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Abstract: Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells,
fibroblasts, or cancer cells. The IL1B gene is induced after “priming” of the cells and a second signal is
required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and
leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression
and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has
pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis.
Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells,
with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β
inhibitors in cancer treatment.
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1. Introduction

The IL-1 family includes four main members, namely, IL-1α, IL-1β, IL-33, and IL-1 receptor
antagonist (IL-1RA). IL-1α, IL-1β, and IL-33 are cytokine activators, while IL-1RA is an inhibitory
cytokine [1]. IL-1 cytokines bind the type 1 receptor (IL-1R1), except IL-33, which binds IL-1R4 (ST2).
While IL-1α or IL-1β fixation on IL-1R1 induces a downstream signaling cascade and the transcription
of several genes involved in inflammatory and immune pathways, IL-RA fixation does not have the
same effect [2].

IL-1α and IL-1β are encoded by two different genes, with a low degree of sequence homology.
They are both synthesized as preform proteins, pro-IL-1α and pro-IL-1β. Pro-IL-1β needs to be
converted into IL-1β (by inflammatory caspase cleavage) to be active, whereas pro-IL-1α is active, and
its cleavage into IL-1α (by calpain) will modulate its activity [3]. IL-1α can be localized in the nucleus,
where it acts as a transcription factor to regulate cell differentiation in normal cells, as well as neoplasia
in cancer cells. However, when cells undergo cell death, such as necrosis, IL-1α translocates into the
cytosol and is released into the extracellular space to act as an « alarmin » [3,4]. In contrast, the synthesis
and processing of IL-1β are tightly controlled and require two signals, namely “priming” to allow
transcription of the IL1B gene and the activation signal, which leads to activation of inflammasome
complexes and inflammatory caspases to cleave pro-IL-1β into mature IL-1β [5].

Although IL-1β and IL-1α share similar transducing pathways, they have different expression
and activation processes, explaining why they have different biological and physiological effects in
many diseases, notably cancer.

1.1. IL-1β Production

Within the tumor, IL-1β is produced and secreted by various cell types, such as immune cells,
fibroblasts, or cancer cells. However, the mechanisms of IL-1β production have been most widely
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studied in immune cells, particularly in myeloid cells, such as macrophages. As mentioned above,
IL-1β production requires two signals, namely “priming” and cleavage (Figure 1).
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Figure 1. Different steps of interleukin (IL)-1β production and signaling: priming, NOD-LRR
and pyrin containing protein 3 (NLRP3) inflammasome activation, secretion, and signaling. LPS,
lipopolysaccharides; TLR, toll-like-receptor; TNF, tumor necrosis factor; TNFR, TNF receptor;
TRADD, TNFR1-associated death domain; RIP, receptor interacting protein; IRAK, interleukin-1
receptor-associated kinase; Myd, myeloid differentiation primary response; TRAF, TNFR-associated
factor; ASC, apoptosis associated speck-like protein containing a CARD domain; GSDMD, gasdermin
D; ROS, reactive oxygen species; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells.

1.1.1. “Priming”

“Priming” corresponds to the transcription of the Il1b/IL1B gene, and is induced mainly by
activation of the toll-like-receptors (TLRs), namely lipopolysaccharides (LPS), but also by tumor
necrosis factor (TNF) α, through the TNF receptor or IL-1β itself (Figure 1). TLRs and IL-1R1
recruit the same adaptor protein, myeloid differentiation primary response 88 (Myd88), through their
intra-cellular domain, which in turn activates interleukin-1 receptor-associated kinase 1/4 (IRAK1/4)
and the TNFR-associated factor 6 (TRAF6) pathway. TNFR recruits TNFR1-associated death domain
(TRADD), which activates the TRAF2/5 and receptor interacting protein 1 (RIP1) pathway. All these
signaling cascades are able to activate nuclear factor kappa-light-chain-enhancer of activated B-cells
(NF-κB) [6,7]. As hypoxia is an important event within the tumor, hypoxia-induced factor 1 (HIF1)
was shown to regulate Il1b/IL1B transcription. Other classical transcription factors were also shown to
induce Il1b/IL1B expression in myeloid cells, such as CCAAT/enhancer binding protein (C/EBP-)β,
Interferon response factors 4 or 8 (IRF4/8) and PU.1 or protein kinase C (PKC)/activator protein-1 (AP-1),
directly or through Myd88 [6]. The STAT1 pathway was also shown to be required in macrophages to
enable IL-1β production [8]. Finally, single nucleotide polymorphisms (SNPs) in the Il1b/IL1B gene
or promoter can affect Il1b/IL1B transcription by inhibiting the fixation of the transcription factors
described above or by allowing the fixation of repressor factors.

After transcription/translation, pro-IL-1β is produced as an inactive, 31kDa protein that needs to
be cleaved into 17kDa IL-1β to become active.
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1.1.2. Inflammasomes

To be activated, pro-IL-1β needs to be cleaved by proteases. Although cleavage by cathepsin G or
elastase in neutrophils has been described, yielding low-activity IL-1β, caspases are the main proteases
that can provide fully-active IL-1β. Caspase-8 has been shown to cleave IL-1β in vitro and in specific
conditions. However, the most important enzyme involved in IL-1β maturation remains caspase-1,
which has been reported to be activated via numerous sources [9].

Caspase-1 activation occurs via recruitment to multi-protein complexes called inflammasomes.
These intracellular complexes are all composed of a receptor and an adaptor, allowing recruitment and
activation of pro-inflammatory caspases [5].

The receptors, called nucleotide-binding oligomerization domain-containing protein (Nod)-like
receptors (or NLR), recognize a wide variety of stimuli referred to as pathogen-associated molecular
patterns (PAMPs) (Figure 1). The NLR family is characterized by the presence of several specific
domains. All of these proteins have a central NACHT ((NAIP (neuronal apoptosis inhibitor protein),
C2TA (MHC (major histocompatibility complex) class 2 transcription activator), HET-E (incompatibility
locus protein from Podospora anserina), and TP1 (telomerase-associated protein)) domain, responsible
for complex activation, via ATP-dependent oligomerization. At the C-terminal, the leucine-rich domain
(LRR) is involved in ligand detection and in complex self-regulation. The N-terminal is either a pyrin
domain (PYD) or a caspase recruitment domain (CARD) involved in protein–protein interactions
for signal transduction. Thus, activated receptors can recruit either pro-caspases (via the CARD) or
an adaptor protein (via the PYD), which in turn will recruit a pro-caspase. The NLR receptors are
divided into four families, with many members, according to the N-terminal domain composition.
However, the NOD-LRR and pyrin containing protein 3 (NLRP3) is the most important receptor, and
is responsible for caspase-1 activation under sterile conditions [5,10].

Prior to its activation, the expression of NLRP3 is under the control of NF-κB activation, like IL-1β.
NLRP3 is activated by a wide variety of stimuli and by three non-exclusive pathways, with possible
crosstalk. The first is intracellular K+ efflux induced by binding of extra-cellular ATP to its receptor
P2X7. The second involves phagocytosis of crystalline structures and subsequent lysosome damage.
Lysosomal content, especially cathepsin B, will then activate NLRP3 through direct interaction. The
third pathway involves an increase in reactive oxygen species (ROS) synthesis. All these steps will
converge to NLRP3 activation, recruitment of ASC (apoptosis associated speck-like protein containing
a CARD domain) and pro-caspase-1, and IL-1β and IL-18 maturation [11,12].

1.1.3. Secretion

The mechanisms that lead to IL-1β secretion are not clear (Figure 1). This might be explained by
the existence of several pathways that may or may not co-exist, depending on the context (Figure 1).
Studies of IL-1β secretion used different experimental settings, such as in vivo, ex vivo, or in vitro
cultures; different cellular models (primary cells, cell lines) and cell types (macrophages, fibroblasts,
neutrophils); several activators that induce cell death or not (pyroptosis, necrosis); as well as different
techniques to detect IL-1β (ELISA, Western blot, IL-1 HEK-blue cells). Moreover, techniques used to
investigate IL-1β secretion pathways, such as electronic microscopy, immunofluorescence, or the use
of more or less specific inhibitors of intra-cellular traffic, only give clues and not a real explanation.
Actually, analyses are made on single cells at a specific time point and may make impossible to
determine whether one or two mechanisms co-exist. In general, IL-1β is released through vesicles
(autophagolysosomes, microvesicles, or exosomes) or through membrane permeability (gasdermin D
(GSDMD) pores, membrane rupture).

Pro-IL-1β and IL-1β are localized in the cytoplasm and a fraction is sequestered in vesicles
identified as endosomes/lysosomes, via an unidentified mechanism. A part of lysosomal IL-1β is
targeted for degradation, while a fraction is saved for further exocytosis and secretion, through
fusion with the plasma membrane [13,14]. However, IL-1β may be protected from the acidic pH
of lysosome, to avoid its degradation. This rescue is enabled thanks to autophagy, a process that
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encapsules damaged organelles or proteins in a double membrane structure called autophagosome.
Autophagosomes generally fuse with lysosomes to proteotically degrade their content. In this context,
it has been reported that IL-1β can localize between the two layers of autophagosomes, possibly
explaining why IL-1β is not degraded [15]. Autophagosomes can also fuse with IL-1β-containing
endosomes to undergo exocytosis and IL-1β release out of the cell [13,14]. Multi vesicular bodies
containing IL-1β (but also caspase-1 and inflammasome components) can fuse with lysosomes for
degradation of their content or with plasma membrane to form and release exosomes [16].

Once cleaved, IL-1β exhibits an overall positive charge to enable it to colocalize with negatively
charged phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane. Then, shedding of
microvesicles from plasma membranes makes it possible for IL-1β to be released out of the cell [17].

As well as cleaving pro-IL-1β, activated caspase-1 can also trigger a type of inflammatory cell death
called pyroptosis. This type of cell death is characterized by inflammatory caspase activation (caspase-1
and/or caspase-11/4/5) and LDH (lactate dehydrogenase) release through membrane permeabilization.
This latter event was recently shown to be mediated by gasdermin D (GSDMD) cleavage. Once cleaved
by caspase-1, -11, or -5, the N-terminal fragment of GSDMD oligomerizes into ring-shaped structures
to form membrane pores. These pores enable the exit of mature IL-1β (the proform being too big).
They also allow the entry of sodium and water. If the activation signal and the number of GSDMD
pores are low, membrane fusion can patch the pores. On the contrary, if the signal and the number
of GSDMD pores are high, the sodium and water entry will induce membrane rupture, allowing the
release of the cytosolic content such as pro-IL-1β and IL-1β. However, pro-IL-1β release is not without
consequence if extra-cellular proteases cleave it into mature form [18,19].

The release of IL-1β and its preform pro-IL-1β into vesicles raises questions about its stability and
detection. Actually, IL-1β has a very short half-life [20] and its packaging into vesicles can allow it
to resist degradation and act at sites distant from the production site. As IL-1β can be encapsulated
into vesicles, and pro-IL-1β can be found in the supernatant, the detection of active IL-1β by classical
methods such as ELISA can be compromised [21–23]. To confirm the presence of mature IL-1β,
complementary methods, such Western blot on cell supernatants or HEK-blue cells, to detect active
IL-1β should be used. However, the incapacity to detect IL-1β would not assure its absence.

1.2. IL-1β Signaling

IL-1β binds to IL-1R, which belongs to the superfamily of TLR/IL-1R, characterized by the presence
of an intra-cellular TIR (TLR/IL-1R) domain (Figure 1). More particularly, IL-1β can bind to IL-1R1
and IL-1R2, which present three extra-cellular Ig binding domains and are associated with the highly
homologous IL-1R accessory protein (IL-1RAcP or IL-1R3). However, the transmission of a signal after
IL-1β binding to its receptors is not a simple matter. In fact, IL-1R2 has no TIR domain and acts as a
decoy receptor. Moreover, IL-1RA can also bind IL-1R1 without inducing an activator signal, taking
the place of IL-1β [6,24]. Thus, only IL-1β/IL-1R1/IL-1RAcp will enable transmission of a signal. This
raises the question not only of the amount of IL-1β produced, but also of the level of IL-1Rs expression
on target cells and the level of IL-1RA.

Once activated, IL-1R/IL1-RAcP can recruit Myd88 through TIR domains present in the
intra-cellular domain of IL-1R and on the C-terminal domain of Myd88. Then, MyD88 associates
with IRAK 4, IRAK1, and/or IRAK2. IRAK4 in turn phosphorylates IRAK1 and IRAK2 to enable their
association with TRAF6. TRAF6 serves as a platform to recruit and activate the transforming growth
factor β-activated kinase 1 (TAK1). TAK1 will activate either p38 and JNK (c-Jun N-terminal kinase),
leading to activation of transcription factor AP-1, or the IKK (inhibitor of NF-κB kinase) complex,
composed of IKKα, IKKβ, and IKKγ. The IKK complex catalyzes phosphorylation and subsequent
degradation of IκB, rendering NF-κB (i.e., p50/p65) free to translocate from the cytosol to the nucleus
and to activate NF-κB-dependent genes [25].

The activation of p38/JNK and NF-κB leads to the transcription of target genes involved in several
biological processes, depending on the cell type stimulated by IL-1β.
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2. IL-1β as a Cancer Marker?

The importance of IL-1β can first be considered by its impact on cancer development or progression.
This evaluation can be performed by quantifying IL1B mRNA or IL-1β protein expression or by
measuring gene polymorphisms that may influence its expression (Table 1).

Table 1. Effects of interleukin (IL)-1β or IL1B expression or IL1B polymorphisms on cancer. NSCLC,
non-small cell lung cancer.

Heading Type of Cancer Pro (+) or Anti (−)
Tumor Ref.

High IL-1β IHC staining Nasopharyngeal carcinoma (−) [26]

High IL-1β blood level NSCLC (+) [27–29]

High IL1B mRNA Breast cancer (−) [30]

High IL1B mRNA Cervical cancer (−) [31]
High IL1B-signature Gliomas (+) [32]

IL1B-511 C > T (rs16944) T allele

Ovarian cancer (+) or (−) [33–35]
Lung cancer (+) or (−) [36,37]

Gastric cancer (+) or (−) [38–46]
Cervical cancer (+) [47,48]

Acute myeloid leukemia (+) [49]
Chronic myeloid leukemia (+) [50]

IL-1β-31 C > T (rs1143627) T allele

Breast cancer (+) [51,52]
Lung cancer (+) [36,37]

Cervical cancer (+) [48]
Hepatocellular carcinoma (+) [53]

Osteosarcoma (+) [54]

IL-1β-31 C > T (rs1143627) C allele Gastric cancer (+) [45]

IL-1β-1464 G > C (rs1143623) G allele Renal cell carcinoma (+) [55]

Using the cancer genome atlas (TCGA) database, breast cancer patients with high levels of mRNA
expression of IL1B were shown to have a better prognosis than those with low levels [30]. Similarly,
the quantification of IL1B mRNA by qPCR in cervical cancer biopsies showed an increase in the risk of
progression of pre-neoplasic lesions in women with lower IL1B expression [31]. On the contrary, TCGA
analysis on glioma patient samples shows that high expression of “IL1B-signature” is correlated with
high expression of CD133 (a marker of glioma aggressiveness) and associated with poor prognosis [32].
These discrepancies might be explained by the fact that mRNA expression was studied at a single time
point and that these analyses did not consider the patient’s cancer stage, or whether they had received
treatment. Moreover, IL1B mRNA expression cannot predict its maturation by inflammasomes.

In this concept, immunohistochemical analyses showed that upregulation of ASC, caspase-1,
IL-1β, AIM2, RIG-I, and NLRP3 expression correlated with better local recurrence-free survival and
disease-free survival of nasopharyngeal carcinoma patients [26]. Again, this increased expression does
not reflect IL-1β activity.

Finally, IL-1β levels can be measured in patient plasma or serum by ELISA. IL-1β is significantly
overexpressed both at mRNA and protein levels in gastro-esophageal cancer or squamous cell carcinoma
samples compared with mucosa from controls [56–58]. High IL-1β levels are associated with shorter
overall and progression-free survival for non-small cell lung cancer (NSCLC) patients treated with
platinum-based combination chemotherapy or with chemotherapy/bortezomib and for pancreatic
cancer patients treated with gemcitabine [27–29].

Polymorphisms on the IL1B gene can be associated with variation in IL-1β expression. For example,
IL1B-511 C > T (rs16944) and IL-1β-31 C > T (rs1143627) T alleles are associated with an increase in
IL-1β serum concentration in cervical and gastric cancer patients [59–61], or in the supernatant of cells
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harboring rs1143627 [62]. Conflicting results were obtained concerning IL1B-511 (rs16944) homozygote
C/C genotypes, suggesting a low expression of IL1B. In one study, it was associated with the risk of
ovarian cancer, while in two others, it was not [33–35]. Similarly, C/C genotypes may or may not be
associated with a higher risk of lung cancer, depending on the studies [36,37]. IL1B-511T carriers,
suggesting higher expression of IL1B, present a higher risk of developing gastric cancer [38–45], or
not [46]. IL1B-511T carriers present a higher risk of developing cervical cancer, acute myeloid leukemia,
or chronic myeloid leukemia [47–50]. Concerning breast cancer, no association was shown between
IL1B-511 (rs16944) and the risk of breast cancer development [63]. IL-1β-31 (rs1143627) T allele is
associated with an increased IL1B expression. The T/T genotype was associated with a higher risk
of breast cancer [51,52], lung cancer [36,37], cervical cancer [48], hepatocellular carcinoma [53], or
osteosarcoma [54] in various studies. On the contrary, C allele carriers have a higher risk of developing
gastric cancer [45]. For IL-1β-1464 G > C (rs1143623), the G allele has decreased binding ability,
suggesting weaker promoter activity [64]. It is associated with renal cell carcinoma [55].

With all these results, it is difficult to certify whether IL-1β expression or IL1B polymorphisms
can predict the outcome of cancer patients.

3. Pro-and Anti-Tumor Effects of IL-1β

IL-1β has been shown to play a role in many physiological events. It can modulate gene
expression and cytokine production, regulating cellular adhesion and migration, angiogenesis, or
immune response. However, the repercussions on the course of cancer are complex, and both positive
and negative functions of IL-1β have been described. These observed discrepancies make IL-1β a
possible target that may need to be taken in consideration, depending on the cancer type and the
anti-tumor treatments.

3.1. IL-1β Effects on Cancer Occurrence

IL-1β has been shown to be upregulated in many solid tumors, including melanoma, colon, lung,
breast, or head and neck cancers and is associated with poorer prognosis. While its role in carcinogenesis
is well described for some cancer types, its implication in other types is not as well elucidated.

3.1.1. Skin Cancers

NLRP1 gain-of-function mutations are responsible for constitutive secretion of IL-1β by
keratinocytes, which enable skin inflammation and epidermal hyperplasia, and a predisposition to skin
cancer [65]. Human metastatic melanoma samples and human cell lines were described to constituvely
express and secrete IL-1β [66]. Using B16 melanoma or 3-methylcholanthrene (3-MCA)-induced skin
cancer models, it has been shown that the incidence of tumor development in mice was impaired in
IL-1β-deficient or in IL-RA-treated animals [67,68]. On the contrary, the incidence of mice-bearing
tumors was improved in IL-1RA-deficient animals [68]. In contrast, another study showed in the
B16-F10 model that blocking IL-1β with an antibody increased tumor appearance in wild type (WT)
mice, thus suggesting that IL-1β was protective in this context [69].

3.1.2. Colon Cancer

High amounts of IL-1β and IL-1α were detected in a murine adenomatous polyposis coli (APC)
colon cancer model [70]. Contrasting effects of IL-1β have been described on colon cancer incidence.
This may partly be because of the use of mice deficient in NLRP3 inflammasome components, which
are responsible not only for IL-1β production, but also for IL-18 production [71–73]. Another possible
explanation is that IL-1β targets several cell types. Using disruption of IL1-R1 on different cell types in
a mouse model, it was recently shown that IL-1R1 deficiency in epithelial cells reduces tumorigenesis
in an APC model, while IL1-R1 deficiency in neutrophils increases bacterial invasion and tumor
aggressiveness [70]. This study proposed dichotomous effects of IL-1, without differentiating between
IL-1β and IL-1α.
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In vitro, IL-1β was shown to upregulate miR-181a expression in human colon cancer cells,
through NF-κB, which is responsible for phosphatase and tensin homolog (PTEN) repression and cell
proliferation induction [74]. A similar effect of IL-1β on colon cancer cell proliferation was shown via
inactivation of glycogen synthase kinase (GSK)3β, leading to activation of the Wnt pathway and tumor
growth [8].

3.1.3. Lung Cancer

The level of IL-1β in bronchoalveolar lavage is higher in patients with lung cancer than in patients
with benign lung disease [75]. IL-1βwas shown to promote carcinoma by repressing miR-101 expression
through a cyclooxygenase 2 (COX2)/HIF1α pathway. MiR-101 inhibits malignant transformation
and cancer progression by negatively regulating oncogene expression. Thus, IL-1β/miR-101 is a new
regulatory axis of pathogenic inflammatory signaling in NSCLC [76].

3.1.4. Breast Cancer

It has long been established that there is IL-1β protein expression within human breast tumor
samples [77]. Moreover, IL-1β is upregulated in breast neoplasm initiation and development [78],
while IL-1R and IL-1β variations have also been related to breast tumorigenesis [79]. One possible
explanation is that IL-1β increases IL-6 production through a transglutaminase 2/NF-κB pathway. This
leads to an increase in luminal-type breast cancer cell aggressiveness. This can be inhibited using an
anti- IL-1β or an anti-IL-6 [80]. Another pathway has been described, using the fibroblast growth
factor receptor 1 (FGFR1)-induced murine mammary carcinoma model. It implicates IL-1β-mediated
expression of COX-2, which is responsible for early-stage mammary lesions [81]. The potential utility
of inhibiting IL-1β was underlined by studies using deficient mice or anti-IL-1 antibody, suggesting
that IL-1β in the tumor environment contributes to breast tumor progression [82,83].

3.1.5. Gastric Cancer

The use of a human IL-1β fused to a signal peptide to specifically induce its expression in mouse
stomach epithelial cells led to the development of spontaneous gastric inflammation; pre-neoplastic
lesions; and, in some cases, tumors, suggesting an initiator role of IL-1β [84]. Moreover, in gastric cells
infected with Helicobacter pylori, yes-associated protein 1 (YAP1) displays nuclear translocation and
works with TEAD to activate transcription of IL1B. The IL-1β thus produced displays YAP1-mediated
cell proliferation [85]. To transduce this proliferating signal, IL-1β may bind to its receptor and activate
NF-κB, which initiates JNK signaling, causing gastric cancer development [74,86,87].

3.1.6. Oral Cancers

Salivary IL-1β was described to be significantly higher in oral cancer patients than in a control
group [88]. In oral squamous cell carcinoma, IL1B is overexpressed in tumors as compared with
non-tumor matched samples. In mice, induction of oral malignancy by 4-Nitroquinolin-1-oxide
(4-NQO) and arecoline triggers pro-IL-1β expression, which is proportional to cancer severity [89].

3.1.7. Pancreatic Cancer

In human pancreatic ductal adenocarcinoma (PDAC) samples, high stromal IL-1β expression is
associated with poor overall survival of patients [90]. In mice, IL-1β involvement in cancer incidence
was addressed, using IL-1β expression specifically in the pancreas, via the elastase promoter. While the
expression of IL-1β resulted in chronic pancreatitis, mice only developed acinal-ductal metaplasia [91].
Perhaps the use of a carcinogen inductor, such as dimethylbenzanthracene, would make it possible to
prove the importance of IL-1β in the appearance of pancreatic carcinoma.

Further studies are warranted to elucidate these observed discrepancies. Differences might be
because of the means used to invalidate IL-1β, that is, KO mice with no IL-1β in the host, but with
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tumor cells producing IL-1β, or neutralizing antibody with a decrease, but not inhibition of both host
and tumor IL-1β.

3.1.8. Ovarian Cancer

Urinary and serum levels of IL-1β tend to be more elevated in patients with epithelial ovarian
cancer than in healthy women [92]. In the 2780 ovarian cancer cell line, IL-1β induces the expression of
matrix metalloproteinase (MMP)8, a factor implicated in cancer progression [93].

3.1.9. Prostate Cancer

High-score values for IL-1β or low-score values for interferon (IFN)β (both measured by
immunohistochemistry (IHC)) were significantly associated with biochemical recurrence of prostate
cancer [94]. Moreover, IL-1β and IL-1R2 (the decoy receptor) high expression and IL-1R1 low expression
are associated with higher progression free survival (PFS) [95].

In vitro monocytic-derived IL-1β inhibits LNCaP prostate cancer proliferation or induces
apoptosis [96–98]. Moreover, IL-1β resistant LNCaP cells (obtained after long exposure to IL-1β)
become resistant to many chemotherapeutic drugs and have a more important capacity to develop
tumors in mice [98]. IL-1β has an antiproliferative effect on prostate cancer cells, enhanced by coculture
with normal fibroblasts, through IL-6 [99]. Mechanistically, IL-1β can induce prostate tumor progression
by several pathways. Through NF-κB, IL-1β induces the activation of epithelium-specific ETS (E26
transformation-specific) ESE1 (or E74-like factor (ELF3)), two ETS family members responsible for
prostate cancer malignancy and associated with a poor prognosis for patients [100]. IL-1β can also induce
the expression of endothelin 1 (ET-1), which is implicated in prostate tumor progression [101]. Finally,
IL-1β induces the expression of matrisylin in human LNCaP prostate cancer cells, a metalloprotease
involved in cancer progression [102].

Androgen inhibition belongs to the therapeutic arsenal to treat prostate androgen receptor (AR)
positive cancers. It has been shown that IL-1β decreases AR expression, which may interfere with
anti-androgen therapies’ efficiency [93,103,104]. An amplification loop may exist, as AR- cancers
cells express high levels of IL-1β, while AR+ cells do not and androgen-deprivation drugs, that is,
leuprolide and bicalutamide, inhibit prostate cancer cells’ mediated IL-1β secretion by peripheral
blood mononuclear cells (PBMC) in vitro [105,106].

3.1.10. Mutational Status

In addition to cancer types, IL-1β can affect or can be affected by common cancer-
associated mutations.

In acute lymphoblastic leukemia, KRAS (Kirsten rat sarcoma viral oncogene homolog) G12D
mutation is responsible for the binding of cAMP response element binding (CREB) on IL1B promoter and
increases the expression of IL-1β in these cells [107]. KRAS G12D expression in murine bone-marrow
cells leads to NLRP3 inflammasome activation and IL-1β expression and to myeloproliferation.
IL-1RA or NLRP3 inhibition reverses the effects of KRAS mutation on myeloproliferation [108].
Moreover, overexpression of IL-1β in KRAS G12D mutant mice accelerates the development of PDAC
through autocrine activation of IL-1R1-mediated epithelial cell proliferation and an increased level of
immunosuppressive PD-L1+ B-cells [109]. This finding is correlated with the fact that myeloid-derived
IL-1β induces NF-κB activation more importantly in KRAS mutant (G12C or G13R) cancer cells
than in WT cells, leading to drug resistance [110]. Thus, an amplification loop between IL-1β and
mutated-KRAS seems to increase cancer progression and drug resistance.

Expression of mutated BRAF (v-raf murine sarcoma viral oncogene homolog B1) V600E mutation
induces the transcription of IL1A and IL1B in papillary thyroid carcinoma cells, melanocytes, and
melanoma cell lines and this induction can be inhibited by vemurafenib [111–113]. On the contrary,
this BRAF(V600E) inhibitor increases DC-mediated IL-1β production [114]. However, the impact of
BRAF(V600E) on IL-1β production and cancer evolution remains to be studied.
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IL-1β treatment leads to a decreased PTEN expression, PI3K/AKT signaling activation, and to
the induction of epithelial to mesenchymal transition (EMT) in NSCLC cells [115]. IL-1β induces
the expression of miR-425, miR-181a, and miR-181b through NF-κB, in gastric cancer, colon cancer,
and osteosarcoma cells, respectively. These miRNA repress PTEN expression, leading to apoptosis
inhibition and proliferation-associated cancer cell growth [74,116,117]. PTEN expression in myeloid
cells dictates NLRP3 inflammasome activation and IL-1β expression. Then, it allows mitoxanthrone
anti-cancer activity in MC0205 fibrosarcoma model in mice. Moreover, in breast cancer patients, PTEN
expression is correlated with IL-1β expression and to anthracyclines-based adjuvant chemotherapy
sensitivity [118].

Ovarian cancer cells communicate with cancer-associated fibroblasts (CAFs) through IL-1β
to downregulate p53 expression in these cells to generate a pro-tumorigenic inflammatory
microenvironment [119]. Similarly, downregulation of IL-1β, IL1-R1, or Myd88 increases p21 and p53
in human melanoma cells [120]. On the contrary, the p53 status seems to regulate IL-1β response. WT
p53 increases IL-1RA expression, which represses colon and breast cancer cells proliferation in vitro
and tumor growth in vivo, while mutant p53 represses IL-1RA expression, allowing IL-1β effects [121].
Wnt secretion by p53-deficient breast cancer cells activates IL-1β production by macrophages. IL-1β
then activates neutrophils to dampen CD8-mediated anti-tumor immune response [122].

P73 and, more particularly, Tap73, a constitutively active p73, is able to increase the transcription
of IL1B and CASP1 in lung and breast cancer cells, allowing these cells to produce IL-1β [123]. The
impact on cancer has to be defined.

BRCA1 (breast cancer 1) 185delAG mutation in ovarian epithelial cells allows IL-1β expression [124].
BRCA1 helps the sensing of herpes virus DNA and the activation of caspase-1 and IL-1βproduction [125].
However, the consequences of IL-1β in WT or mutated BRCA1 on cancer initiation or progression
remain to be investigated.

3.2. IL-1β Effects on Tumor Immune Response

As seen below, the fact that IL-1β can be produced endogenously and/or by cancer cells highlights
the importance of the microenvironment, and more particularly immune cells, in IL-1β-mediated
effects (Figure 2).
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danger-associated molecular patterns; CCL, C-C motif chemokine ligand; IFN, interferon; NK,
natural killer.
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3.2.1. Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs form a population of immature myeloid cells with the ability to dampen T-cell
activation [126]. These cells have been shown to markedly expand in lymphoid organs and blood in
tumor-bearing mice [84]. In addition, the frequency of MDSCs is increased in the blood of patients
with different types of cancers [127,128]. In mice and humans, MDSCs are one of the major suppressors
of antitumor immunity, mainly by inducing antigen-specific MHC class I restricted tolerance of CD8+

T-cells [129].
The importance of IL-1 in MDSC accumulation came from a study showing that tumor bearing

IL-1R1-deficient mice presented decreased tumor growth and fewer MDSCs [130]. However, this work
did not discriminate the effects of IL-1α and IL-1β.

Overexpression of IL-1β in gastric cancer or fibrosarcoma models leads to accumulation of MDSCs
at the tumor site. The inhibition of IL-1, using IL-1RA, decreases or suppresses MDSC accumulation at
the tumor site and inhibits tumor development in these models [84,131].

Overexpression of IL-1β in mammary 4T1 tumor cells can modify MDSC phenotype (more CD8,
CD80, CD83, and CD14 expression and lower CD44 and B220) in vivo, while it does not change their
capacity to dampen CD4 and CD8 T-cells’ activation/proliferation [132]. This suggests that the effect of
IL-1β relies more on the accumulation of MDSCs than on increased immunosuppressive activity. An
effect of IL-1β on the different subtypes of MDSCs has been observed. In the mammary 4T1 tumor
model, overexpression of IL-1β (in the tumor or the host) or the invalidation of IL-1RA led to an
accumulation of Ly6C negative MDSCs, that is, polymorphonuclear (PMN)-MDSCs, whereas blocking
IL-1β decreases the number of MDSCs. The consequences of high IL-1β expression are a decrease in
functional natural killer (NK) cells and increased tumor growth [133]. However, the direct effect of
IL-1β on MDSCs was not studied in this work. It was shown that MDSCs from mammary 4T1 tumors
do not express IL-1R1 [132], suggesting that these cells cannot respond directly to IL-1β.

IL-1β-induced inflammation increases IL-10 production by MDSCs and activates MDSCs, which
are more effective at down-regulating macrophage production of IL-12 as compared with MDSCs
isolated from less-inflammatory tumor microenvironments [134].

3.2.2. Macrophages

Tumor-associated macrophages (TAMs) compose a heterogeneous family that may be classically
divided into M1 and M2 macrophages. This classification is based on the capacity of M1 to produce nitric
oxide synthase/IL-12/TNF-α and to promote Th1 responses, while M2 produce arginase-1/IL-10/TGF-β
to support Th2-associated effector functions [135,136]. However, a spectrum of polarization exists in
the tumor with macrophages sharing markers or expressing atypical markers. Macrophages, and more
particularly those of the M1 type, are the cells most commonly described to be able to produce IL-1β
under several stimuli, as their differentiation in vitro is induced by macrophage colony-stimulating
factor (M-CSF), LPS, and IFNγ [137].

IL-1β produced at the tumor site can induce macrophage chemotaxis. This was demonstrated
in vitro with human metastatic melanoma samples and human cell lines [66], and in vivo in
3-methylcholanthrene (3-MCA)-induced skin cancer [68]. As shown in vitro with human gastric
cancer cell lines, IL-1β increases macrophage recruitment by allowing monocyte chemoattractant
protein (MCP)-1 expression by tumor cells [138].

Tumor cells can facilitate TAM-mediated IL-1β production. This was suggested by the fact that
PDAC cell debris can stimulate IL-1β production by M2-polarized macrophages in vitro [139]. The
sphingolipid sphingosine-1-phosphate (S1P), highly expressed by cancer cells, is able to trigger NLRP3
expression in macrophages and subsequent IL-1β production. This pathway plays a major role in
tumor lymphangiogenesis, murine lymph node, and lung metastasis, while NLRP3 expression is
correlated with human mammary carcinoma development [140,141]. Similarly, murine 4T1 breast
cancer cells release soluble CD44, which in turn induces macrophage-mediated IL-1β production,
leading to tumor growth and lung metastases [142]. Human lung cancer cells release microparticles
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that bind TLR3 to trigger NLRP3 inflammasome pathways in macrophages and IL-1β secretion.
Thus, macrophages exposed to tumors may become inflammatory TAMs to promote human lung
cancer development [143]. Moreover, PDAC cell exosomes alter macrophage phenotype and trigger
inflammatory cytokine production, among which is IL-1β [144].

IL-1β derived from TAMs suppresses the expression of 15-hydroxyprostaglandin dehydrogenase
(15-PGDH), an enzyme involved in prostaglandin degradation in PDAC cells, which results in tumor
growth and poor prognosis for PDAC patients [145]. It can also increase COX-2 expression in human
breast cancer cells, thus contributing to cancer progression [146]. In colon cancer, macrophage-derived
IL-1β activates NF-κB-dependent PDK1/AKT signaling in tumor cells. This activates the Wnt pathway
to enhance tumor growth [8,147]. In parallel, Wnt secretion by p53-deficient breast cancer cells
activates IL-1β production by macrophages. IL-1β then activates neutrophils to dampen CD8-mediated
anti-tumor immune response [122]. Finally, PDAC cells release ASC, which is able to act as an alarmin
and induce IL-1β release by macrophages. Then, this IL-1β is able to trigger CAFs to release thymic
stromal lymphopoietin (TSLP), which is a key cytokine for Th2 pro-tumor immune response [148].

Other factors can influence TAM polarization and inflammation. In a non-alcoholic fatty
liver disease (NAFLD) model with colon cancer splenic xenograft, a high-fat diet induced TAM M2
polarization and substantial IL-1β and vascular endothelial growth factor (VEGF) production in an NLR
family CARD containing 4 (NLRC4)-dependent manner. These events lead to increased liver metastasis,
which can be countered using IL-1RA [149]. A high cholesterol diet is also responsible for macrophage
production of IL-1β, through NLRP3 activation, and tumor growth in azoxymethane-induced colon
cancer [150]. In the same context, obesity can be responsible for the pathogenesis of breast cancer.
Human and murine breast tissue-associated adipocytes secrete C-C motif chemokine ligand 2 (CCL2)
and IL-1β, which will both recruit and activate macrophages. These recruited cells secrete CXCL12,
which is responsible for stromal vascularization and angiogenesis even before cancer occurrence [151].
Finally, in the lung, commensal bacteria stimulate Myd88-dependent IL-1β and IL-23 production
from resident macrophages, inducing proliferation and activation of γδ T-cells that produce effector
molecules (e.g., IL-17) to promote inflammation and tumor cell proliferation [152].

3.2.3. Dendritic Cells

Dendritic cells (DCs) belong to the myeloid lineage. As the principle antigen-presenting cells of
the immune system, DCs are immune sentinels and initiate T-cell response against microbial pathogens,
tumors, and inflammation [153,154]. The use of DCs as cellular vaccines for immunotherapy has been
studied for a long time. It consists in differentiating monocytes into DCs in vitro (with GM-CSF and
IL-4). Many studies have tested the addition of a cytokine cocktail to improve DC maturation and
activation. These cocktails are generally composed of IL-1β with IL-6, TNFα, and prostaglandin E2
(PGE2) [155,156].

Cancer cell-derived DAMPs (danger-associated molecular patterns) [157], double-stranded
oligodeoxynucleotides [158], or bacteria [159,160] can be used to activate TLRs and the inflammasome
to enable DCs to release IL-1β. For example, Salmonella typhimurium i.v. injected into mice can enable
DCs to produce IL-1β and enhance inhibition of colon cancer growth. Inhibiting IL-1β restores tumor
growth, while local administration of recombinant IL-1β inhibits tumor growth [159,160].

More physiologically, TMEM176B (transmembrane protein 176B, an immunoregulatory cation
channel) has been identified as a new regulator of IL-1β production. In tumor-bearing mice, its
deficiency leads to increased activation of caspase-1 and IL-1β production by DCs. In this context,
IL-1β enhanced CD4+TCRβ+RORγt+ cells producing IL-17, which are responsible for slowing down
tumor growth [161].

3.2.4. Neutrophils

Neutrophils originate from myeloid precursors. Because of their phenotypic heterogeneity and
functional versatility, neutrophils play a pivotal role in chronic inflammatory diseases, including cancer.
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Like macrophages, they can have anti- and pro-tumor functions in the tumor microenvironment [162].
Moreover, mature neutrophils share similar morphology and expression of cell surface markers
with PMN-MDSCs, but the difference between these cell types relies on the suppression capacity of
T-lymphocytes by PMN-MDSCs [163].

In an azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced cancer-associated colitis
model, complement deficiency was shown to inhibit intestinal IL-1β production by neutrophils
and IL-17A production by myeloid cells, and to repress tumor formation [164]. As shown in the
3-methylcholanthrene (3-MCA)-induced skin cancer model, IL-1β-deficient animals have fewer
intra-tumor neutrophils, while IL-1RA-deficient mice have dense infiltrate, suggesting that IL-1β
produced in tumors can recruit neutrophils [68].

However, the signaling of IL-1β in neutrophils can lead to opposite effects. In p53-/- breast cancers,
IL-1β-activated neutrophils curb CD8-mediated anti-tumor immune response [122]. In Epstein–Barr
virus (EBV)-associated nasopharyngeal carcinoma, viral DNA and intra-tumor DAMPs stimulate
inflammasomes to produce IL-1β. This low-level IL-1β favors tumor growth. On the contrary, treatment
by irradiation or cisplatin increases tumor cell production of IL-1β, which recruits neutrophils. These
tumor-associated neutrophils inhibit tumor growth [26]. In colorectal cancer, IL-1β may improve the
control of local microbiota populations by neutrophils. This leads to a selection of microbe species,
thus avoiding excessive pro-tumorigenic inflammatory cytokine production [70].

3.2.5. T Lymphocytes

The adaptive immune response to cancer is regulated by T lymphocytes [165]. However,
tumor-infiltrating CD4+ and CD8+ T-cells are associated with varying patient survival and clinical
outcomes in many types of cancer such as breast [166], colorectal [167], and lung cancers [168]. CD4+

T-cell differentiation and CD8+ T-cell activation can be modulated by a cytokine network [169]. Among
these cytokines is IL-1β.

Using a tetracycline-regulated human IL1B transgene in the mouse prostate, it was shown that
IL-1β is able to induce the recruitment of CD4+ T-cells in inflammatory areas [170]. However, IL-1β
has opposing effects on lymphocytes. One hypothesis to explain these discrepancies is the kinetics,
frequency, and quantity of IL-1β. In different tumor models, it was shown that IL-1β injection may or
may not decrease tumor growth, depending on the setting of the experiment. Injecting too early, or
a single injection of IL-1β, has no effect on tumor growth, while several injections and higher doses
(10 µg) inhibit tumor growth [171]. When these experiments are performed in immunodeficient mice,
IL-1β has no effect, suggesting that T-cells participate in IL-1β-mediated effects.

This gives rise to the second possible explanation for the divergent effects of IL-1β; that is, perhaps
it relies on the T cell subtypes present in the tumor. IL-1β seems to be required for secretion of
Th1-derived cytokines IL-2 and IFN-γ at the tumor site, and subsequent blockade of B-cell myeloma
and lymphoma growth [172]. The importance of IL-1β was confirmed by invalidating IL-1R1 in
T-cells (it also inhibits IL-1α signaling). Thus, IL-1R1 signaling in T-cells entails Rorc expression and
IL-17A and IL-22 production (suggesting a contribution of Th17 or innate lymphoid cells) and colon
cancer progression [70,173,174]. Moreover, cancer cells and APCs from human ovarian cancer samples
produce IL-1β, which favors the differentiation and expansion of Th17 cells [175]. Indirectly, IL-1β
influences the fate of Treg cells. When produced by CAFs, it favors CCL22 production by tumor cells.
CCL22 in turn allows recruitment and polarization of Tregs (through C-C motif chemokine receptor
4 (CCR4)-mediated forkhead box P3 (FOXP3) induction), responsible for the inhibition of the T-cell
antitumor effect [176]. On the contrary, IL-1β induces IRF1 expression through STAT1, which then
enables enhanced production of IL-9 and IL-21 in CD4 T-cells differentiated into Th9 cells. Th9 cells
were shown to have anti-tumor properties. Consequently, Th9 cells generated in the presence of IL-1β
exert more marked tumor inhibitory functions [177].

Tumor-derived IL1β activates γδT-cells to produce IL-17. Increased IL-17 levels lead to neutrophil
expansion and alteration of their phenotype. These phenotypically altered neutrophils produce
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inducible nitric oxide synthase (iNOS), which inhibits the activity of anti-tumor CD8+ T-cells, resulting
in an increase in the capacity of cancer cells to form metastases [178].

IL-1β was shown to have an effect on CD8+ T-cells. First, CD137L-mediated DC maturation
leads to them producing IL-1β. Then, this cytokine leads to maturation of CD8+ T-cells, namely by
increasing IFNγ and granzym B production [179,180]. Moreover, CD137L-maturated DC can also
polarize CD8+ T-cells into Tc1 cells with less expression of exhaustion markers (CTLA-4, TIM-3, PD-1),
but without showing the real impact of IL-1β in this phenotype modification [179]. In another study,
IL-1β was shown to increase the proportion and functionality of adoptively transferred T-cells in the
tumor and to lead to the inhibition of B16 melanoma tumor growth in mice. In this context, IL-1β
increases trafficking and survival in peripheral tissues (lymph nodes, liver) and acts indirectly, through
IL-15-dependent induction of Granzyme B production [181]. The effects of IL-1β on CD8+ T-cells
should be further explored to define its mechanism of action and the molecular consequences on CD8+

phenotype, activity, and exhaustion.
IL-1β has different effects on immune cells. Thus, its pro- or anti-tumor effect may rely on the

type and frequency of immune cells in the tumor.

3.3. Effects of IL-1β on Angiogenesis

Angiogenesis is a process that enables the formation of new blood vessels to support the growth of
malignant tumors by supplying oxygen and nutrients to cancer cells [182]. This phenomenon is induced
by HIF, which promotes oncogene activation, pro-angiogenic factor expression, and anti-angiogenic
factor suppression. The most important pro-angiogenic factors are vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGF) [183]. However,
IL-1β is also an important regulator of angiogenesis.

In vitro, human samples (metastatic melanoma) and human cell lines (melanoma, oral squamous
cell carcinoma (OSCC)) have been shown to produce IL-1β, which favors tube formation by HUVEC
cells [66,89].

The impact of IL-1β on angiogenesis has also been observed in different cancer models. For
example, in a transgenic model of Myc-dependent carcinogenesis, IL-1β triggers VEGF production and
neo-angiogenesis [184]. Moreover, when experiments are performed in IL-1β-deficient mice or using
IL-1RA, the vascularization of the tumor was abrogated [67,185,186]. This pro-angiogenic role was
observed even when IL-1β was produced by different cell types, that is, cancer cells or myeloid cells.
Fibrosarcoma or Lewis lung carcinoma (LLC) cells modified to constitutively secrete IL-1β were shown
in vivo to promote angiogenesis, through the induction of VEGF, CXCL2, and hepatocyte growth
factor production by cancer and stromal cells, leading to tumor progression [68,187,188]. In melanoma,
production of VEGF and other proangiogenic factors by endothelial cells is dependent on myeloid cell
(macrophages or MDSCs)-derived IL-1β [185,189].

In a mouse model with a high fat diet, obesity was shown to drive angiogenesis and cancer
progression. Two mechanisms were proposed. Macrophage-derived IL-1β is able to stimulate the
production of Angiopoietin-like 4 (ANGPTL4), a pro-angiogenic factor, in adipocytes [190]. NLRC4
inflammasome activation in myeloid cells can trigger the secretion of IL-1β, which in turn stimulates
adipocytes to secrete VEGF-A [191].

3.4. Effects of IL-1β on Cancer Metastasis

Metastasis is the mechanism leading to the spread of cancer cells from the original site of the tumor
to other major organs, such as the lung, liver, and kidney. It proceeds directly through invasion into the
adjacent tissues or indirectly through several steps, including intravasation, circulation through blood
or lymphatic vessels, anchoring at a secondary site, extravasation, and establishment of metastatic
lesions in distant organs [192].

The importance of IL-1β in metastasis was first observed 30 years ago. Injection of IL-1β in
mice increased lung and hepatic metastasis [193,194]. Moreover, IL-1β-overexpressing fibrosarcoma
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cells have an increased invasion potential [131,195]. On the contrary, the invalidation of IL-1β or
inflammasome components, responsible for IL-1β maturation, was associated with reduced lung or
hepatic metastasis [196,197]. Similar results were observed for breast cancer bone metastasis, using
anakinra (IL-1RA) [198]. Moreover, IL-1β silencing decreases metastatic potential of murine prostate
cancer cells, while its overexpression increases it [199].

IL-1β is able to regulate metastasis at various levels, for example, by regulating (EMT), cancer cell
stemness, sphere formation, or migration/invasion.

EMT is the process responsible for cancer cells acquiring stem-like properties, as well as
migratory and invasive capacities. However, inhibition of EMT also induces cancer stemness
and mesenchymal–epithelial transition, the reverse process of EMT, which is associated with the
tumor-initiating ability required for metastatic colonization [200]. This may explain observations
relating to the role of IL-1β on EMT. On one hand, continuous exposure of NSCLC to IL-1β induces the
EMT phenotype, with high expression of the transcription factor SLUG required for the establishment
of EMT memory. Furthermore, even when IL-1β exposure was withdrawn, cancer cells sustained their
acquired phenotype [115,201]. In breast cancer, IL-1β induces BIRC3 expression and estrogen receptor
(ER) α gene methylation, leading to EMT [202,203]. IL-1β also stabilizes Snail, an EMT actor, in an
NF-κB/AKT/Wnt-dependent manner in human colon cancer cells [204]. Anti-IL-1β antibodies, just like
anti-IL-6, attenuated EMT phenotype in breast cancer cells [80]. On the other hand, at the metastatic
site, IL-1β maintains cancer cells in a ZEB1-positive differentiation state, preventing their establishment.
The absence of inflammation or blocking IL-1R removes the differentiation block and allows metastatic
colonization. Among lymph node-positive breast cancer patients, high IL-1β expression in the primary
tumor is associated with better overall survival and distant-metastasis-free survival [205]. These
discrepancies in IL-1β activity need to be carefully considered when developing anti-IL-1β therapies.

Recombinant IL-1β enhances the sphere-forming capacity of cancer stem cells (CSCs) by increasing
stemness gene expression (Bmi1 and Nestin) [206]. Furthermore, carcinoma-derived IL-1 (IL-1α and
IL-1β) favors a transition from tumor cells into CSCs [207]. This is because of the capacity of IL-1 to
allow mesenchymal stem cells to produce factors (PGE2, IL-6, IL-8, Gro-α, RANTES) that in turn activate
β-catenin in cancer cells. β-catenin is a master regulator of proliferation, migration, and invasion [207].
IL-1β can also act directly on gastric cancer cells and induces PI3K activation and translocation of
S100A4, a factor known to be involved in the metastasis of several types of cancer [208,209]. Finally,
IL-1β-induced β1-integrin expression is responsible for ovarian tumor cell adhesion to mesothelia,
a crucial step in ovarian cancer dissemination [210].

The IL-1β responsible for migration/invasion was shown to be produced by cells in the tumor
microenvironment, such as macrophages, fibroblasts, and B-cells. In co-cultures of glioblastoma cells
with PBMC, anakinra was shown to inhibit inflammatory crosstalk and cancer cell migration [211].
NLRP3 expression in TAMs is correlated with lymph node invasion, metastasis, and survival in
mammary carcinoma patients [140]. This was sustained by the fact that inhibition or invalidation of
NLRP3 in macrophages inhibited the metastatic potential of B16F10 murine melanoma cells in vitro [212].
Finally, macrophage-derived IL-1β was shown to regulate breast carcinoma cell migration and their
adhesion to, and transmigration across, blood and lymphatic endothelial cells [213]. Cancer cells and
fibroblasts can interact with each other to regulate cancer cell migration. First, tumor-induced tissue
damage can be sensed as a DAMP by CAFs. This allows the activation of the NLRP3 inflammasome, the
production of IL-1β, leading to tumor progression and lung metastasis [214]. Another study showed
that IL-1β expressed in OSCC cells leads to CXCL1 production by CAFs, which in turn promotes
cancer cell migration [215]. Further studies are required to evaluate whether these two pathways
can co-exist. B-cells are more easily recruited in renal carcinoma tissues than in normal renal tissues.
The interaction between B-cells and cancer cells allows IL-1β secretion, which is responsible for renal
cancer cell migration, through HIF-2α and Notch1 pathways [216]. Production of IL-1β by cancer
cells or neighboring cells can activate many molecular pathways that lead to cancer cell migration.
It activates p38 in gastric cancer [84,217], extracellular signal-regulated protein kinase (ERK)1/2, AP-1,
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and MMP9 in invasive breast ductal carcinoma [218], and PI3K/Rac 1-regulated reorganization of
the actin cytoskeleton of mammary MCF-7 cells [219]. IL-1β also increases TWIST expression in
gallbladder cancer [220], and c-MYC, CCDN1, SNAIL1, and MMP2 expression through β-catenin
pathway activation [221].

3.5. Pro- and Anti-Tumor Effects of IL-1β during Cancer Treatment

Beyond regulating cancer appearance or progression, IL-1β can also influence anti-cancer
treatments. In fact, chemotherapy and radiation can trigger the production of IL-1β by either
cancer cells or tumor infiltrating cells, such as macrophages, DCs, or MDSCs (Figure 3).
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Chemotherapeutic agents such as doxorubicin or cisplatin give rise to NLRP3 expression, caspase-1
activation, and pyroptotic cell death of multiple mesothelioma cells. This leads to IL-1β release from
cancer cells, and the use of anakinra in combination with cisplatin was shown to achieve decreased
tumor growth in mice [222]. On the other hand, in nasopharyngeal carcinoma cells, the inflammasome
is activated by cisplatin or radiation, through cathepsin B release from lysosomes or ROS production
and mitochondrial DNA release into the cytosol, respectively. In this case, tumor-released IL-1β
helps therapeutic treatments to inhibit tumor growth by recruiting neutrophils at the tumor site [26].
Chemoresistant cancer cells can also release IL-1β. This is the case of PDAC cell lines resistant to
etoposide or doxorubicin, which constitutively secrete IL-1β, maintaining an NF-κB amplification loop
responsible for chemoresistance [223,224]. This observation was confirmed on tumor samples that
highly express p65 NF-κB subunit and IL-1β, contrary to normal pancreatic tissues [225,226]. Similarly,
radiotherapy-resistant breast cancer cells secrete ATP, which in turn associates with its receptor P2Y2R
on the cancer cell surface to induce caspase-1 activation and IL-1β release. Then, IL-1β induces MMP9
expression and invasion [227].

Chemotherapy can have opposing effects on anti-tumor immune response. First, it has been
shown that anthracyclines, such as oxaliplatin, can activate NLRP3 inflammasome indirectly in DCs.
Indeed, these compounds induce immunogenic cell death of cancer cells that release DAMPs such as
ATP. Then, the released ATP associates with its receptor P2RX7 on DCs and induces caspase-1 activation
and IL-1β release. The IL-1β thus released activates IFNγ-producing CD8+ T-cells [228]. In this context,
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the P2RX7/NLRP3 pathway is essential, as the anti-tumor effect of oxaliplatin is lost in mice deficient
in these proteins. Moreover, breast cancer patients with a loss-of-function allele of P2RX7 developed
more metastases than patients bearing the normal allele [228]. IL-1β inhibitors were also shown to
reduce the anti-tumorigenic effect of oxaliplatin or anthracyclines [229]. On the contrary, we showed
that other chemotherapies, such as 5-fluorouracil (5-FU) and gemcitabine, directly activate NLRP3
inflammasome in MDSCs, through a cathepsin B-dependent pathway, and enable IL-1β release by
these cells. However, in this context, IL-1β targets CD4+ T-cells, which then produce IL-17. IL-17 is in
turn responsible for neo-angiogenesis and tumor growth [230]. The NLRP3/IL-1β pathway is required
for the deleterious effects of 5-FU and gemcitabine on tumor immune response, as tumor growth is
inhibited in mice deficient for NLRP3, or IL-1R. Moreover, anakinra in combination with 5-FU inhibits
tumor growth in mice and also enables stabilization of disease in refractory metastatic colorectal
cancer patients, suggesting that this combination might have promise as a potential treatment [230,231].
We previously showed that HSP70 can inhibit NLRP3 inflammasome [232,233]. The importance of
IL-1β in tumor escape from 5-FU treatment was strengthened, with the confirmation that HSP70
deficiency in mice leads to high caspase-1 activation in MDSCs, subsequent angiogenesis, and rapid
tumor growth, whereas hyperthermia (which increases HSP70 expression) inhibits these events and
slows down tumor growth [234].

Other chemotherapeutic agents have been shown to be capable of inducing IL-1β release from
myeloid cells. For example, BRAF inhibitors vemurafenib and dabrafenib were shown to enable IL-1β
secretion by human and murine DCs, but the authors did not explain whether this action on IL-1β was
pro- or anti-tumor [114]. Paclitaxel favors NLRP3 activation in macrophages [235,236]. In different
murine cancer types, this placlitaxel-induced macrophage IL-1β secretion slightly reduced the primary
tumor, while promoting metastasis, suggesting a dual role for this drug [237].

These observations suggest that IL-1β may alternatively favor or inhibit chemotherapy-mediated
anti-tumor immune response. Thus, the association of IL-1β or anti-IL-1β with chemotherapy should
be considered, according to the drugs used.

4. Therapeutic Perspectives

We have seen that IL-1β is generally a promoter of cancer by acting on cancer cell proliferation
and invasion, neo-angiogenesis, or tumor infiltrating immune cells. However, depending on the
cancer type or stage, the main type of immune cells present in the tumor microenvironment, and the
anti-cancer treatment used, inhibiting IL-1β may or may not be beneficial for patients.

IL-1β can be blocked at different levels: IL-1β itself, using antibodies, or IL-1β maturation, using
inhibitors of inflammasomes, or inhibitors of the pathways leading to their activation.

Many antibodies have been developed to block IL-1β. The IL-1RA anakinra is one of the most
widely used in pre-clinical studies. Anakinra is a non-glycosylated form of human IL-1RA that
competitively inhibits IL-1α and IL-1β from binding to their receptor [238]. It has shown benefits in
several clinical trials. Anakinra decreased the myeloma proliferative rate of smoldering or indolent
multiple myeloma, leading to a chronic disease state and improved PFS [239]. In a phase II clinical
study, we showed that using anakinra restored antitumor efficacy of 5-FU in heavily pretreated patients.
Of the 32 patients enrolled, 5 showed a response (CHOI criteria) and 22 patients had stable disease [231].
Anakinra is currently being tested in further clinical trials. Another possible candidate is rilonacept, the
extracellular domain of the IL-1RAcP and the IL-1R1 fused to the Fc portion of human IgG1. It has high
affinity with IL-1β and IL-1α and potently inhibits IL-1 activity [240]. However, these blockers inhibit
both IL-1β and IL-1α, but IL-1α can have tumor promoting or inhibiting functions, and inhibiting this
isoform together with IL-1β can have synergistic or antagonist effects, depending on the context.

Canakinumab is a specific human monoclonal IgG1 antibody that targets IL-1β. This antibody
has no cross-reactivity with either IL-1α or IL-1R1 [240]. A recent phase three clinical trial (CANTOS)
involving 10,500 patients demonstrated that canakinumab could significantly reduce lung cancer
incidence and patient mortality. However, fatal infections and sepsis were more common in the
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canakinumab group than in the placebo group [241]. Another mAb that inhibits IL-1β, gevokizumab,
used in inflammatory disorders, could also be proposed in cancer treatment [242].

Several inflammasome chemical inhibitors tested in vivo and in vitro, such as MCC950, CY09,
OLT1177, oridonin (targeting NLRP3 ATPase), or tranilast (targeting NLRP3 oligomerization), should
be considered [243]. MCC950 was shown to successfully inhibit inflammation and to improve murine
ulcerative colitis [244]. Specific caspase-1 inhibitors including ritonavir and VX-740/765 are also of
interest. Ritonavir was originally developed for the treatment of HIV [245]. VX-765 is well tolerated and
has shown benefits in a mouse model of rheumatoid arthritis [246]. Finally, we proposed hyperthermia
as a new modulator of the NLRP3 inflammasome [232]. It can block caspase-1 activation in MDSCs,
and subsequent angiogenesis and rapid tumor growth in mice [234]. Although hyperthermia is
already used in specific treatment protocols, further studies are required to demonstrate its efficiency
in humans. However, blocking inflammasomes may have limitations such as off-target effects, by
inhibiting maturation of IL-18, an anti-tumor cytokine.

Another way to inhibit inflammasomes is to target molecular pathways leading to their activation.
Thus, ion efflux (K+, Ca2+, Cl−), ROS or oxidized mitochondrial DNA generation, and lysosomal
destabilization/cathepsin B can be targeted [247]. Potassium efflux can be inhibited by glyburide, a
compound tested in gestational diabetes mellitus [248] or by P2RX7 inhibitors (oxATP, AZ10606120),
which have shown anti-tumor effects in the murine B16 melanoma model [249]. ROS production can
be dampened by antioxidants, which have shown health benefits when added to the diet. However,
blocking one of these pathways requires adequate knowledge of its implication in cancer progression
or resistance to treatment.

5. Conclusions

To conclude, we have highlighted in this review the pleiotropic effects of IL-1β in cancer. Although
its role is primarily pro-tumoral, some examples have shown that it may also contribute to anti-tumor
immune response. The exact explanations for these opposing effects are not yet known. The level of
IL-1β produced, the type of producing cells, the microenvironment (immune cells or fibroblasts), the
stage of the cancer, and the anti-cancer treatments used may all participate in the divergent effects of
IL-1β. Further studies are required to elucidate these points. In any case, the use IL-1β blockers in the
clinical context should be carefully considered, in order to guarantee the best treatment for patients.
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