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Abstract

Motivation: How predictable is the evolution of cancer? This fundamental question is of immense

relevance for the diagnosis, prognosis and treatment of cancer. Evolutionary biologists have

approached the question of predictability based on the underlying fitness landscape. However, em-

pirical fitness landscapes of tumor cells are impossible to determine in vivo. Thus, in order to quan-

tify the predictability of cancer evolution, alternative approaches are required that circumvent the

need for fitness landscapes.

Results: We developed a computational method based on conjunctive Bayesian networks (CBNs)

to quantify the predictability of cancer evolution directly from mutational data, without the need for

measuring or estimating fitness. Using simulated data derived from >200 different fitness land-

scapes, we show that our CBN-based notion of evolutionary predictability strongly correlates with

the classical notion of predictability based on fitness landscapes under the strong selection weak

mutation assumption. The statistical framework enables robust and scalable quantification of evo-

lutionary predictability. We applied our approach to driver mutation data from the TCGA and the

MSK-IMPACT clinical cohorts to systematically compare the predictability of 15 different cancer

types. We found that cancer evolution is remarkably predictable as only a small fraction of evolu-

tionary trajectories are feasible during cancer progression.

Availability and implementation: https://github.com/cbg-ethz/predictability\_of\_cancer\_evolution

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dissecting the relative contribution of stochastic versus deterministic

forces in shaping the outcome of evolutionary processes is a long-

standing question of both experimental and theoretical research in

evolutionary biology (Blount et al., 2018; Gould, 1990; Lobkovsky

and Koonin, 2012; Orgogozo, 2015). While stochastic forces (e.g.

genetic drift) allow evolution to take place in an undirected manner,

deterministic forces (e.g. natural selection) can impose constraints

on the potential evolutionary trajectories. Stephen Jay Gould high-

lighted the problem of chance and necessity by devising the meta-

phor of ‘replaying the tape of life’. He concluded that the outcome

of evolution at large is not likely to be repeatable, because many

equally likely evolutionary trajectories may exist (Gould, 1990).

However, recent technological advancements in experimental

evolution, high-throughput sequencing and modeling of complex

biological systems have revealed some repeatable features in diverse

evolutionary processes and pervasive evolutionary constraints in

various biological systems (Achaz, 2014; Blount et al., 2018;

Ferretti et al., 2018; Hosseini and Wagner, 2017; Lieberman et al.,

2011; Miles et al., 2011; Poelwijk et al., 2007; Salverda et al., 2011;

Toprak et al., 2012; Weinreich et al., 2006). These repeatable pat-

terns and regularities suggest a predictive theory of evolution, which

has been pioneered by studies attempting to predict the future of

evolution in various biological systems (Barton et al., 2016; Bull and

Molineux, 2008; Cowperthwaite et al., 2008; Luksza and Lässig,

2014; Neher et al., 2014; Nyerges et al., 2018). Thus, beyond recon-

structing evolutionary history of the past, the task of predicting fu-

ture outcomes of evolutionary processes has emerged in

computational evolutionary biology (Lässig et al., 2017).

Predictability is tightly linked with controllability (Fischer et al.,

2015; Lässig et al., 2017). Once we can predict the outcome of evo-

lution, we will be able to design specific intervention strategies and

manipulate biological systems towards our desired goals. This is
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where fundamental principles of evolutionary biology come into

play in biomedical research, particularly in the diagnosis and treat-

ment of diseases with evolutionary nature such as cancer. Cancer

progression can be regarded as an evolutionary process, which is

caused by step-wise accumulation of selectively advantageous muta-

tions (Beerenwinkel et al., 2016; Nowell, 1976).

Like all evolutionary processes, cancer progression is the out-

come of events driven by a mixture of both stochastic and determin-

istic forces. On the one hand, because of the extensive inter- and

intra-patient heterogeneity of cancer-associated mutations, the gen-

etic progression of cancer seems to be an unpredictable evolutionary

process (Burrell et al., 2013; Lipinski et al., 2016; Marusyk and

Polyak, 2010). On the other hand, a growing body of evidence

attests to the predictability of cancer evolution. For example, only a

minor fraction of mutations, called drivers, contributes to the malig-

nancy of cancer, while most are passenger mutations with no pheno-

typic effects (Vogelstein et al., 2013), such that, typically, only a

handful of genes are frequently mutated among patients with a given

cancer type (Lawrence et al., 2013; Vogelstein et al., 2013).

Moreover, the pervasive constraints in the temporal ordering of

tumorigenic mutations (Bagcchi, 2015; Fisher et al., 2014; Kent and

Green, 2017; Martins et al., 2012; Ortmann et al., 2015), and the

repeatability of evolutionary trajectories during cancer progression

(Caravagna et al., 2018) suggest the predictability of cancer evolu-

tion. Nevertheless, these anecdotal examples and sporadic reports

on heterogeneity or repeatability are not sufficient for a systematic

insight into the extent of evolutionary predictability of different can-

cer types. Instead, a rigorous quantitative framework is needed for

this purpose (Linnen, 2018).

Various attempts using different approaches have been made to

gain quantitative insights into the predictability of evolution in general

(de Visser and Krug, 2014). Whereas experimentally, evolutionary pre-

dictability is assessed as the fraction of identical outcomes in replicate

evolutionary experiments (Blount et al., 2018; Tenaillon et al., 2012;

Woods et al., 2006), theoretical studies of predictability analyze the

probabilities of mutational pathways on a given fitness landscape (de

Visser and Krug, 2014). A common model is the strong selection and

weak mutation rate (SSWM) assumption (Gillespie, 1983; Orr, 2005),

which implies successive clonal expansions driven by selectively advan-

tageous mutations. The SSWM assumption allows for computing mu-

tational pathway probabilities based on the fixation probabilities of

the mutations (Weinreich et al., 2006). It is widely used for analyzing

fitness landscapes (de Visser and Krug, 2014; Weinreich et al., 2005)

and its validity has been confirmed by experimental evolution studies

(Poelwijk et al., 2007; Weinreich et al., 2006).

The predictability of evolution is minimal if all mutational path-

ways are all equally likely (Fig. 1a). In contrast, non-uniform distri-

butions of mutation trajectories bias evolution towards specific

directions and increase the predictability of evolution (Fig. 1b and

c). The extent of the non-uniformity can be quantified by the en-

tropy of the pathway probability distribution (Szendro et al., 2013).

In practice, however, defining evolutionary predictability based

on empirical fitness landscapes is usually unfeasible, because of the

high costs associated with experimentally determining the fitness of

all possible genotypes (de Visser and Krug, 2014). Moreover, meas-

uring fitness landscapes in vivo is impossible and in vitro systems

have their own limitations. Furthermore, inferring fitness landscapes

from genomic data, especially for cancer is also extremely challeng-

ing. Although in other systems, such as, e.g. HIV under the strong

assumption of equilibrium distribution of the quasispecies model,

systematic inference of fitness landscapes has become possible

(Seifert et al., 2015), for cancer similar attempts are so far limited to

small-scale studies, such as estimating the fitness effects of single

mutations (e.g. BCR-ABL in chronic myeloid leukemia) (Traulsen

et al., 2010). Therefore, for quantifying evolutionary predictability

of cancer, it is necessary to define an alternative framework, which

operates independently of fitness landscapes, and is based solely on

cross-sectional mutational patterns, which are abundant.

Here, we assess whether cancer progression models, such as con-

junctive Bayesian network (CBN) (Beerenwinkel and Sullivant, 2009;

Gerstung et al., 2009), CAncer PRogression Inference (CAPRI)

(Ramazzotti et al., 2015) or Oncogenetic Tree (OT) (Szabo and

Boucher, 2008), which are probabilistic graphical models used for

describing the constraints in the ordering of mutation accumulation

events, can be used to quantify the predictability of cancer evolution.

Among cancer progression models, CBNs are particularly appropriate

for this purpose, because they allow for inferring both elements of pre-

dictability directly from mutational data, namely (i) the constraints on

evolutionary trajectories encoded in the inferred network structure and

(ii) the distribution of pathway probabilities derived from the local

probability distributions of the CBN model (Beerenwinkel and

Sullivant, 2009). Therefore, we employ CBNs in this study for estimat-

ing mutational pathway probabilities.

In order to systematically assess the validity of the CBN model

for quantifying the predictability of cancer evolution, it is essential

to establish that the CBN-based constraints on the ordering of muta-

tions approximate well those based on the underlying fitness land-

scape and the SSWM assumption (Fig. 1). Leveraging the simulated

data of previous work (Diaz-Uriarte, 2018), which has made a con-

nection between CBNs and fitness landscapes, here we quantify the

predictability of cancer progression (i) based on fitness landscapes

under the SSWM assumption (as the ground truth) and (ii) by apply-

ing the CBN model directly to simulated genotypes (our novel

CBN-based framework). We show that the collections of feasible

evolutionary pathways derived by the two approaches correlate

strongly, implying that CBNs can be used to approximate the

SSWM- and fitness landscape-based notion of evolutionary predict-

ability, thus offering an alternative way to quantify the predictability

of cancer progression that does not require any knowledge of the fit-

ness landscape. Using our robust and scalable CBN-based frame-

work, we systematically compare the predictability of up to 15

different cancer types using TCGA (Cancer Genome Atlas Research

Network et al., 2013) and MSK-IMPACT (Zehir et al., 2017) data.

2 Materials and methods

2.1 Conjunctive Bayesian networks
CBNs are probabilistic graphical models that describe constraints

on the ordering of mutations, which occur during mutation accumu-

lation processes such as tumorigenesis (Beerenwinkel et al., 2007). A

CBN is defined by a set E ¼ f1; . . . ; ng of n mutational events and a

partial order ‘�’ on E. For i; j 2 E, we write i � j if i � j and i 6¼ j.

We represent the partially ordered set, or poset, ðE;�Þ by its Hasse

diagram, the directed acyclic graph (DAG) with vertices E and edges

(i, j) for all relations i � j, such that no k 2 E exists with i � k � j

(Fig. 1, bottom). The genotype lattice G is the set of all genotypes

compatible with the partial order on E (Beerenwinkel et al., 2006).

It is defined as the set of order ideals, i.e. the subsets g � E for which

j 2 g and i � j implies i 2 g. We identify a genotype g 2 G with the

binary string indicating the occurrences of all mutations in g, e.g. for

n ¼ 5, g ¼ f2; 3; 5g corresponds to 01101. The genotype lattice is

represented by the DAG with vertices G and edges ðg; hÞ for all g; h 2
G with jh n gj ¼ 1 (Fig. 1, top). It defines the state space of the
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evolutionary process and is a subset of the genotype universe, the n-

dimensional hypercube U ¼ f0; 1gn.

In continuous-time CBNs (CT-CBNs), the waiting time for mu-

tation i 2 E to occur is the random variable Ti, defined recursively as

Ti ¼ max
j2paðiÞ

Tj þZi (1)

where paðiÞ denotes the set of parents of i in the Hasse diagram and

Zi � ExpðkiÞ; i ¼ 1; . . . ; n are independent exponentially distributed

random variables with rates k ¼ ðk1; . . . ; knÞ (Beerenwinkel and

Sullivant, 2009). Equation (1) reflects the order constraints of E: mu-

tation i can occur only after all parent mutations j 2 paðiÞ have

occurred. The occurrence times T1; . . . ;Tn of mutations are un-

known and instead genotypes G are observed after a certain random

sampling time Ts � ExpðksÞ. Mutation i is then observed if Ti < Ts.

The CT-CBN model is the model for G defined as the marginaliza-

tion with respect to the waiting times T1, . . ., Tn, Ts. The hidden

CBN (H-CBN) extends the CT-CBN by additionally allowing obser-

vation errors with probability e independently for each mutation,

such that the true genotypes become hidden random variables.

We performed maximum likelihood inference of the poset struc-

ture and the parameters k and e of the H-CBN based on simulated

annealing and expectation maximization as described previously

(Gerstung et al., 2009). For simulated annealing, we used tempera-

ture T ¼ 1, and as initial poset the DAG inferred for the CT-CBN

model with fixed error rate of 0.05 (Beerenwinkel and Sullivant,

2009). We varied the number of simulated annealing steps depend-

ing on the number (n) of mutations (i.e. for n � 4, 100 steps, for

n ¼ 5, 1000 steps and for n � 6, 10 000 steps).

2.2 Mutational pathways
A mutational pathway in U ¼ f0; 1gn of length n is a permutation

p ¼ ðp1; . . . ;pnÞ 2 Sn, such that mutation p1 occurs first, p2 second,

etc. Equivalently, the mutational pathway p is given by the ordered

list of n þ 1 genotypes gðpÞ ¼ ðg0; g1; . . . ; gnÞ, where gðpÞi ¼ [i
j¼1pj,

i.e. the genotypes successively accumulating the mutations in p. For

a poset ðE;�Þ with genotype lattice G, the mutational pathways in G
are exactly the linear extensions of the poset, i.e. the total mutation

orders that respect the partial order. For example, in Figure 1b,

ð2;1; 4; 3Þ 2 S4 defines a mutational pathway compatible with the

order constraints. It is equivalently represented by the ordered geno-

types (0000, 0100, 1100, 1101, 1111).

Let P be a collection of mutational pathways in U. The exit set of a

genotype g is the set of all genotypes that can be reached from g by

acquiring one additional mutation along any of the pathways in P,

ExitPðgÞ ¼ fh 2 Uj9p 2 P : g; h � gðpÞ and jh n gj ¼ 1g (2)

For example, the CBN model in Figure 1b defines the mutational

pathways P� ¼ fð1; 2; 3;4Þ; ð1; 2;4; 3Þ; ð2;1; 3; 4Þ; ð2; 1; 4;3Þ;
ð1;3; 2; 4Þg and ExitP� ð1100Þ ¼ f1110; 1101g. Each mutational

pathway, at each step, realizes exactly one of the options recorded

in the exit set.

Let P(p) be a probability distribution over a set of mutational

pathways P. As in Szendro et al. (2013), its entropy is

HP ¼ �
X
p2P

PðpÞ log PðpÞ (3)

We define the predictability of an evolutionary process described

by the pathway distribution ðPðpÞÞp2P as

Fig. 1. Fitness landscapes and CBN. Upper panels show schematic representations of three different fitness landscapes each including four mutations. Each ver-

tex corresponds to a genotype, which is represented as a binary string and is color-coded according to its fitness. Each fitness landscape is arranged in five col-

umns and each column contains all genotypes with the same number of mutations. The leftmost and the rightmost columns correspond, respectively, to the

wild-type and the fully mutated genotype. There is an edge between a pair of genotypes if they differ in exactly one fitness-increasing mutation. A mutational

pathway is comprised of a set of edges that connect the wild-type to the genotype with the highest fitness (i.e. the fully mutated one). In panel (a), all genotypes

belonging to the same column have the same fitness and fitness increases monotonically from left to right. In this fitness landscape, all 4!¼24 potential pathways

are accessible with equal probability (minimum predictability). In panel (b), not all genotypes belonging to the same column have the same fitness, such that evo-

lutionary trajectories are restricted: only five pathways are accessible with different probability (shown as different edge thickness) (intermediate predictability).

In panel (c), only a single mutational pathway is accessible and predictability is maximal. Each network on the bottom (with green vertices and labeled by the mu-

tation) represents a CBN, whose DAG encodes the order constraints. An edge a ! b in the DAG means that mutation a must occur prior to mutation b. The

graphs on the top are exactly the genotype lattices of the corresponding CBN models on the bottom

Predictability of cancer evolution i391



/P ¼ 1� HP

Hmax
(4)

where the maximal entropy Hmax ¼ logðn!Þ is attained when all

jSnj ¼ n! pathways have the same probability. We have 0 � /P �
1 with /P ¼ 0 indicating no predictability (all mutational pathways

have the same probability) and /P ¼ 1 indicating maximal predict-

ability (one pathway is taken with probability 1).

2.3 Evolutionary predictability in the fitness landscape-

based SSWM model
A fitness landscape is a mapping w : U! R that assigns to each

genotype g its fitness wg. For a mutational pathway p, we define the

selective coefficient of mutation pi as the fitness difference

sp;i ¼ wgðpÞi �wgðpÞi�1
(5)

that it causes along the mutational pathway.

In the SSWM regime (Gillespie, 1983; Orr, 2005), mutations are

fixed sequentially in a population, resulting in a multi-step evolutionary

process along mutational pathways. The probability of a mutational

pathway is the product of the fixation probabilities of mutations in

each of the n steps, where the fixation probability of each beneficial

mutation is proportional to its selective coefficient (Kimura, 1962).

Under the SSWM assumption, a mutational pathway is accessible if the

fitness of its genotypes is monotonically increasing along the pathway.

Thus, we define the set of all accessible pathways as

Pw ¼ fp 2 Snjsp;i > 0 for all i ¼ 1; . . . ;ng (6)

With Exitw ¼ ExitPw
, the probability of a mutational pathway is

PðpÞ ¼ 1

C

Yn
i¼1

sp;iP
h2ExitwðgðpÞiÞwh �wgðpÞi�1

(7)

if p 2 Pw and zero otherwise (Weinreich et al., 2006), where C is

the normalizing constant defined as follows:

C ¼
X
p2Pw

Yn
i¼1

sp;iP
h2ExitwðgðpÞiÞwh �wgðpÞi�1

(8)

The evolutionary predictability in the fitness landscape-based

SSWM model is then /w ¼ /Pw
(Equations (4) and (3)), with P(p)

given by Equation (7).

2.4 Evolutionary predictability in the CBN model
We now derive another notion of evolutionary predictability that does

not require a fitness landscape, but is based only on genotype data. We

assume that a CBN model ðE;�Þ with genotype lattice G and waiting

time parameters k has been learned from genotype data (Section 2.1).

The feasible mutational pathways in G are the linear extensions

of the poset,

P� ¼ fp 2 Snjpi � pj for all i � jg (9)

To compute the probability of a pathway p, we consider the

waiting time process (Equation (1)). At each step i, all possible one-

step extensions of g(p)i are recorded in its exit set. Thus, the path-

way probability is given by the product of competing exponentials,

PðpÞ ¼
Yn
i¼1

kpiP
h2Exit�ðgðpÞiÞkhngðpÞi

(10)

if p 2 P� and zero otherwise. For each step i, h n gðpÞi has cardinal-

ity 1 and consists of the possible additional mutation. We have used

the abbreviation Exit� ¼ ExitP� . Note that the above equation does

not need to be normalized, because the following equality always

holds:

X
p2P�

Yn
i¼1

kpiP
h2Exit�ðgðpÞiÞkhngðpÞi

¼ 1 (11)

The evolutionary predictability in the CBN model is /� ¼ /P�

(Equation (4)). The above procedure, however, requires modifica-

tion to be widely applicable: for large numbers n of mutations it

becomes increasingly difficult to estimate the CBN model ðE;�Þ
both statistically and computationally. Although the uncertainty in

the genotype lattice may be high in this situation, this need not ne-

cessarily be the case for the evolutionary predictability. For large n,

we fix a smaller number n0 < n, such that CBN learning is feasible

on n0 mutations, and approximate the evolutionary predictability by

averaging over all subsets of mutations of size n0,

/� 	
1

n
n0

� � X
E0 
 E
jE0j ¼ n0

/�0 (12)

2.5 Simulated data
We leveraged the simulated data of a previous study (Diaz-Uriarte,

2018) both for generating random fitness landscapes and for pro-

ducing genotypes from evolutionary simulations.

For the fitness landscape-based approach (Section 2.3), we used

100 representable and 111 non-representable fitness landscapes,

where a landscape is called representable if its support is the geno-

type lattice of a CBN. Both types of fitness landscapes are derived

from an initial DAG of restrictions, and the genotypes are binary

vectors of length 7, defined based on the presence or absence of

beneficial mutations in seven genes, resulting in 128 distinct geno-

types. The fitness to each genotype is assigned based on the restric-

tions imposed by the DAG and the fitness effects of each individual

mutation. If a genotype is not accessible according to the given

DAG, its fitness will be zero; otherwise its fitness will be determined

based on the set of mutations it contains. In any given fitness land-

scape, the fitness of the wild-type genotype is 1 and the fitness of ac-

cessible genotypes with a single mutation is 1þ s, where s is the

fitness effect of the mutation and is chosen from a uniform distribu-

tion between 0.1 and 0.7. More generally, the fitness of accessible

genotypes with multiple mutations is
Qj
ði¼1Þð1þ siÞ, where si is the

fitness effect (i.e. selection coefficient) of the ith mutation and j is the

total number of mutated genes in the given genotype. This way of

fitness assignment, which is implemented in the representable fitness

landscapes, ensures that there will be no reciprocal sign epistasis in

the landscape. To introduce reciprocal sign epistasis, in the second

type of fitness landscapes (non-representable ones), synthetic lethals

or holes are introduced into the landscape by assigning a randomly

chosen subset of (accessible) genotypes with two or more mutations

to 0.2, which makes the accessibility of the chosen genotypes very

unlikely. Using this approach, in the previous study 100 represent-

able and 200 non-representable fitness landscapes has been con-

structed (Diaz-Uriarte, 2018). Because our analyses are based on the

SSWM assumption, and we assume cancer progression as a muta-

tional pathway from the wild-type genotype towards the fully

mutated one, we required the fitness landscapes to assign the highest

fitness to the fully mutated genotype (as the sole global peak).

Moreover, we required that the genotype with the highest fitness to

be connected to the wild-type genotype by at least one accessible

mutational pathway. All 100 representable and 111 out of the 200

i392 S.-R.Hosseini et al.



non-representable fitness landscapes fulfilled these requirements, so

we used them in this study. Note that in the non-representable fit-

ness landscapes, the fully mutated genotype is the genotype with

highest fitness, but it is still possible to see multiple local fitness

peaks, which accounts for the ruggedness of the fitness landscape.

Moreover, in the previous study (Diaz-Uriarte, 2018) based on

an evolutionary model (McFarland et al., 2013) implemented in the

OncoSimulR package (Diaz-Uriarte, 2017), from each fitness land-

scape, under different mutation rates (high: 10–5 and low: 10–6) and

detection regimes (slow and fast), 20 000 genotypes were generated

(Diaz-Uriarte, 2018), which we used for our CBN-based predictabil-

ity estimation (Section 2.4 and Supplementary Text S1).

2.6 Real data
We used cancer genomic data from two distinct sources, referred to

as TCGA and MSK-IMPACT, which were collected differently.

Whereas TCGA includes samples from primary tumors of untreated

patients (Cancer Genome Atlas Research Network et al., 2013),

MSK-IMPACT is comprised of sequence data from patients with

metastatic cancer under treatment at Memorial Sloan Kettering

Cancer Center, 43% of which were obtained from metastatic sites,

most commonly liver, lymph node and bone (Zehir et al., 2017). We

gained access to these datasets through the cBioPortal platform

(Gao et al., 2013).

We used 15 distinct cancer types in our analyses. The number of

samples varies based on cancer type and data source from 186 to

836 in TCGA and from 93 to 1357 in MSK-IMPACT

(Supplementary Table S1). We determined the genotype of each

tumor using a given number n � 20 of most frequently mutated

driver genes (Supplementary Table S2) predicted by Mutsig2CV

v3.1, which is a significantly mutated gene-based method that

adjusts for known covariates of mutation rates (Lawrence et al.,

2013). We exclusively focused on 15 cancer types that are (i) fre-

quent enough in both datasets and (ii) are included in the Broad

Institute TCGA GDAC Firehose (http://gdac.broadinstitute.org/),

where we obtained the driver gene information.

3 Results

3.1 Evolutionary predictability: fitness landscape-based

SSWM model versus CBN-based model
We first compared the predictability of evolution as quantified either

by a fitness landscape w using the SSWM assumption or by a CBN

model ðE;�Þ learned from genotype data collected during evolution

on the landscape w. That is, we asked whether /w 	 /�. We used

four different simulation conditions (two different mutation rates

and two different detection regimes), in 100 representable and 111

non-representable fitness landscapes. For each fitness landscape and

each condition, we computed /w and learned a CBN model from

20 000 simulated genotypes to compute /�. Each genotype is a bin-

ary vector of length seven indicating the occurrence of seven differ-

ent mutations (see Section 2 for more details).

We found a strong correlation between /� and /w in both types of

fitness landscapes under low mutation rate and slow detection regime

(Fig. 2; Pearson’s R¼0.92, P< 10–43 in representable fitness landscapes

and R ¼ 0.86, P < 10–33 in non-representable ones). Thus, the congru-

ence between the two methods is not limited to representable fitness

landscapes, but it also holds for non-representable ones, where perva-

sive reciprocal sign epistasis causes the fitness landscape to be rugged.

However, under high mutation rates (10–5) or fast detection regimes,

where the SSWM assumption is only weakly respected, /� starts to de-

viate from /w (Supplementary Fig. S1).

Next, we compared the pathway probability distributions as esti-

mated from the CBN, P�ðpÞ (Equation (10)), to those computed from

the fitness landscape directly under the SSWM assumption, PwðpÞ
(Equation (7)). Figure 3 shows that the Jensen–Shannon divergence

between the two distributions is smaller than 0.25 for most fitness

landscapes (with median 0.045 in representable and 0.146 in non-

representable ones), which is strikingly smaller than that of the baseline

comparisons to the empty CBN, which assumes independence of muta-

tions (with median 0.318 in representable and 0.432 in non-

representable ones) and to the uniform distribution of pathways (with

median 0.433 in representable and 0.487 in non-representable ones).

These observations highlight the importance of the inferred DAG of

restrictions by the CBN model. We also found that departure from the

SSWM assumption, e.g. in simulation conditions with fast detection

and high mutation rates, increases the divergence between the two dis-

tributions (Supplementary Fig. S2). Additional analyses using different

metrics further confirmed the similarity between the two approaches

(Supplementary Text S2 and Figs S3–S7). Thus, under the SSWM as-

sumption, the CBN-based approach reliably quantifies the predictabil-

ity of evolution directly from genotypic data alone.

3.2 Scalability and robustness
In order to apply our framework to real cancer genomics data, we

next explore the scalability and robustness of estimating /�. In our

simulations, we had fixed number of genes to n ¼ 7, which resulted

in 27 ¼ 128 possible genotypes and 7! ¼ 5040 mutational pathways.

However, the number of driver genes, which are frequently mutated

among cancer patients can reach up to 20 resulting in more than a

million genotypes and 1018 distinct mutational pathways, which

renders the quantification of /� unfeasible. Moreover, in our simu-

lations, we had a large sample size of N ¼ 20 000 genotypes, which

could mask the potential variability in the estimation of /�, as cur-

rent real datasets are often on the order of 100 to 1000 genotypes.

Since the structure learning of CBNs relies on simulated annealing,

by increasing the number of genes, n, the search space grows expo-

nentially in n, which can lead to increased variability in the estima-

tion of /�. We confirmed this by a bootstrap analysis (see

Supplementary Text S3 and Fig. S8).

To address the challenges of both scalability and robustness, we

consider the approximation of /� in Equation (12) obtained from

(a) (b)

Fig. 2. Strong correlation between CBN-based and fitness landscape-based

quantification of evolutionary predictability. Panels (a) and (b), respectively,

correspond to representable and non-representable fitness landscapes. Each

point corresponds to a fitness landscape. The black lines are the identity lines,

and the blue lines are the linear regression models surrounded by a shaded

confidence interval region. The used genotypes are the outcomes of evolu-

tionary simulations with slow detection and low mutation rate
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averaging over all mutation subsets of fixed size n0 < n. The idea is

to choose n0 such that CBN inference becomes reliable for the given

amount of data. Rather than trying to assemble the subnetworks

into a global model, a common strategy in network inference, we ag-

gregate on the level of predictability motivated by the multiplicative

structure of the pathway probabilities (Equation (10)).

If all consecutive waiting time rates ki differ by the same factor,

i.e. kiþ1=ki is constant for all i, then the approximation /�0
(Equation (12)) is almost exactly the same as /� (Supplementary

Text S4 and Figs S9 and S10). This approximation is indeed also

valid for the simulated data to a great extent (Supplementary Text

S5 and Fig. S11). Moreover, in real data including 15 cancer types

from TCGA and MSK-IMPACT, where the sample size is substan-

tially smaller than in the simulated data, this approximation still

holds strongly (Supplementary Text S6 and Figs S12 and S13).

Based on a bootstrap analysis of the real data, we showed that the

approximate formula considerably reduces the variability of the esti-

mated predictability (Supplementary Text S7 and Fig. S14), and thus

it facilitates not only a scalable but also a robust quantification of

predictability.

3.3 Cancer progression is remarkably predictable
We employed our framework of evolutionary predictability and

used Equation (12) to estimate /� from two real cancer genomics

datasets, namely TCGA and MSK-IMPACT (Section 2.6), in order

to address our central question on the predictability of cancer evolu-

tion and to systematically compare its extent in different cancer

types.

As /� is robust w.r.t. n0 (Supplementary Fig. S13), we kept it

constant at n0 ¼ 4, but systematically varied n from 4 to 20 to assess

how /� varies as a function of the number of (predicted) driver

genes in different cancer types. We observed that although from

n ¼ 4 to n ¼ 10, different cancer types show different trends, from

n ¼ 10 upwards, /� levels off and remains almost constant in all

cancer types and datasets (Supplementary Fig. S15). Indeed, the ab-

solute difference between /� of consecutive n, j/�ðnÞ � /�ðn� 1Þj,
for n � 10, becomes negligible in both datasets (Supplementary Fig.

S16). Moreover, based on a leave-one-out sensitivity analysis, we

found that for n ¼ 10, /� is robust to removal of any driver gene

(Supplementary Text S8 and Fig. S17), such that undetected drivers

are unlikely to confound the analysis. We fixed n ¼ 10 for all subse-

quent analyses.

Comparing across cancer types in TCGA, we found that predict-

ability of cancer evolution is generally high, but varies considerably,

from 0.36 in stomach adenocarcinoma to 0.82 in pancreatic adeno-

carcinoma (Fig. 4). To further illustrate the extent of predictability

and its diversity across cancer types, we use the fact that /� is ap-

proximately proportional, on a logarithmic scale, to the fraction a
of feasible, i.e. non-zero probability, pathways (Supplementary Text

S9 and Fig. S18). Indeed, only a tiny fraction of mutational path-

ways is feasible. Even in the least predictable cancer type with

/� ¼ 0:36, only a ¼ 0:4% of the pathways are accessible, while for

pancreatic adenocarcinoma, a ¼ 0:0004%, which is 1000 times

smaller than for stomach adenocarcinoma. Furthermore, we observe

that /� for the MSK-IMPACT data, which was collected from

patients with metastatic tumors, is on average higher than for

TCGA (P¼0.032, Mann–Whitney U test). Whereas in seven cancer

types, /� is almost the same in both MSK-IMPACT and TCGA

datasets, for eight other cancer types, particularly for cancer types

with lower /� in the TCGA data, the evolutionary predictability is

substantially higher in MSK-IMPACT as compared to TCGA

(Fig. 4).

3.4 Predictability, mutation frequency and intra-tumor

heterogeneity
Next, we compared the evolutionary predictability of cancer types

with other observable evolutionary traces, namely mutational load

and intra-tumor genetic heterogeneity. Both of these parameters in-

dicate lack of predictability and hence are expected to correlate

negatively with /�.

We found that evolutionary predictability of cancer types in

TCGA is indeed significantly anti-correlated with the average muta-

tion rate measured by analyzing >3000 samples (Fig. 5a) (Lawrence

et al., 2013). Similarly, our analysis revealed a significant negative

correlation between predictability and intra-tumor heterogeneity

based on a recent comprehensive pan-cancer inference of intra-

tumor genetic heterogeneity (Raynaud et al., 2018) (Fig. 5b). The

results of this study further corroborated our expectation that the

average number of clonal and sub-clonal mutations is significantly

anti-correlated with the corresponding measure of evolutionary pre-

dictability (Fig. 5c and d). These negative correlations, albeit to a

lesser extent, are also observed for MSK-IMPACT (Supplementary

Fig. S19).

4 Discussion

In this study, we have established a statistical framework based on

CBNs to rigorously quantify the predictability of cancer progression

directly from cross-sectional genomic data. In particular, our ap-

proach does not require measuring or estimating the fitness effects

of mutations, which is common practice in evolutionary biology,

where the dominating paradigm for studying the predictability of

evolution relies on the concept of fitness landscapes.

We systematically analyzed the validity of our approach by lever-

aging the simulated data of a previous study (Diaz-Uriarte, 2018),

which has made a connection between CBNs and fitness landscapes.

We have shown that CBN-based approach strongly agrees with the

fitness landscape approach under the SSWM model in estimating the

evolutionary predictability, not only in representable but also in

non-representable fitness landscapes, which are deliberately

designed to be rugged by having an elevated level of reciprocal sign

(a) (b)

Fig. 3. Similarity of the CBN model-based and fitness landscape-based path-

way probability distributions. Displayed is the Jensen–Shannon divergence

(where a value of 0 denotes the distributions are identical and a value of 1

that distributions do not overlap) between the pathway probability distribu-

tions of the fitness landscape approach, P(pw) (Equation (7)), and that of the

CBN-based approach, P ðp�Þ (Equation (10)), (blue boxes), the empty CBN

model (white boxes) and the uniform pathway probability distribution (black

boxes) in (a) 100 representable and (b) 111 non-representable fitness land-

scapes in the slow detection and low mutation rate condition. Boxes span the

two middle quartiles, and whiskers indicate maxima and minima
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epistasis and hence are not consistent with the DAG assumption of

CBNs.
Our results revealed that CBN models, by inferring a maximum

likelihood DAG of restrictions, are able to identify similar collec-

tions of feasible evolutionary trajectories as the SSWM-based model,

although with a tendency of CBN models to allow more evolution-

ary pathways than the SSWM-based model (Supplementary Text

S2). Our comparison of the maximum likelihood CBN model with

the empty CBN, in which mutations are assumed to occur independ-

ently, further highlighted the fact that the power of the CBN model

lies in its ability to capture dependencies among mutations in the

inferred DAG, rather than only their marginal frequencies. In fact, a

pure frequency-based method (i.e. the empty CBN) distinguishes be-

tween mutational pathways almost as poorly as the uniform path-

way distribution (Fig. 3) and therefore considerably underestimates

the predictability of cancer evolution (Supplementary Text S10 and

Fig. S20). Furthermore, it is important to note that CBNs estimate

the joint probability distribution of all genes, including more com-

plex forms of epistasis. Hence, higher order epistasis, which is be-

yond pairwise epistasis, is captured by the CBN model and

implicitly taken into account the final estimate of the predictability

of cancer evolution.

That being said, we acknowledge that the validity of our ap-

proach depends on the accuracy of the SSWM assumption. We do

not know to what extent the SSWM assumption is valid for cancer

evolution, as we cannot measure the in vivo fitness effect of muta-

tions, but departure from the SSWM assumption might be conceiv-

able at least for hyper-mutated tumors with elevated chromosomal

instability. Nevertheless, the SSWM assumption with all its potential

pitfalls is broadly applied in studying the predictability of evolution

in general (de Visser and Krug, 2014; Weinreich et al., 2005) and it

Fig. 4. Comparison of evolutionary predictability among different cancer types. The vertical axis shows the CBN-based predictability /�, computed based on

Equation (12) for each given cancer type. The error bars indicate the standard deviation of /� calculated from 100 bootstrap samples of equal size as the original

genotype data. The genotypes for each cancer type are defined based on the mutational data of the corresponding n¼10 most frequently mutated driver genes

from TCGA (blue bars) or MSK-IMPACT (red bars). The cancer types are arranged from left to right in ascending order of their /� quantified based on TCGA data

Fig. 5. Predictability, mutation rate and intra-tumor heterogeneity. In all pan-

els, each point corresponds to a given cancer type and the vertical axis indi-

cates the estimated predictability /�. The horizontal axis shows (a) the

average mutation frequency per mega base-pairs [from Lawrence et al.

(2013)], (b) the average number of clones per tumor, (c) the mean number of

clonal mutations and (d) the mean number of sub-clonal mutations according

to Raynaud et al. (2018). The blue lines are the linear regression models sur-

rounded by a shaded confidence interval region. Evolutionary predictability is

approximated using Equation (12), with n¼10 and n0 ¼ 4 for the TCGA data.

Note that in panel (a) only 11 cancer types are included in this analysis, be-

cause Lawrence et al. (2013) covered only 11 of the 15 cancer types
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is well-supported by experimental evidence (Poelwijk et al., 2007;

Weinreich et al., 2006).

In order to address scalability and robustness of our framework

for analyzing high-dimensional real genomic data, we developed a

subsetting scheme (Equation (12)), which aggregates the results of

smaller mutation subsets. We have shown that this approximation

works well for both simulated and real data. It enabled us to cope

with the high-dimensionality of the data and ensured robust estima-

tion of the predictability (see Supplementary Text S7 and Fig. S14)

by drastically reducing the network space in the structure learning

step of the CBN model. In other words, while evolutionary con-

straints may be difficult to learn (Diaz-Uriarte, 2018), this does not

necessarily imply that predictability cannot be estimated reliably

(which is a simpler task addressed and well approximated by the

subsetting scheme). The robust estimation conferred by our subset-

ting scheme partly explains the different conclusion of our study as

compared to the previous one (Diaz-Uriarte and Vasallo, 2018),

which reports that cancer evolution can be unpredictable for many

datasets. In addition, the former study uses the ‘Lines of Descent’

(Szendro et al., 2013), instead of the SSWM assumption employed

here, such that different evolutionary regimes are analyzed.

We observed that cancer evolution is remarkably constrained, as

only a tiny fraction of mutational pathways (between 0.4% and

0.0004% depending on cancer type in TCGA data for n¼10 driver

mutations) are feasible during the process of tumorigenesis.

Furthermore, the analysis of the MSK-IMPACT dataset showed that

tumor samples from metastatic sites display an even higher level of

predictability, perhaps because in metastatic samples longer tumori-

genic pathways have already been traversed or the evolution of

metastatic potential is more convergent. This high level of con-

strained evolution can open a new avenue for further analysis of the

feasible mutational pathways towards predictive modeling of cancer

progression and calls for further research in the direction of pan-

cancer identification of repeatable evolutionary trajectories

(Caravagna et al., 2018).

Proving the usability of our framework for the ambitious goal of

predictive modeling of cancer progression, however, would necessi-

tate a rigorous benchmarking with longitudinal data, single-cell or

multi-region samples, which is beyond the scope of our current

study and calls for future research. However, our present work is

still well-supported by empirical data. In line with our expectations,

we have observed significant anti-correlation between estimated pre-

dictability of cancer types and alternative observable evolutionary

traces such as mutational load and intra-tumor heterogeneity.

A major limitation of our present study is that mutations used in

the CBN model have been restricted to single nucleotide variants

and incorporating copy number variations (CNVs) into our frame-

work still remains as an unmet challenge. The reason is that the

CBN model estimates the co-occurrence of mutations, but for

CNVs, a more sophisticated model is necessary, which accounts for

CNVs of varying sizes affecting simultaneously different sets of

physically proximate genes. Thus, integration of CNV data in our

framework for future applications requires the CBN model to be

adapted for such physically correlated mutations.

Moreover, it is important to note that our analyses of the real

genomic data are based exclusively on frequent driver genes, which

probably provide a strong selective advantage, and we have not

taken into account rare drivers, which likely provide only a small se-

lective advantage. Including weak drivers may or may not affect the

predictability of cancer evolution, depending on how strong they de-

pend on other mutations. In future work, the impact of weak drivers

on the predictability of cancer evolution should be further explored.

Furthermore, in our study, genotypes were defined exclusively

on the level of ‘genes’. It is potentially interesting to estimate the pre-

dictability of cancer evolution alternatively on a higher level (e.g. on

the level of ‘functional pathways’). A previous study (Gerstung

et al., 2011) has found stronger evidence for pathway order con-

straints than for gene order constraints, which indicates that tem-

poral ordering results from selective pressure acting on the pathway

level. Therefore, if we estimate predictability of cancer evolution on

the level of functional pathways, rather than genes, it is very likely

that the predictability of cancer evolution is even higher on the path-

way level. Also, a model has been presented for estimating groups of

mutually exclusive genes and their dependency structure at the same

time (Cristea et al., 2017). Using this version of a CBN model, one

might arrive at pathway-level estimates of the predictability of evo-

lution. We will explore this approach in future work.

On the other hand, we might need to define genotypes on a

lower level, e.g. on the level of individual mutations, because differ-

ent non-silent mutations in a given gene can exert different pheno-

typic effects. Some mutations in a driver gene may not be driver

mutations and some genes may harbor both loss and gain of func-

tion mutations. Therefore, another open question, which calls for

further research, is how genotypes defined on the level of driver

mutations rather than driver genes affects the predictability of can-

cer evolution.

In summary, the key insight of our analyses of real genomic data

on the level of driver genes is that cancer evolution is remarkably

predictable, and hence there is high potential for systematic discov-

ery of phenotype-determining repeatable evolutionary trajectories,

which are of increasing importance in personalized medicine.

Whether the relatively high level of predictability we found is driven

mostly by known gene–gene interactions or whether many novel

interactions contribute to it remains to be analyzed in future studies

that likely require larger sample sizes.
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