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ABSTRACT Lactobacillus brevis Oregon-R-modENCODE strain BDGP6 was isolated
from the gut of Drosophila melanogaster for functional host-microbial interaction
studies. The bacterial chromosome is a single circular DNA molecule of 2,785,111 bp
with a GþC content of 46%.

The gut microbiome of Drosophila melanogaster is dominated by species from the
genera Lactobacillus and Acetobacter (reviewed in references 1–3). Lactobacillus

species produce vitamin B2, which is important for larval development (4, 5), increases
amino acid metabolism, and promotes larval growth under conditions of nutrient scar-
city (6). The first draft sequence of Lactobacillus brevis from Drosophila melanogaster,
published in 2014, consisted of 117 contigs (3). We report here the complete bacterial
chromosomal sequence, consisting of a single circular DNA molecule.

Lactobacillus brevis Oregon-R-modENCODE strain BDGP6 was isolated from the gut of
Drosophila melanogaster as a single colony from lactobacillus MRS agar plates and cultured
at 37°C for 16 to 18h in MRS broth without shaking, and an aliquot was used for 16S V1
and V4 PCR (7) and sequence identification (reviewed in reference 8). DNA was isolated by
cetyltrimethylammonium bromide (CTAB)/NaCl and phenol-chloroform extractions, fol-
lowed by cesium chloride banding and isopropanol precipitation (9); then, it was sent to
the National Center for Genome Resources (NCGR; Santa Fe, NM) for whole-genome
sequencing using Pacific Biosciences (Menlo Park, CA) long-read sequencing on the RS II
instrument (10). A single-molecule real-time (SMRT) cell library was constructed with 5 to
10mg of unsheared DNA, size selected to.7 kb (BluePippin, Sage Science) using the
PacBio 20-kbp protocol, and sequenced on one SMRT cell using P6 polymerase and C4
chemistry with 6-h movie times. Quality control filtering was performed via the PacBio
SMRT Analysis Portal with smrtanalysis_2.3.0.140936.p5.167094 software. Default parame-
ters were used for all software tools, except when otherwise noted.

Sequencing yielded 22,365 reads totaling 319,828,877bp (chromosomal coverage,
.70-fold), with a filtered mean read length of 14,300bp and an N50 value of 20,694bp. A
de novo assembly was constructed using the HGAP2 protocol from SMRT Analysis v2.0
(11, 12). The final contig was manually trimmed and reviewed to produce a single circu-
lar chromosome. The sequence quality was assessed using minimap2 (13). The percent-
age of reads mapping to the assembly is 82.84%, and the estimated coverage is 72.58�.
The remaining reads map to likely plasmids not characterized here. Annotations were
predicted using the RAST v2.0 (annotation scheme, ClassicRAST) tool (14) and the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v4.2 (15).

The PGAP annotation predicted 2,676 protein-coding genes, 60 pseudogenes, 5 rRNA
operons, and 71 tRNAs, 70 with canonical anticodon triplets and 1 undetermined (tRNA-
OTHER). Of the 2,676 protein-coding genes, 332 are contained within candidate pro-
phages. Like other L. brevis strains, BDGP6 contains integrated likely prophages. There are
nine copies, namely, five complete, ranging in size from 38,511 to 49,964bp, and four par-
tial copies, ranging in size from 4,871bp to 13,432bp. Together, the prophage regions
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constitute 8.6% of the genome sequence. At the nucleotide level, they have little sequence
similarity except for two copies that share 92% similarity (BLASTN v2.0MP-WashU) (16) for
about 10 kb. Two cornerstone proteins highly conserved in prophages, the large terminase
subunit and the portal protein (reviewed in reference 17), are encoded by four complete
prophage copies. Based on its growth in MRS broth supplemented with antibiotics, strain
BDGP6 is resistant to tetracycline (20mg/ml), spectinomycin (50mg/ml), kanamycin (50mg/
ml), gentamicin (20mg/ml), and chloramphenicol (0.5mg/ml), likely aided by 39 genes
encoding ribosomal protection, efflux transporter, and antibiotic-modifying proteins. KEGG
Automatic Annotation Server (18) pathway analysis showed that the genome encodes 56
enzymes involved with B vitamin metabolism and biosynthesis. In addition to vitamin B2
(riboflavin), L. brevis BDGP6 encodes a vitamin B5 (pantothenate) transporter, a cystine
transporter (cystine is converted to two cysteines under high pH), and the biosynthetic
pathway (five genes encoding the enzymes pantothenate kinase [CoaA], coenzyme A
[CoA] biosynthesis bifunctional protein [CoaBC], phosphopantetheine adenylyltransferase
[coaD], and dephospho-CoA kinase [coaE]) to convert these two molecules into CoA, an
essential component of fatty acid synthesis and energy production.

Data availability. The chromosome sequence of Lactobacillus brevis Oregon-R-
modENCODE strain BDGP6 is available under the GenBank accession number CP024635.
The sequencing reads are available under the SRA accession number SRR12450050.
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