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Abstract

Often linear regression is used to perform mediation analysis. However, in many

instances, the underlying relationships may not be linear, as in the case of placental-

fetal hormones and fetal development. Although, the exact functional form of the

relationship may be unknown, one may hypothesize the general shape of the relation-

ship. For these reasons, we develop a novel shape-restricted inference-based method-

ology for conducting mediation analysis. This work is motivated by an application

in fetal endocrinology where researchers are interested in understanding the effects of

pesticide application on birth weight, with human chorionic gonadotropin (hCG) as

the mediator. We assume a practically plausible set of nonlinear effects of hCG on

the birth weight and a linear relationship between pesticide exposure and hCG, with

both exposure-outcome and exposure-mediator models being linear in the confound-

ing factors. Using the proposed methodology on a population-level prenatal screening
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program data, with hCG as the mediator, we discovered that, while the natural direct

effects suggest a positive association between pesticide application and birth weight,

the natural indirect effects were negative.

Key Words: Birth-weight; Constrained inference; Human chorionic gonadotropin

(hCG); Mediation analysis; Placental-fetal hormones; Pesticides exposure; Regression

spline; Shape-restricted inference.

1 Introduction

Population level life course data, originating during the fetal period, were originally

used to develop the developmental origins of health and disease hypothesis (Barker,

2003). For example, infants whose mothers were exposed to famine in Europe in the

last two trimesters during World War II tended to have lower birth weight and this was

consequential for their subsequent risk of schizophrenia and adult cardiovascular disease

(Hoek et al., 1998, van Abeelen et al., 2011). Later in his career, David Barker actively

pursued measures of the placenta as a mediator to support his theory (Barker and

Thornburg, 2013). However, these associations are challenging to interpret causally

due to the many potential explanations and the lack of a causal mediator that can

conceptually and quantitatively link the exposure and the outcome. Recently, Adibi

et al. (2021a) established a methodology accounting for the role of placenta in a causal

framework to address this gap.

Even though the analysis of a direct exposure-outcome effect is usually intuitive

and easy to interpret, inclusion of a putative mediator can further strengthen causal

inference and offer key insights to the reporting of an association. In some physiologic

examples, such as pregnancy, it is implausible to not consider the role of the mediator.

The placenta, a pregnancy-specific organ, is a physical and biologic interface between

the mother and the fetus, and plays an important role in fetal growth (Benirschke and

Kaufmann, 2000). For example, the placenta provides the fetus with nutrients. It can

serve as a barrier and protect the fetus from some environmental toxins (Benirschke

and Kaufmann, 2000).

The placenta supports development of the fetus by way of producing growth factors
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and hormones. We hypothesize that environmental factors can change the quantities,

proportions or timing of the placental hormones. In turn, these changes can alter

development of organ systems. In the case of sex steroid hormones, the effects of the

hormones are mediated by nuclear receptors and generally follow a U-shaped pattern

(Li et al., 2007). In the case of gonadotropins, the effects are mediated by membrane

receptors and can cause distinct effects at low doses that differ from those at high

doses, as has been studied with gonadotropin releasing hormone. See for example,

Vandenberg et al. (2013) and references therein.

The aim of this paper is to address two problems in developmental origins of health

and disease (DOHaD) epidemiology: (1) the need for a causal mediation framework,

and (2) the need for a method that accommodates nonlinearity in the mediator-outcome

relationship. Regression-based mediation analysis has been developed to address this

problem in epidemiology (VanderWeele, 2015, Baron and Kenny, 1986). However, this

strategy assumes a linear relationship between the mediator and the outcome. In such

cases as described above, linear models may potentially result in model misspecification,

biased estimation, and hence incorrect conclusions.

The application of the generalized additive model (GAM) was proposed by Imai

et al. (2010) to address the nonlinearity, where the direct and indirect effects are esti-

mated using simulations. Although the GAM provides flexibility in modeling nonlinear

relationships, the main effect is usually fitted using a smoothing curve, which is hard

to be parametrized, and in many instances, the patterns of mean response may not be

arbitrary. A simulation-based method was used for mediation analysis (Tingley et al.,

2014), but the procedure is computationally intensive and does not allow for condi-

tioning on confounding variables (thus, the controlled direct effect (CDE) may not be

calculated). May and Bigelow (May and Bigelow, 2005) outlined methodological chal-

lenges and caveats when statistically modeling nonlinear associations using standard

approaches such as splines. Hence, we aim to develop a flexible semi-parametric shape-

restricted inference-based methodology to overcome some of the modelling challenges.

Unless one is interested in modelling dynamic systems such as circadian clock or cell-
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Figure 1: The relationship between a placental hormone (expressed as a gestational age
multiple of median) and infant birth weight.

cycle, in many applications, it may be sufficient to model the relationships assuming

monotonic, convex or concave shapes. An example of such nonlinear relationship is

shown in Figure 1, where the relationship between the placental hormone and infant

birth weight is concave. Hence in this paper we limit our focus on these classes of

models. Our approach makes a compromise between the standard linear or polynomial

regressions, which are rigid in shapes, and GAMs, which are too flexible by allowing

arbitrary shapes and computationally intensive.

The paper is organized as follows. Using semi-parametric shape-restricted regres-

sion splines (Meyer, 2008, 2018, Yin et al., 2021), we develop outcome and mediator

models in Section 2. The estimated parameters from these models are then used to

estimate the direct and indirect effects of various factors and their confidence intervals.

The performance of these estimators are evaluated using simulation studies in Section

3. In Section 4, the proposed methodology is applied to a population-level prenatal

screening program data set to describe the role of placental hormones as mediators in

the relationship between pesticide application and the birth weight of infants. Con-

cluding remarks are provided in Section 5. All mathematical details are provided in

the supplementary text.
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2 Methodology

2.1 Background and Notations

Throughout this paper, the exposure variable for an individual will be denoted by

A, M denotes the mediator, C denotes the confounder, and Y denotes the outcome

variable. For a given individual with exposure A = a, the outcome is denoted by Ya

and the mediator is denoted by Ma, and Yam denotes the outcome of an individual

whose exposure A = a and mediator M = m. The controlled direct effect (CDE),

the natural direct effect (NDE) and the natural indirect effect (NIE) are denoted by

Yam − Ya∗m, YaMa∗ − Ya∗Ma∗ and YaMa − YaMa∗ , respectively. For the identifiability of

the CDE, we assume that there is no unmeasured exposure-outcome confounding, i.e.,

Yam ⊥ (independent)A|C, and there is no unmeasured mediator-outcome confounding,

i.e., Yam ⊥ M |A,C. For the identifiability of the NDE and NIE, besides the two

assumptions above, we additionally assume that there is no unmeasured exposure-

mediator confounding, i.e., Ma ⊥ A|C, and there is no mediator-outcome confounding

affected by exposure, i.e., Yam ⊥ Ma∗ |C.

For a real number x, and a sequence of knots t = {t1, t2, . . . , tn+k}, Mi(x|k, t)

denotes the kth order M-spline basis function, which is a piece-wise polynomial of degree

k − 1 (Curry and Schoenberg, 1966). The corresponding I-spline (Ramsay, 1988) and

C-spline (Meyer, 2018) basis functions are given by Ii(x|k, t) =
∫ x
L Mi(u|k, t)du and

Ci(x|k, t) =
∫ x
L Ii(u|k, t)du, respectively.

The methodology developed in this paper relies on the general framework intro-

duced in Meyer (2018) and Yin et al. (2021), which uses quadratic I-splines and cubic

C-splines (see supplementary text for details). The quadratic I-splines are of interest

in shape-restricted regression because a linear combination of quadratic I-spline basis

functions is non-decreasing if and only if the coefficients are non-negative. The regres-

sion function using I-splines is estimated by a linear combination of the basis functions,

the constant function and other covariates (Meyer, 2018). The cubic C-splines are of

interest in shape-restricted regression because a linear combination of cubic C-spline
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basis functions is convex if and only if the coefficients are non-negative. The regression

function using C-splines is estimated by a linear combination of the basis functions,

the constant function, the identity function and other covariates (Meyer, 2018).

2.2 Model

Suppose that an interaction between exposure and mediator exists, and the rela-

tionships between mediator and outcome in both exposure and non-exposure groups

are potentially nonlinear. Then the exposure-outcome relationship is modeled by

Y = β0 + β1A+ f1(M)A+ f2(M)(1−A) + β4C + ϵ1, (1)

where f1(M) is the function of the mediator for the exposure group, f2(M) is the

function of the mediator for the non-exposure group, and ϵ1 ∼ N(0, σ2
1), and the

exposure-mediator model will be

M = γ0 + γ1A+ γ2C + ϵ2, (2)

where ϵ2 ∼ N(0, σ2
2).

In the case of quadratic I-splines, f1(M) =
∑k

i=1 β2iIi(M |2, t) and f2(M) =
∑k

i=1

β3iIi(M |2, t), and in case of cubic C-splines, f1(M) = β20M +
∑k

i=1 β2iCi(M |2, t) and

f2(M) = β30M +
∑k

i=1 β3iCi(M |2, t), reflecting the structures of the I- and C-spline

basis functions in the supplementary text. Define IS = [I1(M |2, t), ..., Ik(M |2, t)] and

CS = [M,C1(M |2, t), ..., Ck(M |2, t)]. Denote the symbol “•” for the face-splitting

product (for A =



a1

a2


 and B =



b11 b12

b21 b22


, the face-splitting product operates as

A•B =



a1b11 a1b12

a2b21 a2b22


), and let β2 = [β21, ..., β2k] if the corresponding matrix is IS•A,

or β2 = [β20, β21, ..., β2k] if the corresponding matrix is CS •A, and β3 = [β31, ..., β3k] if

the corresponding matrix is IS • (1−A), or β3 = [β30, β31, ..., β3k] if the corresponding

matrix is CS • (1−A).

If f1(M) and f2(M) are both monotonic, then they are fitted using the I-splines,
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and model (1) is given by

Y = [1, A, IS •A, IS • (1−A), C][β0, β1, β2, β3, β4]
T + ϵ1. (3)

If f1(M) and f2(M) are both convex (or concave), then they are fitted using the C-

splines, and the model (1) is given by

Y = [1, A,CS •A,CS • (1−A), C][β0, β1, β2, β3, β4]
T + ϵ1. (4)

If f1(M) is monotonic but f2(M) is convex (or concave), then f1(M) is fitted using

I-splines and f2(M) is fitted using C-splines, and the model (1) is given by

Y = [1, A, IS •A,CS • (1−A), C][β0, β1, β2, β3, β4]
T + ϵ1. (5)

If f1(M) is convex (or concave) and f2(M) is monotonic, then f1(M) is fitted using

C-splines and f2(M) is fitted using I-splines, and the model (1) is given by

Y = [1, A,CS •A, IS • (1−A), C][β0, β1, β2, β3, β4]
T + ϵ1. (6)

2.3 Statistical Inference

Regression parameters of the model (1) are estimated along the lines of Meyer

(2018), but the method is modified to account for factor-by-curve interaction.

Define CS = [CS1, CS2], where CS1 = M and CS2 = [C1(M |2, t), ..., Ck(M |2, t)].

For model (3), W0 = [1],W = [A,C], Z1 = [IS•A], Z0 = [IS•(1−A)] and Z = [Z1, Z0];

for model (4), W0 = [1, CS1 • A,CS1 • (1 − A)],W = [A,C], Z1 = [CS2 • A], Z0 =

[CS2•(1−A)] and Z = [Z1, Z0]; for model (5), W0 = [1, CS1•(1−A)],W = [A,C], Z1 =

[IS •A], Z0 = [CS2 • (1−A)] and Z = [Z1, Z0]; for model (6), W0 = [1, CS1 •A],W =

[A,C], Z1 = [CS2 •A], Z0 = [IS • (1−A)] and Z = [Z1, Z0].

Let V = [W0,W ], PV = V (V TV )−1V T , the orthogonal projection operator onto

the column space of V T , and ∆ = (I − PV )Z. Using the hinge algorithm for cone
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projection (Meyer, 2013), a subset of columns of ∆ are determined. We then keep the

corresponding columns of Z and estimate the parameters of the model (1) using the

ordinary least squares. The parameters corresponding to the eliminated columns of Z

are estimated as 0. During the process of the hinge algorithm, if the signs of coefficients

for the exposure or non-exposure group splines are assumed to be non-positive, i.e., the

curve is assumed to be decreasing or concave, then we will use −IS or −CS2 instead

of IS or CS2. We estimate parameters of the model (2) using ordinary least squares.

Under the assumptions described in Section 2.1, we parametrize the expected con-

trolled direct effect, natural direct effect and natural indirect effect as follows in Propo-

sition 1. The detailed derivation is provided in the supplementary text.

Proposition 1 Suppose (1) for an individual with actual exposure A = a, the actual

outcome Y is Ya (consistency), (2) Yam ⊥ A|C, (3) Yam ⊥ M |A,C, (4) Ma ⊥ A|C and

(5) Yam ⊥ Ma∗ |C, and suppose (1) and (2) are correctly specified, then the expected

controlled direct effect, natural direct effect and natural indirect effect, conditional on

C = c, are given by

E[Yam − Ya∗m|c] = (β1 + f1(m)− f2(m))(a− a∗), (7)

E[YaMa∗ − Ya∗Ma∗ |c] = (β1 + E[f1(M)|a∗, c]− E[f2(M)|a∗, c])(a− a∗), (8)

and

E[YaMa−YaMa∗ |c] = a(E[f1(M)|a, c]−E[f1(M)|a∗, c])+(1−a)(E[f2(M)|a, c]−E[f2(M)|a∗, c]),

(9)

respectively.

According to Proposition 1, the expected CDE is a function of β1, β2 and β3, the

expected NDE is a function of β1, β2, β3, γ0, γ1, γ2 and σ2
2, and the expected NIE is a

function of β2, γ0, γ1, γ2 and σ2
2. Thus, these mediation effects are derived by plugging

in the suitable least squares or constrained estimators. We apply the delta method to
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obtain the asymptotic variances of different mediation effects. All unknown parameters

in the asymptotic variance expressions are replaced by the point estimates obtained

from the least squares. The 95% confidence intervals are derived using the standard

formula (g(θ̂) − z0.975

√
̂

var(g(θ̂)), g(θ̂) + z0.975

√
̂

var(g(θ̂))). The technical details are

provided in Proposition 3 in the supplementary text, and the computational details

are also provided in the supplementary text.

3 Simulation Study

We evaluate the performance of our methodology in terms of the coverage proba-

bility (or the probability that the 95% confidence interval contains the true mediation

effect), average absolute relative bias and average mean squared error (MSE). Data

were simulated to resemble the state-wide prenatal screening program data presented

in the Application section (Section 4). The simulated data set contains 500 observa-

tions and 10 variables. The confounding variables are age (randomly sampled from

18 to 40 years with an increment 0.5 years), inverse maternal weight (randomly sam-

pled from 0.0020 to 0.0143 lbs−1 × 103 with an increment of 0.0001 lbs−1 × 103), race

(randomly sampled from race 1 to race 5 with probabilities 0.46, 0.28, 0.13, 0.1 and

0.03 respectively), season of blood draw (randomly sampled from season 1 to season 4

with the same probability 0.25), smoking status (randomly sampled from a binomial

distribution with 5% chance of smoking), ovum donor status (randomly sampled from

a binomial distribution with 2% chance of donation) and pre-existing diabetes status

(randomly sampled from a binomial distribution with 5% chance of diabetes). The ex-

posure variable is pesticide exposure (randomly sampled from a binomial distribution

with 50% chance of being exposed). The mediator variable is hormone (gestational age

multiple of median, calculated via exposure-mediator model). The outcome variable is

birth weight (grams, calculated via exposure-outcome model).

We consider 3 different combinations of nonlinear functions for exposure-outcome

model, which are shown in Figures 2a, 2c and 2e. We fix the variance of ϵ2 in exposure-

mediator model (model (2)) at 0.32, and four different patterns of variances are con-

sidered for ϵ1 in exposure-outcome model (model (1)), namely, N(0, 102), N(0, 202),
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N(0, 302) and N(0, 402). The number of bases is set to 5. For the CDE, the mediator

is set to its mean value. Since in simulation studies all parameters such as β1, γ0,

γ1, γ2 and σ2
2 and the functions f1(m) and f2(m) are known, the true effects can be

calculated using the formulas in Proposition 3 to investigate the performance of the

proposed methodology. The number of simulations considered is 500. The results of

coverage probability are shown in Figures 2b, 2d and 2f (“LM” in the legend of each

figure corresponds to the linear regression-based method and “GAM” in the legend

of each figure corresponds to the GAM (simulation)-based method), and the results

of average absolute relative bias and average MSE are shown in Figure S.1 in the

supplementary text (also see Tables S.1 - S.3 in the supplementary text for details).

Under Pattern 1 (Figure 2a), the relationship between hormone and birth weight in

the high exposure group is concave (with increasing trend) and the relationship in the

low exposure group is increasing (sigmoid). The true CDE is centered at 44.62 (SD =

0.14), the true NDE is 45.82 and the true NIE is 1.10. The coverage probabilities of

CDE, NDE and NIE remain at around 95% for the proposed method under different

σ1’s, but the coverage probabilities of CDE and NDE are low for the linear regression-

based method and the coverage probabilities of NDE are low for the GAM (simulation)-

based method, especially in the cases of small σ1’s. The average absolute relative biases

and the average MSEs for the proposed method are much lower than those for the linear

regression-based or GAM (simulation)-based method. Under Pattern 2 (Figure 2c), the

relationship between hormone and birth weight in the high exposure group is concave

and the relationship in the low exposure group is concave (with decreasing trend).

The true CDE is centered at 19.85 (SD = 0.05), the true NDE is 19.17 and the true

NIE is -0.17. The coverage probabilities of CDE, NDE and NIE are approximately

95% for the proposed method. Although the coverage probabilities of the CDE and

NDE for the linear regression-based method and the coverage probabilities of NDE

for the GAM (simulation)-based method under Pattern 2 performed better than those

under Pattern 1, they are still low in the cases of small σ1’s. The average absolute

relative biases for all methods converged as σ1 increases. The average MSEs of CDE
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(a) Pattern 1: f1(M) = −6(M−5/3)2

5 +

100 and f2(M) = 50e6M/5

2+e6M/5 + 50

(b) Coverage Probability under Pattern
1

(c) Pattern 2: f1(M) = −eM−100M2

50 +100

and f2(M) = −6(M+5/3)2

5 + 100

(d) Coverage Probability under pattern
2

(e) Pattern 3: f1(M) = 50e6M/5

2+e6M/5 + 50

and f2(M) = 300ln(−eM/2+M +40)−
1000

(f) Coverage Probability under pattern
3

Figure 2: Plots of hormone vs. birth weight under each pattern, and simulation results of
coverage probability for each pattern
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and NDE for the linear regression-based method and the average MSEs of NDE for

the GAM (simulation)-based method were lower under large σ1’s. The reason could

be that the estimations of effects do not deviate much from the truth for the linear

regression-based or GAM (simulation)-based method. Under Pattern 3 (Figure 2e), the

relationship between hormone and birth weight in the high exposure group is increasing

(sigmoid) and the relationship in the low exposure group is concave. The true CDE

is centered at -15.00 (SD = 0.14), the true NDE is -16.24 and the true NIE is 4.08.

The coverage probabilities of CDE, NDE and NIE remain at approximately 95% for

the proposed method under different σ1’s, but the coverage probabilities of CDE, NDE

and NIE are low for the linear regression-based method and the coverage probabilities

of NDE and NIE are low for the GAM (simulation)-based method, especially in the

cases of small σ1’s. The average absolute relative biases and the average MSEs for the

proposed method are notably lower than those for the linear regression-based method.

The true NIE under Pattern 3 is larger than the true NIEs under other patterns in

our simulation study. For this reason, the performance measures of NIE for the linear

regression-based or GAM (simulation)-based method are worse.

In summary, if f1(M) and f2(M) deviate from linear shapes, the semi-parametric

shape-restricted regression spline outperforms the linear regression or GAM (simu-

lation) in general. Using the semi-parametric shape-restricted regression spline, the

coverage probability stays constant at around 95%; whereas using the linear regression

or GAM (simulation), the coverage probability tends to be 0 when the variance of ϵ1 is

small and the effect size is large (see Proposition 2). Both average absolute relative bias

and average MSE of the estimated effects from the semi-parametric shape-restricted

regression spline increase when the variance of ϵ1 increase, but they are still smaller

compared to the linear regression or GAM (simulation), especially for small variance

of ϵ1 and large effect size.

For a fair comparison, we have also assumed the true relationships between hormone

and birth weight in high and low exposure groups as linear, i.e., f1(M) = 5.5M + 70

and f2(M) = 9.5M + 60, both increasing (see Figure 5a in the supplementary text).
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The true CDE is centered at 25.44 (SD = 0.05), the true NDE is 26.07, and the true

NIE is 1.65. Because the underlying relationships are linear, the linear regression-based

method performed better, as expected. The metrics are quite comparable to those from

the semi-parametric shape-restricted regression spline (see Figure S.2 and Table S.4 in

the supplementary text).

Proposition 2 If the mediation effect based on the linear regression model is different

from the true mediation effect, then as the variance of ϵ1 → 0, the coverage probability

(or the probability that the confidence interval contains the true mediation effect) → 0.

The proof of Proposition 2 can be found in the supplementary text.

4 Application

Pesticides are used widely in agriculture to control pests and improve yields. By

design, they are toxic to insects and therefore we and others hypothesize unintended

negative consequences on human health (Larsen et al., 2017). Larsen et al. (2017)

reported that for individuals in a high pesticide exposure group (defined by pounds of

pesticides applied in residential vicinity) in 1st-trimester pregnancies, birth weight was

13 grams lower. Being in the high exposure group was associated with lower gesta-

tional age, higher risk of preterm birth and higher probability of a birth abnormality.

Chemicals may not directly reach and/or affect the fetuses but instead they alter the

levels of placental biomarkers which influence the birth outcomes. This is a placentally-

mediated effect (Adibi et al., 2021a). It is also possible that the environmental chemical

is associated with the outcome by way of a nonlinear relationship. Once in the body,

some chemicals mimic naturally occurring hormones, prostaglandins, and/or growth

factors (le Maire et al., 2010). To evaluate this, we performed mediation analysis using

the semi-parametric shape-restricted regression analysis developed in this paper.

Pesticide data were publicly available through the California’s Pesticide Use Re-

porting (PUR) program, where the pesticide application is reported daily. The data

were mapped to the zip code of maternal residence, and to the month and year of blood

draw. Each woman was assigned pesticide exposure values in log pounds of pesticides,
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applied in that zip code during the month in which she had her blood drawn in the

first trimester of pregnancy (10-14 weeks gestation). These data were merged with

the prenatal screening data in which each woman had precise and accurate measures

of placental-fetal hormones. Human chorionic gonadotropin (hCG) was selected as a

mediator for this analysis as it is one of five placental-fetal biomarkers that is used

widely to screen for fetal aneuploidy and therefore is available in the medical record for

research (Malone et al., 2005). hCG is a placental glycoprotein that has been related

to almost all placental functions including the transfer of nutrition, fetal growth and

development (Filicori et al., 2005, Licht et al., 2007). hCG has also been widely asso-

ciated with environmental exposures including pesticides (Paulesu et al., 2018, Adibi

et al., 2021b). Furthermore, Barjaktarovic et al. (2017) demonstrated in Generation R

that hCG in the late first trimester was associated with birth weight in a sex-specific

and nonlinear pattern. The pesticide application data was dichotomized at the median

to represent low and high exposure categories (A). We focused on two commonly used

pesticides, namely, permethrin and glyphosate isopropylamine salt. The mediator (M)

was her serum level human chorionic gonadotropin (hCG), normalized for gestational

day of blood draw which is called the gestational age multiple of the median (GA-MoM)

(Adibi et al., 2015). The outcome variable (Y ) was neonatal birth weight which was

abstracted from the medical record for each baby. Analyses were stratified by baby

sex due to previous reports on a sex difference in the hCG-birth weight association

(Barjaktarovic et al., 2017). All models were adjusted for a small set of confounders of

exposure-outcome, exposure-mediator, and mediator-outcome that included maternal

race, year of blood draw, month of blood draw, smoking status, ovum donor status,

pre-existing diabetes status, maternal age and inverse maternal weight (Adibi et al.,

2015). Information on confounders was limited to a one-page questionnaire which is

completed by subjects at the time of blood draw. The DAG is shown in Figure 3.

For the organophosphate pesticide permethrin (Nmale = 21, 433, Nfemale = 20, 895),

the association between first trimester hCG and neonatal male birth weight was in-

creasing in the above-median exposure group and concave with an increasing trend in

14



Figure 3: The directed acyclic graph (DAG) for the analysis

the below-median exposure group. The relationship between first trimester hCG and

neonatal female birth weight was concave with an increasing trend in the above-median

exposure group and increasing in the below-median exposure group. For glyphosate

isopropylamine salt (Nmale = 56, 299, Nfemale = 55, 052), the relationship between first

trimester hCG and infant male birth weight was concave with an increasing trend in

the above-median exposure group and increasing in the below-median exposure group.

The relationship between first trimester hCG and infant female birth weight was in-

creasing in the above-median exposure group and concave with increasing trend in

the below-median exposure group. Mediation analysis was performed using the semi-

parametric shape-restricted regression spline. The number of bases was set to 5 as in

the simulation study and the confounding variables were controlled at their mean val-

ues. For the CDE, the mediator was set to its mean value. The results are summarized

in Table 1.

According to the results summarized in Table 1, the NIE is statistically significant

at 5% level of significance in each case as the 95% confidence intervals do not include the

null value, indicating that first trimester hCG was in an association pathway between

permethrin and glyphosate isopropylamine salt exposure and birth weight within male

and female infants in this cohort. In our analysis, we discovered positive associations

between permethrin and birth weight and between glyphosate isopropylamine salt and

birth weight. After accounting for mediation, these associations became negative. It
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Table 1: Mediation Analysis Results on State-Wide Prenatal Screening Program Data

Female Infant
CDE with 95% C.I. NDE with 95% C.I. NIE with 95% C.I.

permethrin
13.270

(-4.0927, 30.633)
6.7042

(-5.2455, 18.654)
-1.1889

(-2.0636, -0.3142)
glyphosate

isopropylamine salt
4.9524

(-6.9646, 16.869)
8.8868

(-11.683, 29.457)
-1.6303

(-2.2427, -1.0178)

Male Infant
CDE with 95% C.I. NDE with 95% C.I. NIE with 95% C.I.

permethrin
12.454

(-3.5468, 28.455)
15.665

(3.5325, 27.797)
-2.4189

(-3.5479, -1.2899)
glyphosate

isopropylamine salt
8.0234

(-3.0360, 19.083)
5.8625

(-1.6837, 13.409)
-2.4338

(-3.1993, -1.6683)

is important to note that pesticide exposure is based on application of pesticides and

geographic proximity. Results can be interpreted at the aggregate level of women living

in geographic proximity to specific levels of pesticide application in early pregnancy.

At the individual level, misclassification of internal pesticide dose is likely.

5 Discussion

The methodology presented here solves a problem in the setting of causal media-

tion analysis where there is a known or suspected nonlinear relationship between the

mediator and the outcome. This method is designed to relax the linearity assumption

and reduce bias introduced by model misspecification. The exposure-outcome model

is specified using the quadratic I-spline basis functions and/or cubic C-spline basis

functions. This allows the investigator to apply pre-existing knowledge on the under-

lying nonlinear relationship to their analysis. Once the shapes of the associations are

established, the mediation effects can be estimated and inferred.

We demonstrate the proposed method in an applied example in environmental

health and fetal origins epidemiology. In the case of placental-fetal biomarkers and

fetal growth, nonlinearity is a reasonable assumption. We found that the shapes of

the placental biomarker-birth weight relationships differed by the low and high pesti-

cide application groups. One interpretation is that the shape of association in the low
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exposure group more closely represents the “normal” developmental relationship, and

the changing of that shape in the high exposure group could indicate a type of toxicity.

This information was accounted for in the estimation of the controlled direct effect

(the exposure effect when hypothetically blocking the effect of the mediator), the nat-

ural direct effect (the exposure effect when assuming the mediator was unaffected by

exposure), and the natural indirect effect (the effect of exposure assuming mediation).

In this case, it allowed for comparisons of effect magnitude, direction, and precision of

the effect across different pesticides and hormones, stratified by sex of the infant.

As shown in the Application section (Section 4), the estimation of the natural

indirect effect changed the interpretation of the exposure effect. Based on the nat-

ural direct effect alone, the conclusion was that the pesticide application was either

not or positively associated with the birth weight. However, based on the natural

indirect effect and the consideration of the shapes, the conclusion was that the in-

creased pesticide application would lead to the lower birth weight. This question as

to whether the true exposure effect is positive or negative in direction can be fur-

ther explored in studies where exposures are measured in individual pregnancies by

pesticide biomarkers. A possible explanation is that the placental mechanism of tox-

icity differs from the direct effect, and both directions of association (positive nat-

ural direct effect and negative natural indirect effect) may be accurate. It is also

important to note that, if the relationships are modeled using standard linear mod-

els, then from equations E[YaMa∗ − Ya∗Ma∗ |c] = (β1 + β3(γ0 + γ1a
∗ + γ2c))(a − a∗)

and E[YaMa − YaMa∗ |c] = (β2γ1 + β3γ1a)(a − a∗) (VanderWeele, 2015), we see that

under some conditions on the model parameters, E(NDE) > 0 > E(NIE). This

can happen, for example, when in the exposure-outcome model, the exposure, the

mediator as well as the interaction between the exposure and the mediator are posi-

tively correlated with the outcome. Conversely, in the exposure-mediator model, the

confounders and the mediator are positively correlated while the exposure and the me-

diator are negatively correlated. There are potentially other configurations leading to

E(NDE) > 0 > E(NIE). Thus, it should not be surprising if in practice, whether we
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use the linear or the proposed shape-restricted regression, the natural direct effect and

the natural indirect effect have opposite signs as seen in our example.

Using these estimation methods in the causal inference framework requires consid-

eration of specific sources of bias and rigorous validation of the necessary assumptions

including no unmeasured confounding, consistency, positivity, and no interference. Cor-

rect model specification is a required assumption in this framework, which is addressed

in this method. Detailed discussion of these assumptions and approaches to validate

them are outside the scope of this paper and are described in detail elsewhere (Hernan

and Robins, 2020, Nguyen et al., 2021).

The proposed method performed as desired in terms of coverage probability, av-

erage absolute relative bias and average mean squared error based on the simulation

results. This was true especially when the underlying shape was nonlinear with a

specific shape being identified. Standard linear or polynomial regressions are rigid in

shapes, so the corresponding 95% confidence intervals barely covered the true effect.

The proposed method also avoids the common problems in GAMs, i.e., the curse of

dimensionality, computational intensity, etc. Due to the flexibility offered by GAMs,

the associations may be unstable and interpretation can become challenging. Because

the proposed method is developed using the asymptotic properties of the regression,

it is not computationally intensive. The proposed method is a compromise between

the standard linear or polynomial regressions and GAMs because it does not require a

specific functional relationship nor does it allow arbitrary relationships. Although the

fits are robust to the choice of smoothing parameters when assumptions about both

shape and smoothness are warranted (Meyer, 2008), in order to make more precise pre-

dictions, the number of knots and the knots placement may still need to be considered.

See for example, Jelsema et al. (2019). The proposed method is not suitable if shapes

other than monotonic, convex and concave are present. In such cases, researchers can

apply the simulation-based method developed by Imai et al. (2010). The proposed

method only accommodates a categorical exposure variable. This is a limitation to be

addressed in the future extension of this approach.
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Supplementary Text

S.1. M-splines, I-splines and C-splines

Let t = {t1, t2, ..., tn+k} denote the knot sequence, n denote the number of free parameters

that specify the spline function having the specified continuity characteristics, and k be the

order of the basis functions. Then the recursive form of M-splines is as follows (Ramsay,

1988):

For order k = 1, Mi(x|1, t) = 1
ti+1−ti

if ti ≤ x < ti+1, otherwise Mi(x|1, t) = 0, and

for order k > 1, Mi(x|k, t) = k[(x−ti)Mi(x|k−1,t)+(ti+k−x)Mi+1(x|k−1,t)]

(k−1)(ti+k−ti)
if ti ≤ x < ti+k, otherwise

Mi(x|k, t) = 0.

The quadratic I-splines Ii(x|2, t) are obtained by integrating the M-splines of degree 1 and

can be expressed as:

Ii(x|2, t) = 0 if x < ti,

Ii(x|2, t) = (x−ti)
2

(ti+2−ti)(ti+1−ti)
if ti ≤ x < ti+1,

Ii(x|2, t) = 1− (ti+2−x)2

(ti+2−ti)(ti+2−ti+1)
if ti+1 ≤ x < ti+2, and

Ii(x|2, t) = 1 if x ≥ ti+2.

The cubic C-splines Ci(x|2, t) are obtained by integrating the quadratic I-splines and can be

expressed as:

Ci(x|2, t) = 0 if x < ti,

Ci(x|2, t) = (x−ti)
3

3(ti+2−ti)(ti+1−ti)
if ti ≤ x < ti+1,

Ci(x|2, t) = x− ti+ti+1+ti+2

3
+ (ti+2−x)3

3(ti+2−ti)(ti+2−ti+1)
if ti+1 ≤ x < ti+2, and

Ci(x|2, t) = x− ti+ti+1+ti+2

3
if x ≥ ti+2.

S.2. Proof of Proposition 1

Proof. Under the conditions described in Proposition 1, and with the models (1) and (2)

being correctly specified, we obtain after some simplifications:

E[CDE|c] = E[Yam−Ya∗m|c] = E[Y |a,m, c]−E[Y |a∗,m, c] = (β1+ f1(m)− f2(m))(a− a∗),

1

ar
X

iv
:2

31
0.

09
18

5v
1 

 [
st

at
.M

E
] 

 1
3 

O
ct

 2
02

3



E[NDE|c] = E[YaMa∗ − Ya∗Ma∗ |c] =
∫
m
{E[Y |a,m, c]− E[Y |a∗,m, c]}f(m|a∗, c)dm

= (β1 + E[f1(M)|a∗, c]− E[f2(M)|a∗, c])(a− a∗), and

E[NIE|c] = E[YaMa − YaMa∗ |c] =
∫
m
E[Y |a,m, c]{f(m|a, c)− f(m|a∗, c)}dm

= a(E[f1(M)|a, c]− E[f1(M)|a∗, c]) + (1− a)(E[f2(M)|a, c]− E[f2(M)|a∗, c]).

Let the knot sequence be L = t1 = t2 < t3 < ... < tk < tk+1 = tk+2 = U . If f1(M) is

fitted using I-splines, then f1(M) = β21I1(M |2, t) + ... + β2kIk(M |2, t). This is a piece-wise

function, where, for tk ≤ M < tk+1, f1(M) = β21+...+β2,k−2+β2,k−1(1− (tk+1−M)2

(tk+1−tk)(tk+1−tk−1)
)+

β2,k(
(M−tk)

2

(tk+1−tk)(tk+2−tk)
). Then conditional on a and c we obtain:

E[f1(M)|a, c] =
∫
m
(β21I1(m|2, t) + ... + β2kIk(m|2, t))f(m|a, c)dm =

∑k
i=2{

∫ ti+1

ti
[β21 + ... +

β2,i−2 + β2,i−1(1− (ti+1−m)2

(ti+1−ti)(ti+1−ti−1)
) + β2,i(

(m−ti)
2

(ti+1−ti)(ti+2−ti)
)]f(m|a, c)dm}, where f(m|a, c) de-

notes normal density with mean γ0 + γ1a+ γ2c and variance σ2
2. Similar expressions can be

derived for f2(M) and E[f2(M)|a, c].

If f1(M) is fitted using C-splines, then f1(M) = β20M + β21C1(M |2, t) + ...+ β2kCk(M |2, t),

which is also a piece-wise function. For either M < t2 or M ≥ tk+1, f1(M) = β20M . For

tk ≤ M < tk+1, f1(M) = β20M+β21(M− t1+t2+t3
3

)+...+β2,k−2(M− tk−2+tk−1+tk
3

)+β2,k−1(m−
tk−1+tk+tk+1

3
+ (tk+1−m)3

3(tk+1−tk)(tk+1−tk−1)
) + β2,k(

(m−tk)
3

3(tk+1−tk)(tk+2−tk)
). Then conditional on a and c we

obtain:

E[f1(M)|a, c] =
∫
m
(β20m+ β21C1(m|2, t) + ...+ β2kCk(m|2, t))f(m|a, c)dm =

β20(γ0 + γ1a+ γ2c) +
∑k

i=2{
∫ ti+1

ti
[β21(m− t1+t2+t3

3
) + ...+ β2,i−2(m− ti−2+ti−1+ti

3
)

+β2,i−1(m− ti−1+ti+ti+1

3
+ (ti+1−m)3

3(ti+1−ti)(ti+1−ti−1)
) + β2,i(

(m−ti)
3

3(ti+1−ti)(ti+2−ti)
)]f(m|a, c)dm}.

Similar expressions can be derived for f2(M) and E[f2(M)|a, c].

S.3. Proposition 3

Proposition 3. Let θCDE = (β1, β2, β3), θNDE = (β1, β2, β3, γ0, γ1, γ2, σ
2
2) and θNIE =

(β2, γ0, γ1, γ2, σ
2
2), where β2 = (β21, ..., β2k) and β3 = (β31, ..., β3k) in case of quadratic I-

splines, and β2 = (β20, β21, ..., β2k) and β3 = (β30, β31, ..., β3k) in case of cubic C-splines.
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Denote the expected controlled direct effect as gCDE(θCDE), the expected natural direct effect

as gNDE(θNDE) and the expected natural indirect effect as gNIE(θNIE). Then the asymptotic

variances of expected CDE, NDE and NIE are ∇θCDE
gCDE(θCDE)

TΣθCDE
∇θCDE

gCDE(θCDE),

∇θNDE
gNDE(θNDE)

TΣθNDE
∇θNDE

gNDE(θNDE) and ∇θNIE
gNIE(θNIE)

TΣθNIE
∇θNIE

gNIE(θNIE)

respectively, where ΣθCDE
, ΣθNDE

and ΣθNIE
are the covariance matrices corresponding to the

estimated θCDE, θNDE and θNIE.

If f1(M) is fitted using I-splines, then:

∂E[f1(M)|a,c]
∂β2i

=
∫ ti+1

ti

(m−ti)
2

(ti+1−ti)(ti+2−ti)
f(m|a, c)dm +

∫ ti+2

ti+1
(1 − (ti+2−m)2

(ti+2−ti+1)(ti+2−ti)
)f(m|a, c)dm +

∫ ti+3

ti+2
f(m|a, c)dm+ ...+

∫ tk+1

tk
f(m|a, c)dm, for i = 1, 2, . . . , k,

∂E[f1(M)|a,c]
∂γ0

=
∑k

i=2{
∫ ti+1

ti
[β21+ ...+β2,i−2+β2,i−1(1− (ti+1−m)2

(ti+1−ti)(ti+1−ti−1)
)+β2,i(

(m−ti)
2

(ti+1−ti)(ti+2−ti)
)]

f(m|a, c)2(m−(γ0+γ1a+γ2c)

2σ2
2

dm},

∂E[f1(M)|a,c]
∂σ2

2
=

∑k
i=2{

∫ ti+1

ti
[β21 + ...+ β2,i−2 + β2,i−1(1− (ti+1−m)2

(ti+1−ti)(ti+1−ti−1)
)+

β2,i(
(m−ti)

2

(ti+1−ti)(ti+2−ti)
)]f(m|a, c)(− 1

2σ2
2
+ (m−(γ0+γ1a+γ2c))2

2(σ2
2)

2 )dm}.

Similar expressions can be derived for ∂E[f1(M)|a,c]
∂γ1

and ∂E[f1(M)|a,c]
∂γ2

.

If f1(M) is fitted using C-splines, then:

∂E[f1(M)|a,c]
∂β20

= γ0 + γ1a+ γ2c,

∂E[f1(M)|a,c]
∂β2i

=
∫ ti+1

ti

(m−ti)
3

3(ti+1−ti)(ti+2−ti)
f(m|a, c)dm+

∫ ti+2

ti+1
(m− ti+ti+1+ti+2

3
+ (ti+2−m)3

3(ti+2−ti+1)(ti+2−ti)
)f(m|a, c)dm+

∫ ti+3

ti+2
(m− ti+ti+1+ti+2

3
)f(m|a, c)dm+ ...+

∫ tk+1

tk
(m− ti+ti+1+ti+2

3
)f(m|a, c)dm, for i = 1, 2, . . . , k

∂E[f1(M)|a,c]
∂γ0

= β20 +
∑k

i=2{
∫ ti+1

ti
[β21(m− t1+t2+t3

3
) + ...+ β2,i−2(m− ti−2+ti−1+ti

3
) + β2,i−1(m−

ti−1+ti+ti+1

3
+ (ti+1−m)3

3(ti+1−ti)(ti+1−ti−1)
) + β2,i(

(m−ti)
3

3(ti+1−ti)(ti+2−ti)
)]f(m|a, c)2(m−(γ0+γ1a+γ2c)

2σ2
2

dm},

∂E[f1(M)|a,c]
∂σ2

2
=

∑k
i=2{

∫ ti+1

ti
[β21(m− t1+t2+t3

3
)+...+β2,i−2(m− ti−2+ti−1+ti

3
)+β2,i−1(m− ti−1+ti+ti+1

3
+

(ti+1−m)3

3(ti+1−ti)(ti+1−ti−1)
) + β2,i(

(m−ti)
3

3(ti+1−ti)(ti+2−ti)
)]f(m|a, c)(− 1

2σ2
2
+ (m−(γ0+γ1a+γ2c))2

2(σ2
2)

2 )dm}.

Similarly expressions can be derived for ∂E[f1(M)|a,c]
∂γ1

and ∂E[f1(M)|a,c]
∂γ2

.

3



S.4. Proof of Proposition 2

Proof. Using linear regression, the exposure-outcome model is expressed as

Y = β0 + β1A+ β2M + β3AM + β4C + ϵ1 (S.1)

where ϵ1 ∼ N(0, σ2
1), while the exposure-mediator model keeps the same as model (2). Then

the expected CDE, NDE and NIE, conditioning on C = c, are given by

E[Yam − Ya∗m|c] = (β1 + β3m)(a− a∗), (S.2)

E[YaMa∗ − Ya∗Ma∗ |c] = (β1 + β3(γ0 + γ1a
∗ + γ2c))(a− a∗), (S.3)

and

E[YaMa − YaMa∗ |c] = (β2γ1 + β3γ1a)(a− a∗), (S.4)

respectively. Let X = [1, A,M,AM,C], then β̂ ∼ N(β, σ2
1(X

TX)−1). The expected CDE,

NDE and NIE can all be expressed as a linear combination of β. Assuming θ̂LR = aβ̂ ∼

N(aβ, σ2
1a(X

TX)−1aT ), then we obtain P (|θ̂LR − θtrue| ≤ zα/2

√
V ar(θ̂LR)) = ϕ(zα/2 +

θtrue−θLR

σ1

√
a(XTX)−1aT

) − ϕ(−zα/2 +
θtrue−θLR

σ1

√
a(XTX)−1aT

), where ϕ(·) denotes normal density function.

Therefore, if θtrue ̸= θLR then as σ1 → 0, the coverage probability → 0.
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S.5. Simulation results of average absolute relative bias and average

MSE for each pattern

(a) Average |Relative Bias| under pattern 1 (b) Average MSE under pattern 1

(c) Average |Relative Bias| under pattern 2 (d) Average MSE under pattern 2

(e) Average |Relative Bias| under pattern 3 (f) Average MSE under pattern 3

Figure S.1: Simulation results of average absolute relative bias and average MSE for each
pattern

5



S.6. Plots of hormone vs. birth weight under linear pattern and

simulation results for linear pattern

(a) Linear Pattern (b) Coverage Probability

(c) Average |Relative Bias| (d) Average MSE

Figure S.2: Plots of hormone vs. birth weight under linear pattern, and simulation results
of coverage probability, average absolute relative bias and average MSE for linear pattern

S.7. Tables of Simulation Results
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Table S.1: Simulation results of coverage probability, average absolute relative bias and
average MSE for pattern 1 (true CDE: ∼ 44.62, true NDE: 45.82, true NIE: 1.10)

Semi-parametric shape-restricted regression spline
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.922 0.948 0.958 0.032 0.030 0.374 3.223 2.879 0.281
202 0.932 0.948 0.950 0.059 0.056 0.661 10.808 10.030 0.902
302 0.954 0.952 0.958 0.084 0.080 0.945 21.982 20.739 1.852
402 0.952 0.952 0.960 0.108 0.103 1.232 36.465 34.837 3.129

Linear regression
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.000 0.000 0.922 0.199 0.204 0.402 79.924 88.628 0.312
202 0.018 0.008 0.928 0.197 0.203 0.696 81.953 90.648 0.959
302 0.198 0.158 0.936 0.196 0.201 1.016 86.176 94.878 2.048
402 0.444 0.400 0.940 0.195 0.200 1.343 92.594 101.316 3.580

Generalized additive model
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 - 0.000 0.895 - 0.188 0.210 - 70.406 0.072
202 - 0.000 0.901 - 0.187 0.394 - 70.662 0.257
302 - 0.005 0.901 - 0.186 0.583 - 71.381 0.565
402 - 0.016 0.911 - 0.186 0.775 - 72.631 0.996
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Table S.2: Simulation results of coverage probability, average absolute relative bias and
average MSE for pattern 2 (true CDE: ∼ 19.85, true NDE: 19.17, true NIE: -0.17)

Semi-parametric shape-restricted regression spline
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.950 0.974 0.972 0.076 0.074 2.405 3.442 3.114 0.264
202 0.948 0.966 0.968 0.138 0.137 4.704 11.496 10.673 1.008
302 0.944 0.956 0.962 0.195 0.195 6.954 23.035 21.703 2.205
402 0.946 0.962 0.962 0.247 0.249 9.200 37.434 35.597 3.847

Linear regression
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.560 0.638 0.928 0.124 0.116 3.157 7.376 6.172 0.434
202 0.796 0.836 0.940 0.134 0.130 4.953 10.357 9.227 1.109
302 0.888 0.892 0.938 0.159 0.159 7.000 15.533 14.491 2.226
402 0.908 0.928 0.938 0.192 0.195 9.135 22.902 21.964 3.786

Generalized additive model
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 - 0.000 0.895 - 0.186 0.619 - 13.722 0.068
202 - 0.037 0.901 - 0.185 1.195 - 14.407 0.257
302 - 0.356 0.901 - 0.185 1.771 - 15.593 0.571
402 - 0.550 0.901 - 0.187 2.351 - 17.313 1.010
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Table S.3: Simulation results of coverage probability, average absolute relative bias and
average MSE for pattern 3 (true CDE: ∼ -15.00, true NDE: -16.24, true NIE: 4.08)

Semi-parametric shape-restricted regression spline
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.920 0.944 0.894 0.095 0.084 0.192 3.145 2.910 0.940
202 0.934 0.946 0.924 0.175 0.156 0.287 10.708 10.134 2.193
302 0.940 0.950 0.934 0.252 0.226 0.396 22.092 21.157 4.190
402 0.942 0.954 0.936 0.324 0.293 0.508 36.892 35.725 6.915

Linear regression
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.000 0.000 0.130 0.624 0.592 0.458 88.930 93.747 3.865
202 0.010 0.010 0.532 0.629 0.596 0.460 93.545 98.385 4.448
302 0.148 0.134 0.736 0.634 0.601 0.487 100.355 105.232 5.473
402 0.352 0.336 0.820 0.641 0.607 0.531 109.360 114.288 6.940

Generalized additive model
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 - 0.000 0.000 - 0.609 0.476 - 82.627 4.150
202 - 0.000 0.068 - 0.611 0.477 - 84.116 4.360
302 - 0.000 0.288 - 0.614 0.479 - 86.181 4.684
402 - 0.010 0.503 - 0.617 0.484 - 88.846 5.125
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Table S.4: Simulation results of coverage probability, average absolute relative bias and
average MSE for linear pattern (true CDE: ∼ 25.44, true NDE: 26.07, true NIE: 1.65)

Semi-parametric shape-restricted regression spline
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.936 0.938 0.954 0.056 0.054 0.301 1.421 1.404 0.497
202 0.936 0.926 0.910 0.108 0.105 0.548 2.755 2.730 0.905
302 0.946 0.940 0.858 0.158 0.153 0.786 4.012 3.978 1.296
402 0.944 0.942 0.854 0.206 0.200 1.033 5.249 5.204 1.704

Linear regression
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 0.936 0.932 0.944 0.033 0.032 0.234 1.097 1.107 0.239
202 0.936 0.932 0.942 0.065 0.064 0.452 4.389 4.417 0.898
302 0.936 0.932 0.942 0.098 0.096 0.674 9.875 9.936 1.999
402 0.936 0.932 0.944 0.131 0.128 0.897 17.556 17.664 3.543

Generalized additive model
Variance of ϵ1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE
102 - 0.942 0.906 - 0.017 0.143 - 0.295 0.088
202 - 0.948 0.911 - 0.033 0.251 - 1.143 0.276
302 - 0.953 0.906 - 0.049 0.366 - 2.553 0.589
402 - 0.953 0.906 - 0.066 0.482 - 4.523 1.026
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