,008,930

CYP4F11 16,023,177 16,045,677

OR10H4 16,059,818 16,060,768

TPM4 16,177,831 16,213,813

Genomic coordinates in GRCh37.
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