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Life-history strategies are diverse. While understanding this diversity is a
fundamental aim of evolutionary biology and biodemography, life-history
data for some traits—in particular, age-dependent reproductive investment—
are biased towards females. While other authors have highlighted this sex
skew, the general scale of this bias has not been quantified and its impact on
our understanding of evolutionary ecology has not been discussed. This
review summarizes why the sexes can evolve different life-history strategies.
The scale of the sex skew is then discussed and its magnitude compared
between taxonomic groups, laboratory and field studies, and through time.
We discuss the consequences of this sex skew for evolutionary and ecological
research. In particular, this sex bias means that we cannot test some core evol-
utionary theory. Additionally, this skew could obscure or drive trends in data
and hinder our ability to develop effective conservation strategies. We finally
highlight some ways through which this skew could be addressed to help us
better understand broad patterns in life-history strategies.

1. Background

A new-born Greenland shark may live for more than 300 years [1], but a newly
eclosed adult mayfly will seldom live longer than 3 days [2]. Female opossums
give birth approximately 13 days after conception [3], while deep-sea octopus
mothers guard their eggs for over 4 years before young emerge [4]. Humans
are more likely to die and less likely to reproduce as they age, but the opposite
is true of desert tortoises, whose survival and fecundity rise with age [5]. These
examples illustrate diverse solutions to a universal problem: how should indi-
viduals invest in growth, reproduction and somatic maintenance over their
lives or otherwise schedule their life histories?

Understanding variation in life-history strategies is a fundamental aim of
evolutionary biology [6], population ecology and basic ageing research [5].
From an ecological perspective, characterizing life histories is a key step in pre-
dicting which species may benefit from environmental change (e.g. become
invasive [7]) or risk extinction [8,9]. Despite this importance, our understanding
of how individuals schedule their reproductive investment, and in turn,
manage trade-offs involving the costs of reproduction, seems to be based
primarily on females [10]. This bias is a concern because the trade-off between
reproduction and lifespan is central to life-history theory and evolutionary the-
ories of ageing [6,11,12], and reproductive scheduling is a key axis of life-history
variation across species [13]. While other authors have flagged the data paucity
for male reproductive schedules (e.g. [11,14,15]), to the best of our knowledge,
the general scale of the problem has not been quantified and its impact on our
understanding of evolutionary ecology has not been fully discussed.

This review summarizes key reasons why life histories can differ across the
sexes. Next, we use open-access demographic data available for tetrapods to
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demonstrate the existence of a sex skew and quantify its mag-
nitude. We use these data to test our predictions that the sex
skew will be more pronounced for reproductive than survival
traits given that survival can usually be measured readily in
both sexes, but reproduction is typically harder to measure in
males than females. We also predict that the skew in avail-
ability of reproductive data will be more pronounced in
taxonomic classes where parental care tends to be performed
by females (i.e. mammals) compared to classes where both
sexes tend to provide care (i.e. birds) or where care is largely
absent (i.e. reptiles and amphibians) [16] due to the relative
ease of assigning maternity versus paternity in each of
these systems of parental care. Additionally, we use a semi-
quantitative literature review to test the hypothesis that the
sex skew will be greater in field than laboratory studies
because of the challenges of assigning paternity in the wild.
We then discuss why redressing this sex skew is important
in terms of improving our understanding of evolutionary
theory, modelling population dynamics in a changing
world and developing effective conservation strategies.
Finally, we outline ways to redress this skew and better use
data that are already available to improve our understanding
of sexual dimorphism in life histories.

2. Why do life histories often differ between
males and females?

Male and female life histories may differ in many ways. Discuss-
ing each of these, and the underlying evolutionary and cellular
mechanisms that drive these differences, exceeds the scope of
this review. Moreover, a number of excellent manuscripts on
these subjects have been published (e.g. [17-23]). Our aim
here is to summarize key hypotheses about why males and
females may mature, live and die at different tempos to illustrate
why sex differences in life histories may be widespread.

(a) The importance of asymmetric inheritance

When it comes to shaping sexually dimorphic lifespans,
asymmetric transmission of genetic material seems impor-
tant. Males and females inherit genetic components
asymmetrically—mitochondrial DNA is maternally trans-
mitted, and in a myriad of genetic sex-determination
systems the sex chromosomes have differential residencies
in each sex. This asymmetrical inheritance may have mala-
daptive consequences that explain sex differences in
longevity. For example, the ‘unguarded X hypothesis
posits that the heterogametic sex (males in X-Y systems
and females in Z-W) will be shorter lived and experience a
steeper decline in function with age because of the increased
expression of deleterious recessive mutations in the sex
chromosome [24]. The recessive mutations will be expressed
in the heterogametic sex unconditionally, whereas these will
be guarded in the homogametic sex by the presence of the
second X or Z chromosome. Studies that experimentally
manipulate inbreeding levels to ‘unguard’ the X chromosome
in the homogametic sex show mixed results. High levels of
inbreeding minimize the lifespan differences between the
sexes in some studies and provide evidence to support the
‘unguarded X’ hypothesis [25,26] but not in others [27]. The
more recent ‘toxic Y’ hypothesis posits that the transposable
element-rich Y or W chromosome can also drive sex

differences in ageing [28,29]. The epigenetics of the Y chromo-
some change throughout life and if its high transposable
element content gets de-repressed with age it could accelerate
ageing [30]. A phylogenetic-meta-analysis reported that the
size of Y rather than X chromosomes correlates negatively
with male survival in mammals, concluding that sex differ-
ences in mammalian lifespan are better explained by ‘toxic
Y’ rather than ‘unguarded X' [31]. Finally, the ‘mother’s
curse’ hypothesis posits that shorter male lifespans can be
explained by the maternal transmission of the mitochondrial
genome because this allows mitochondrial mutations that are
detrimental to males but not females to accumulate [32,33].
This sex-specific mutation accumulation can help explain
why females are longer lived in some taxa, but not the
observation of longer male lifespans in taxa such as birds [34].

(b) Sexual selection and sexually dimorphic life
histories

A key factor promoting sexually dimorphic life histories is
sexual selection—reproductive competition between mem-
bers of the same sex and species [35-37]. Sex differences in
life-history driven by sexual selection may first appear in
the timing of maturity because, as noted by Darwin [38],
any male which is ready to breed first has an advantage
over his competitors. Females may also use rapid develop-
ment as a condition dependent cue of male quality,
meaning that males that develop quickly or migrate sooner
may be advantaged by female choice [39]. Accordingly pro-
tandry, where males develop more rapidly than females or
arrive first at breeding grounds [39], is widespread (e.g.
[40]). However, sexual selection may favour slower develop-
ment in males than females if, for example, delayed
maturation shortens the male reproductive season and
reduces the costs of male-male competition [41].

After reaching maturity, sexual selection can promote
sexual dimorphism in age-dependent survival and fertility.
At the population level, sexual selection may shift how
males and females schedule their reproductive investment
over their lives and in turn, alter how selection acts on age-
dependent mortality risk. Because females need time to
amass resources needed to produce offspring—for reasons
rooted in anisogamy females tend to invest more in offspring
than males do—they are predicted to pursue a moderate
tempo and moderate return strategy of reproductive invest-
ment [17]. By contrast, males may maximize their
reproductive success by investing intensely in their early
reproductive effort [17,42], which can favour the evolution
of shorter lives in males than females, and possibly faster
or earlier ageing. Alternatively, sexual selection can mean
that older males invest more in sexual signalling [43] and
have greater reproductive success than young males. This
can happen in cases where older males are larger [44], hold
better territories [45], or have more extensive song-repertoires
[46] and thus are better at securing mates. If male reproduc-
tive success increases with age, while female reproductive
success remains constant or declines; sexual selection can
favour the evolution of longer lives in males than females
[17]. Sexual selection could also promote longer lives (and
potentially slower ageing) in males than females if female
choice improves overall male quality and, through doing
so, increases male longevity and slows ageing. This effect
could be amplified if there is sexual conflict and genes that
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improve male fitness reduce female fitness [47]. Finally, at an
individual level, the costs of mate competition can reduce
male survival and future reproductive investment, while
male harassment, mate searching or mating itself may
reduce female survival and fertility [48]. Conversely, female
mate choice for direct benefits (e.g. nuptial gifts) could
improve female survival or future fecundity.

(c) It is not just sexual selection—natural selection

matters too
Other drivers of sex differences in life histories do not involve
sexual selection. For example, natural selection can promote
sex differences in age-dependent mortality if the sexes
differ in their extrinsic mortality risk. Extrinsic mortality
that is uniform with respect to age or stage will not affect
the evolution of age-dependent mortality. However, if extrin-
sic mortality affects particular age classes differently or has
density-dependent impacts on the vital rates of surviving
members of the population that are non-random with respect
to age or stage, then variation in extrinsic mortality can affect
selection acting on age-dependent mortality [49-51]. If these
effects are sex-specific, perhaps because the sexes have
different ecological niches (as in [52]) or due to different
reproductive roles (e.g. if pregnancy reduces female mobility
and elevates mortality risk [53]), this may lead to sex differ-
ences in mortality and fertility trajectories [54]. However,
the relationship between the risk of dying due to purely
environmental causes (i.e. extrinsic mortality) and the
evolution of age-dependent mortality is complicated and
predicting the direction of effects challenging [49-51,55].

In summary, asymmetric inheritance of genetic material
may drive sexual dimorphism in life histories. Beyond this,
sexual and natural selection can both promote sexual
dimorphism in life-history strategies. As a result, in many
species with diverse sex-determination systems, males and
females often mature, live and die at different tempos, and
thus, sexual dimorphism in life histories is widespread. How-
ever, life-history traits are frequently aggregated at species
level for comparative analyses and conservation purposes
[56,57]. While the tendency to aggregate in this way has
been criticized because it obscures variation in populations
in time and space [56], only brief references are often made
to possible sexual dimorphism in these traits [57]. This aggre-
gation across the sexes is however somewhat inevitable, if
life-history data for males are scarce.

3. Is there a sex skew in life-history data?

Many authors have noted a sex skew in life-history data—
more specifically, that our understanding of male reproduc-
tive scheduling is poor [10,11,15]. Here, to quantify the
scale of this skew objectively and comprehensively we used
the open-access Demographic Species Knowledge Index
[58]. This meta-database was released in 2019 and collates
demographic and life-history traits from 22 data repositories
and classifies the level of demographic data for 32 144 species
of mammals, birds, reptiles and amphibians [58]. This index
determined whether there are data on reproductive traits
available for a species (i.e. age at first reproduction, inter-
litter or inter-birth interval, litter or clutch size, proportion
of adult females that are reproductive or birth or recruitment

rate) and if there are available mortality/survival data (i.e. [ 3 |

maximum recorded lifespan, mean age of (adult) population
and crude mortality). The database also recorded combined
age or stage survival-reproduction knowledge, i.e. age- or
stage-specific death and reproductive rates, mostly contained
in life tables or matrix population models (MPMs). Crucially,
the database recorded if these demographic data were
collected in males, females, both sexes separately (i.e. male
and female) or combined or whether sex was unknown.

We determined how many datasets (i.e. rows in the data-
base) are available for each trait and sex, while excluding
datasets lacking sex information entirely (i.e. sex=NA, which
is a different category than sex = unknown; electronic sup-
plementary material, table S1). All summary statistics
reported here refer to this subset of the main database i.e. data-
sets where sex information is provided. These data show that for
survival and mortality data, the spread of data is relatively even
across the sexes (figure 1 and table 1). This is not necessarily true
of the data for reproduction. In amphibians, reproduction data
arereadily available in both sexes (49.89% female, 49.45% male).
However, in mammals, 69.22% of reproduction data in the data-
base originate from females alone and only 27.13% from males,
while in birds, 62.89% of reproduction data originate from
females and 34.42% from males. This is a pronounced skew, per-
haps in part exacerbated because some reproductive traits
featuring in the database must inevitably be collected in females
i.e. the proportion of adult females that are reproductive. The
skew towards female data being more abundant is particularly
pronounced when considering combined age- or stage-specific
survival-reproduction knowledge i.e. data from life tables or
MPMs. In mammals for example, 77.36% of these data originate
from females, 14.57% considers both sexes separately, and
1.51% males alone. This offers strong support for the general
consensus (and our first prediction) that knowledge of how
males schedule their reproductive effort over age lags far
behind our understanding of female fecundity schedules. More-
over, the skew is most pronounced in mammals, followed by
birds and then reptiles and apparently absent in amphibians.
This broadly supports our prediction that in taxonomic
groups where parental care is largely absent, the skew will be
less pronounced. The rationale behind this prediction being
that the relative difficulty of quantifying reproductive success
in fathers relative to mothers is more pronounced in systems
with prolonged maternal care (as is typical in mammals [16])
or biparental care albeit with the possibility of extra-pair pater-
nity (common in birds [16]) than in systems where typically
neither sex provides care. However, the degree of skew towards
female data also correlates well with overall reproductive data
availability. In the subset of the Demographic Species Knowl-
edge Index database that we analysed, the skew is most
pronounced in mammals, where reproductive information is
greatest and least pronounced in amphibians, where reproduc-
tive information is lacking. The relative difficulty of assigning
reproductive success to either sex in amphibians and reptiles
may help explain the relatively low sex skew, but also the gen-
eral lack of data availability for these taxa.

4. Why do we lack data on male reproductive
success?

Every individual in a sexually reproducing species has one
father and one mother—so, we know on average what male
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Figure 1. Proportion of data from each sex category for each animal class for reproduction or fertility, survival or mortality and reproduction and survival combined
from data available in the Demographic Species Knowledge Index. Proportion data are calculated from the number of datasets where sex information is provided (i.e.
exclude cases where sex = NA). Sex categories used include ‘female’, which means that particular dataset refers to females only, ‘male’ means that particular dataset
refers to males only, ‘male and female’ means that sexes were studied separately (i.e. data are available for both sexes) and ‘combined’ means that both sexes
were studied together (i.e. data for the sexes cannot be decoupled). (Online version in colour.)

reproductive success looks like, but clearly we do not know
how much this success is skewed towards particular males,
or how reproductive success varies over age. This is because
while measuring age-dependent reproductive success in
females is relatively straightforward—counting offspring
hatched, weaned or fledged—measuring male reproductive
success is complicated. Simply, male reproductive success
must be measured via females. While females tend to invest
heavily in material contributions to the next generation (e.g.
investment in large ova, gestation and lactation), males
invest less in such material contributions and, instead, raise
their reproductive effort to the optimum by investing in
other traits [59]. These traits may include contests (e.g. fights
or sperm competition), mate searching, elaborate displays to
attract females, courtship during copulation or some other
engagement with cryptic female processes, as well as transfer-
ring enough functional sperm to successfully fertilize ova
[36,60,61]. Measuring male reproductive success in a biologi-
cally meaningful way therefore requires quantifying paternity
outcomes against a background of male-male competition
and mate choice scenarios—this is not easy. In the laboratory,
one approach is to measure male siring success with multiple
females in competitive mating assays (i.e. measuring male
reproductive success in the presence of competing males). To
capture post-copulatory elements of male reproductive success
(e.g. sperm competition and cryptic female choice), researchers
must be able to assign paternity in multiply mated females or
otherwise measure ejaculate investment and costs of copulatory
courtship. Thus, measuring male siring success via a

combination of competitive and non-competitive assays (e.g.
[62]) would be the gold standard in a laboratory environment
but this is a labour intensive approach that requires large num-
bers of animals. In the field, biologically meaningful estimates
of male reproductive success may be easier to quantify because
ecologically relevant male-male competition and female choice
before and after mating are in action in wild populations. How-
ever, it is difficult to assign paternity in the wild, especially if
polyandry is common, meaning that DNA samples are
needed from offspring and potential fathers to correctly
assign paternity, which may not be feasible for some study
organisms and systems.

Given this complexity, it is not surprising that we lack
data on age-dependent male reproductive success. It is also
not surprising that existing measures of male reproduction
often use single measures of male reproductive investment
(e.g. calling effort in crickets [63], discussed further below)
rather than direct measures of male reproductive success.
While measuring reproductive success in males is challen-
ging, we suggest that there are evolutionary ecological
insights that may be gleaned by collecting these data and
more generally, ensuring that life-history data from both
sexes are available.

As highlighted previously, life histories can be sexually
dimorphic but we lack data on male reproductive investment



Table 1. Data available from the Demographic Species Knowledge Index for each animal class and sex. Numbers represent total sample sizes and percentages
are shown in parenthesis. Note that these are counts of datasets meaning that the same species may be represented in multiple entries. Moreover, datasets in
the database where sex = NA are not shown here. Sex categories used include ‘female’, which means that a particular dataset refers to females only, ‘male’
means that particular dataset refers to males only, ‘male and female’ means that sexes were studied separately (i.e. data are available for both sexes) and
‘combined’ means that both sexes were studied together (i.e. data for the sexes cannot be decoupled).

reproduction or fertility

Amphibia female 227 (49.89)
male 225 (49.45)
male and female 0 (0)
sexes combined 0 (0)
unknown 3 (0.66)
Reptilia female 1140 (41.76)
male 927 (33.96)
male and female 3 (0.11)
sexes combined 0 (0)
unknown 660 (24.18)
Aves female 2849 (62.89)
male 1559 (34.42)
male and female 0 (0)
sexes combined 0 (0)
unknown 122 (2.69)
Mammalia female 4695 (69.22)
male 1840 (27.13)
male and female 0 (0)
sexes combined 0(0)
unknown 248 (3.66)

over age, and life-history data are often aggregated at species
level for conservation purposes or comparative analyses
[56,57]. Here, we suggest reasons why better accounting for
sexual dimorphism in life-history traits is important, from
both theoretical and applied perspectives.

(a) The sex bias in life-history data means that we

cannot test some hypotheses
The antagonistic pleiotropy theory of ageing proposes that
because natural selection weakens over age, alleles with posi-
tive effects on early-life fitness are favoured by selection even
if they have negative, pleiotropic effects expressed late in life
[54]. These pleiotropic late-acting effects could cause ageing.
The author of this hypothesis, George Williams, proposed
that that one way to test his theory was to characterize sex
differences in ageing rates, stating that ‘where there is a sex
difference (in ageing), the sex with the higher mortality rate
and lesser rate of increase in fecundity should undergo the
more rapid senescence’ [54]. However, the strong skew
towards females in the Demographic Species Knowledge
Index for age- or stage-specific survival and fecundity infor-
mation (table 1) suggests that we lack the data needed to
test this hypothesis.

More generally, Williams predicted a trade-off between
early and late life fitness. A logical extension of this given
his reference to sex differences in reproductive scheduling is
that males and females may resolve this trade-off differently.

survival or mortality

reproduction, survival combined

297 (43.48) 8 (33.33)
311 (45.53) 0(0)
43 (63) 2(833)
0(0) 14 (58.33)
32 (4.69) 0(0)
1104 (25.93) 186 (63.7)
316 (7.42) 00
2823 (66.31) 28 (9.59)
14 (0.33) 78 (26.71)
0(0) 0(0)
546 (24.46) 396 (68.75)
520 (23.3) 42 (7.29)
1005 (45.03) 6 (1.04)
0(0) 132 (22.92)
161 (7.21) 0(0)
457 (31.96) 1179 (77.36)
443 (30.98) 23 (1.51)
501 (35.03) 222 (14.57)
1(0.07) 100 (6.56)
28 (1.96) 0(0)

And yet, literature testing how early reproductive investment
trade-offs against future survival and reproduction appears
to focus on females. To gain some insight into if this is the
case, we searched for manuscripts citing Williams’s original
antagonistic pleiotropy theory published between 1990 and
2020, that include the terms (‘trade-off’ reproduction survival
OR lifespan OR ageing) in Google Scholar (figure 2). From
this search, we identified peer-reviewed research papers
that measured a reproductive trait at multiple ages or
recorded a measure of reproductive investment and a
measure of survival (e.g. lifespan and age-dependent mor-
tality risk) (details in electronic supplementary material,
text S1). We found that data were biased firmly towards
females—with 2.5 x more data being available for females
than males overall (figure 3a; electronic supplementary
material, table S2). Once more the magnitude of this skew
varied between taxa. However, in contrast with our predic-
tion that the skew may be less pronounced in taxonomic
groups where parental care is rare, in some taxa where care
is largely absent (e.g. reptiles) no male data were available
at all (electronic supplementary material, table S3), and in
others, data were still heavily skewed towards females (e.g.
insects). Moreover, and in contrast with our earlier prediction,
this bias appears to be slightly more pronounced in labora-
tory studies—in the field 36.2% of studies collect data for
males independently of females, while this is only true of
27.9% of studies in the laboratory (electronic supplementary
material, figure S1 and table S4). We also quantified whether
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Figure 2. Prisma diagram outlining our antagonistic pleiotropy search procedure. More detail is provided in the electronic supplementary material, text S1. (Online

version in colour.)

these studies measured reproduction directly (e.g. egg or off-
spring counts) or indirectly (e.g. proxies for reproductive
investment such as sexual signalling). 96.4% of the available
data reported some direct measure for females, while only
59.6% of data reported direct measures of male reproductive
success (electronic supplementary material, table S5). Cru-
cially, however, males appear to feature more frequently in
more recent manuscripts (figure 3b), meaning that while
our understanding of trade-offs involving reproduction is
biased towards females overall, there are signs that this bias
is being addressed.

In summary, data from the Demographic Species Knowl-
edge Index confirm that 70 years after Williams made his
prediction about sex differences in fecundity scheduling trans-
lating to sex differences in actuarial senescence, we lack the
data to test this prediction on a large scale [11]. Further, our
semi-quantitative review suggests that our understanding of
how the sexes trade-off early and late reproduction or repro-
duction and survival is biased towards females—this
hinders efforts to compare how the sexes manage trade-offs
involving the costs of reproduction more generally.

(b) The sex skew in data can lead to patterns emerging
(or being obscured) that do not accurately reflect
species’ biology

Inaccurate inference because of sex skew is demonstrated by a
meta-analysis [15], which synthesized dietary restriction
effects on the expression of reproductive traits. Only 21% of
the effect sizes extracted involved males, and of these, less
than 2% used measures of male reproductive investment
that captured a major portion of costly male reproductive
traits (e.g. male-male competition, mate attraction and fertili-
zation success) [15]. By contrast, 48% of the female effect sizes
captured a large portion of female reproductive investment
[15]. This bias affected the outcomes of the analyses. Initially,
there was a sex difference in how reproduction responded to
dietary restriction but when the analyses incorporated
whether the traits measured captured a small, intermediate

or large portion of sex-specific reproductive costs, this sex
difference disappeared. This suggests that apparent sex
differences in how reproduction responds to dietary restric-
tion may be an artefact of a failure to accurately measure
how diet affects male reproductive investment.

Similarly, in research testing the mechanisms regulating
life histories, it is vital that both sexes are studied to generate
robust conclusions. This is because the mechanisms that
shape life histories, and how they are affected by the environ-
ment, may differ between the sexes. This is demonstrated by
research exploring the evolutionarily conserved signalling
pathways, target for rapamycin and insulin/insulin-like
growth factor 1. While some genes in these pathways respond
to particular dietary manipulations in the same way across
the sexes, sets of genes linked to reproduction display oppo-
site expression patterns in each sex, suggesting that the sexes
diverge in how nutritional information is translated into
reproductive regulation [64]. This means that testing theories
regarding the mechanistic basis of life histories in one sex
alone may generate conclusions that do not apply to both
sexes equally.

More generally, in comparative analyses, life-history data
are aggregated at species level (e.g. [13,57]). If males and
females frequently trade-off life-history traits differently as
predicted by theory [17] and already observed in some
species [65], outcomes of analyses are likely to differ to
some degree when the sexes are considered separately.
Accordingly, drawing more concrete conclusions about how
species resolve life-history trade-offs, and better characteriz-
ing an important aspect of biological diversity, requires
improved integration of male demographic data into com-
parative analyses.

(c) Better understanding the sex-specific responses to
particular treatments or interventions can help us to
improve the health of our own species

Some interventions aimed at improving longevity have
sex-specific impacts on phenotype. The Interventions Testing
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Program investigates the potential of drugs and supplements
delivered to mice via their diet to promote healthy ageing
[66]. The programme showed that while glycine and rapamy-
cin treatment increased lifespan in males and females,
nordihydroguaiaretic acid, protandim, aspirin and 17-o-oes-
tradiol increase lifespan in males but not females [67-71].
This highlights the need to consider the sexes separately for
because results obtained from
females are poor predictors of male responses in anti-
ageing drug discovery trials (and vice versa [72]). Similarly,
it is imperative to understand how these treatments modify

biomedical applications,

age-dependent reproductive investment in both sexes if
given early in life. It is important to flag, however, that his-
torically males are more frequently used as animal models

of disease [72]. While this bias is less prevalent in recent
research, none-the-less for biomedical applications the sexes
are frequently analysed together, and analyses neglect to
test for, or report, explicit sex differences in outcomes [73].

(d) Studying both sexes can improve our ability to
predict how species will respond to environmental
change

Characterizing vital rates (survival and fertility) in popu-
lations is key to understanding population responses to
environmental change. There are many reasons why it is
important to collect these data in both sexes. First, one sex
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may demonstrate signals of reduced fitness in response to a
changing environment before the other. For example, in
many insects sperm function is reduced at high temperatures,
impacting male fertility [74], but these effects may not be
detected if only female reproductive success is assayed
because females can mitigate these effects to a degree by mul-
tiple mating [75]. Here, reduced fertility in males offers an
early warning signal that rising temperatures might lower
overall population productivity if females cannot keep buffer-
ing the effects of reduced male fertility via multiple mating.

A second example is provided by a rookery of the endan-
gered green turtle (Chelonia mydas)—a species with
temperature-dependent sex determination. In this rookery,
offspring sex ratios are highly female biased, a situation
exacerbated by climate change; however, adult sex ratios on
breeding grounds are male biased. This seems to represent
more frequent mating activity by males. Thus male mating
behaviours may buffer the population from the deleterious
impacts of climate change [76]. However, understanding the
skew in male reproductive success in this system offers
insight into its effective population size, which is an impor-
tant parameter in terms of predicting long-term population
persistence [76].

More generally, differences between female and male
demography can affect the reproductive output of a popu-
lation under environmental change [77] and promote
selective harvesting of males via hunting, thus altering popu-
lation structure and evolutionary life-history trajectories [78].
Sex differences in reproductive behaviours within local popu-
lations may be coupled with sex-biased dispersal [79,80], and
understanding this bias has been important to understanding
invasion [81] and modelling population dynamics [82].
Accordingly, incorporating both sexes into population
dynamic models may improve their predictive power and
thus, help develop more effective conservation strategies [10].

Many long-running field projects have collected demographic
data in both sexes over years or even decades (e.g. [83-85]) and
open-access databases facilitating large-scale demographic
analyses endeavour to record data separately across the sexes
where possible (e.g. COMADRE [86]). Moreover, our search
of the antagonistic pleiotropy literature suggests male data
on reproductive investment are being collected more fre-
quently now than previously. So, perhaps the sex skew in
our understanding of male reproductive scheduling is on
route to being remedied. However, in the short term, what
can we do to improve our understanding of male reproductive
scheduling given the challenges of measuring male reproduc-
tive success?

First, while much existing data on male reproductive suc-
cess appears to rely heavily on proxy measures (e.g.
investment in sexual display traits such as pigmentation or
weaponry) rather than measuring male reproductive success
per se (electronic supplementary material, table S5), reduced
costs of sequencing mean that paternity analyses is an
increasingly accessible means of directly measuring male
reproductive success. Using such approaches to measure
male reproductive success directly would be positive. As
would applying these techniques to demonstrate that proxy
measures of reproductive success that are easier to measure

are appropriate and consistently correlate well with male
reproductive output.

Further, there is potential to make some data from
population models more accessible for the purposes of com-
parative analyses of life histories. For example, many of the
demographic data available in open-access repositories used
for comparative analyses are stored in the form of life tables,
or age- or stage-structured population models (e.g. [87]).
Many tools are available to analytically obtain life-history
traits from these types of structured demographic data, even
if the original publications did not report such traits [88,89].
Age- or stage-structured models are best suited for easily
observable components of populations, in species lacking com-
plex interactions among individuals of either sex. Therefore,
sex differences in life-history processes are mostly accounted
for in models that explicitly consider individual breeding or
movement patterns. These models tend to be parametrized
as agent-based models. For instance, individual-based
models (IBMs) have investigated how sex-specific parasitic
infections can induce sex-specific dispersal strategies in a meta-
population [90] and how complex interactions across the sexes
affect population dynamics [91]. IBMs have also been used to
assess the optimal size of sex change in hermaphroditic species
[92] and the demographic consequences of such change [93].
With improved data availability and sophisticated modelling
tools, these more mechanistic approaches are increasingly
being used [94], but unless they directly report ‘classic’ life-
history traits, such traits cannot be obtained analytically
from modelling outputs and thus, these studies are omitted
from many global databases. Deriving life-history information
from IBM outputs and integrating this information into data-
bases would be one way of increasing the data available for
large-scale comparative analyses of male and female life
histories.

In the absence of detailed data on sex-specific demogra-
phy, a first step towards integrating sex differences into
comparative analyses may consist of obtaining information
on sex ratios across a wide range of taxa. Analysing sex
ratios has a long history in evolutionary demography [95],
and sex ratios can be considered a key component of life-
history evolution [96,97]. However, sex ratios as a life-history
trait have largely been omitted from comparative studies thus
far [13,98-100] (but see [101]). One main argument for this
has been that females (not males) typically limit reproductive
output. However, the most limiting sex may differ over time
[102,103]. In fact, feedback between differences in male and
female reproductive investment and changes in population
structure, produce variation in the sex ratios of a population.
Thus, integrating sex ratios into comparative life-history ana-
lyses could provide new insights into an additional axis of
life-history variation, and one which has important popu-
lation demographic consequences. Such integration will
only be possible if sex ratios are incorporated into online
demographic databases, which is currently not standard
practice [58], but is at least provided as supplementary infor-
mation is some databases [86].

While theoretical work has long acknowledged differences in
male versus female life-history strategies and the effect that
this may have on population dynamics, empirical work on



reproductive scheduling still largely focuses on females.
While there is variation across taxa—the skew being particu-
larly pronounced in mammals and birds—the bias is evident
in taxonomic groups where mothers provide the majority of
parental care and in taxa where care is absent. Moreover,
the bias is evident in both field and laboratory studies.
Even where male reproduction is quantified, indirect
measures of reproduction are frequently used rather than
direct measures of male reproductive success. Crucially, how-
ever, male data are being collected more frequently and this
opens up the possibility of tackling some long-neglected
research questions and improving the power of demographic
forecasting. Additionally, recent theoretical and methodologi-
cal advances may help rectify the sex skew. For example,
advances in population ecology that use mechanistic model-
ling approaches to incorporate complex sex-specific mating
and movement patterns into assessments of population per-
sistence can facilitate the integration of male life histories
into comparative analyses. This is encouraging and should
incentivise laboratory studies to invest into research that
can help parameterize these mechanistic models using expli-
Additionally,
advances in animal tagging methodologies (e.g. miniaturiza-
tion of GPS tags, methods for better distinguishing between
GPS tag failure and animal death [104]) make it increasingly
possible to collect demographic data in the field. Reduced
costs mean that next-generation sequencing is increasingly
accessible as a means of assigning paternity (but see [105])
and new tools are being developed to analyse paternity
from single-nucleotide polymorphic markers [106]. These

cit inheritance or selection information.

approaches may help us understand why the sexes live,
reproduce and die at different tempos, and these data may
have applied impacts for the health of managed populations
and predicting population responses to environmental
change. Until then, while male fecundity data lags behind
female fecundity data, it is important to acknowledge the
potential impact sexual dimorphism may have on the con-
clusions of analyses of datasets that are heavily female
biased or, where demographic data are aggregated across
the sexes.

Data cited in this review and code are available at
https://osf.io/r6tce/ .
Additional results and methods information areprovided in the
electronic supplementary material [107].
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