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Objective: Cognitive impairment occurs frequently in Parkinson’s disease (PD)
and negatively impacts the patient’s quality of life. However, its pathophysiological
mechanism remains unclear, hindering the development of new therapies. Changes
in brain connectivity are related to cognitive impairment in patients with PD, with the
dorsolateral prefrontal cortex (DLPFC) being considered the essential region related
to PD cognitive impairment. Nevertheless, few studies have focused on the global
connectivity responsible for communication with the DLPFC node, the posterior division
of the middle frontal gyrus (PMFG) in patients with PD; this was the focus of this study.

Methods: We applied resting-state electroencephalography (EEG) and calculated a
reliable functional connectivity measurement, the debiased weighted phase lag index
(dWPLI), to examine inter-regional functional connectivity in 68 patients with PD who
were classified into two groups according to their cognitive condition.

Results: We observed that altered left and right PMFG-based functional connectivity
associated with cognitive impairment in patients with PD in the theta frequency bands
under the eyes closed condition (r = −0.426, p < 0.001 and r = −0.437, p < 0.001,
respectively). Exploratory results based on the MoCA subdomains indicated that
poorer visuospatial function was associated with higher right PMFG-based functional
connectivity (r = −0.335, p = 0.005), and poorer attention function was associated
with higher left and right PMFG-based functional connectivity (r = −0.380, p = 0.001
and r = −0.256, p = 0.035, respectively). Further analysis using logistic regression
and receiver operating characteristic (ROC) curves found that this abnormal functional
connectivity was an independent risk factor for cognitive impairment [odds ratio (OR):
2.949, 95% confidence interval (CI): 1.294–6.725, p = 0.01 for left PMFG; OR: 11.278,
95% CI: 2.578–49.335, p = 0.001 for right PMFG, per 0.1 U], and provided moderate
classification power to discriminate between cognitive abilities in patients with PD [area
under the ROC curve (AUC) = 0.770 for left PMFG; AUC = 0.809 for right PMFG].
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Conclusion: These preliminary findings indicate that abnormal PMFG-based functional
connectivity patterns associated with cognitive impairment in the theta frequency
bands under the eyes closed condition and altered functional connectivity patterns
have the potential to act as reliable biomarkers for identifying cognitive impairment in
patients with PD.

Keywords: Parkinson’s disease, cognitive impairment, electroencephalography, functional connectivity, theta
frequency band

INTRODUCTION

Parkinson’s disease (PD) is clinically characterized by the
presence of motor symptoms, including bradykinesia, tremor,
rigidity, and postural instability (Sveinbjornsdottir, 2016).
However, non-motor symptoms are currently receiving increased
attention as they often precede the development of motor
symptoms and can impose a significant burden on the patient,
affecting independence in performing daily activities and
negatively impacting the quality of life, independent of any
motor symptoms (Tolosa et al., 2009). In particular, cognitive
impairments frequently occur in patients with PD. Longitudinal
studies have found that 10% of patients display cognitive deficits
within three years of diagnosis; these numbers rise to 46% within
10 years and can reach as high as 83% within 20 years (Hanagasi
et al., 2017). Therefore, it is essential to explore objective
and non-invasive predictive biomarkers for this condition in
its early stages.

The pathophysiological mechanisms responsible for cognitive
impairment in patients with PD remain unclear. With the
development of functional network science and neuroimaging
approaches, it is now recognized that the pathophysiological
disruptions associated with the development of neuropsychiatric
disorders are rarely confined to a single region of the brain;
rather, it is now known that there are alterations in functional
connectivity within brain networks (Kehagia et al., 2013).
Moreover, a dual syndrome hypothesis has been widely accepted,
which distinguishes early frontal, dopaminergic-dependent
dysexecutive syndrome, and later dopamine-independent
posterior cortical syndrome (Fornito et al., 2015). Compared
with other functional imaging methods, electroencephalography
(EEG) has several advantages, predominantly its high temporal
resolution, where specific frequency analysis enables precise
investigation of connectivity changes (Donner and Siegel, 2011).
Several EEG studies have found brain connectivity changes
associated with cognitive impairment in patients with PD
(Bertrand et al., 2016; Hassan et al., 2017; Chaturvedi et al., 2019;
Sanchez-Dinorin et al., 2021), which might present potential
markers for cognitive dysfunction, although various alterations
in different frequency bands were observed in these studies.
However, volume conduction issue resulting from the transient
propagation of the electric fields engendered by the primary
current source to most of the scalp sensors may influence
connectivity estimates of EEG. Due to this linear mixing of
signals from different brain regions detected by the same sensor,
common methods used for functional connectivity evaluation
(coherence or mutual information) may lead to the identification

of transparent functional connections that do not accurately
reflect the interactions between brain regions (Vinck et al., 2011).
Several new functional connectivity assessment techniques
have been developed to minimize the effects caused by volume
conduction. In particular, the weighted phase lag index (wPLI),
which weighs the contribution of the observed phase lead or
lags by the magnitude of the imaginary component of the
cross-spectrum, is less sensitive to additive volume-conducted
noise sources (Lau et al., 2012). However, this measure has a
positive bias. To solve this problem, Vinck et al. proposed a
debiased estimator of the squared WPLI [i.e., dWPLI (Vinck
et al., 2011)] that has been frequently applied to assess EEG data
(Hardmeier et al., 2014; Wang et al., 2017).

Although there are many possible pathophysiological
explanations for the correlation between EEG changes and
the cognitive state of PD patients, the exact impaired circuitry
responsible for these alterations is not clear. The dorsolateral
prefrontal cortex (DLPFC), which transmits afferent projections
to the caudate and putamen and is involved in higher-order
cognitive functions, has been considered the essential region
related to cognitive impairments in PD (Polito et al., 2012;
Gratwicke et al., 2015; Rosero Pahi et al., 2020). Ko et al.
demonstrated that stimulation of the right DLPFC, which
is the most “sensitive” area related to PD-cognitive deficit-
related metabolic pattern (PDCP), may normalize the altered
PDCP network (Ko et al., 2014). In addition, non-invasive
brain stimulation (NIBS) of the left DLPFC has been found
to improve cognitive function in patients with PD (Beheshti
and Ko, 2021). The posterior division of the middle frontal
gyri (PMFG, left and right) are key nodes in the DLPFC that
are widely used as accessible cortical stimulation sites for
NIBS (Chen et al., 2013). In terms of the concept of brain
networks, abnormal activity of a certain circuit component may
modify its communication with other network components,
which could be interpreted as modulation of functional
connectivity throughout the brain (Gratwicke et al., 2015).
Correspondingly, investigating the functional connectivity
interacting with a focal targeted brain region may facilitate
the development of a mechanism-specific intervention by
identifying appropriate subgroups of clinical trials and providing
objective measures of disease inhibition. Few studies have
focused on global connectivity communicating with the
particular region related to cognitive impairment in PD patients
using resting-state EEG. Therefore, we hypothesized that
the functional connectivity pattern of the PMFG might be
a potential marker for identifying cognitive dysfunction in
patients with PD.
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To test this hypothesis, we applied resting-state EEG to
measure potential PMFG-based functional connectivity (dWPLI)
differences between PD patients with mild cognitive impairment
(PD-MCI) and PD patients with normal cognition (PD-NC).
In particular, we investigated whether abnormal functional
connectivity was associated with cognitive function, and
furthermore, whether this could discriminate between PD-MCI
and PD-NC patients.

MATERIALS AND METHODS

Subjects
This study was approved by the Institutional Research Ethics
Committee of Shenzhen People’s Hospital and adheres to the
recommendations of the Declaration of Helsinki. All PD patients
were recruited from the inpatient or outpatient clinic at Shenzhen
People’s Hospital from March 2019 to November 2020, and
written informed consent was obtained from each participant.
The inclusion criteria were as follows: (1) age of 40–80 years;
(2) idiopathic PD based on the UK Parkinson’s Disease Society
Brain Bank criteria (Hughes et al., 1992); (3) self-reported
right-handedness. The exclusion criteria included the following:
(1) documentation of serious organ dysfunction; (2) history
of psychiatric disorders such as major depression, generalized
anxiety disorder, or schizophrenia; (3) severe PD [Hoehn&Yahr
(H&Y) scale stage > 4]; (4) any kind of dementia; (5) changes
in antiparkinsonian medication within one month prior to
enrolment and use of drugs that may influence EEG.

Each patient underwent a series of clinical evaluations that
assessed both motor and non-motor symptoms. Motor disability
associated with PD was evaluated with the Unified Parkinson’s
Disease Rating Scale-III (UPDRS-III) (Movement Disorder
Society Task Force on Rating Scales for Parkinson’s Disease.,
2003), and disease severity was assessed according to the H&Y
stage (Hoehn and Yahr, 1967). The Hamilton Anxiety Rating
Scale (HAMA) (Hamilton, 1959) and the Hamilton Depression
Rating Scale (HAMD) (Hamilton, 1967) were used to assess
anxiety and depression states, respectively. Sleep quality was
estimated using the Pittsburgh Sleep Quality Index (PSQI)
(Buysse et al., 1989).

Gobal cognitive abilities were evaluated using the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005).
According to level I of the PD-MCI diagnostic criteria proposed
by the Movement Disorder Society (Litvan et al., 2012), PD
patients with a MoCA score of 24 or above (Lucza et al., 2015)
and normal functionality were identified as PD-NC. Patients
with a MoCA score below 24 and preserved functionality were
identified as PD-MCI. All neurological functional assessments
were conducted in the “on” status, and the individual drugs used
were converted to the levodopa equivalent daily dose (LEDD)
(Tomlinson et al., 2010).

EEG Acquisition and Preprocessing
Eight-minute resting-state EEGs of both the eyes closed (EC)
and eyes open (EO) conditions were acquired using a BrainAmp

DC amplifier (Brain Products, Munich, Germany) with a 64-
channel EEG system. Participants were asked to sit in a
comfortable chair and to remain relaxed during the EEG
recording. A conductive gel was used to keep the electrode
impedances below 5 k�. During the recording, participants
were instructed to look at a fixation throughout the process.
Using a sampling rate of 5,000 Hz, the EEG signals were
referenced online to FCz. The EEG preprocessing was conducted
offline with MATLAB (R2018a, The Mathworks Inc., Natick,
MA, United States) using a home-made script that was
structured based on that of EEGLAB (Delorme and Makeig,
2004) with the following steps: (1) down-sampling to 250 Hz;
(2) removal of representative artifacts by visual inspection;
(3) application of a zero-phase finite impulse response filter
for band-pass filtering between 1 and 45 Hz and removal
of 50 Hz line noise and harmonics by notch filtering; (4)
rejection of corrupted channels and spherical interpolation
of rejected channels; and (5) application of independent
component analysis to remove remaining artifacts, including
blinks, electrocardiogram signals, and high-frequency sustained
muscle artifacts.

EEG Source Localization and
Connectivity Analyses
EEG source localization and source spatial connectivity analyses
were carried out using customized scripts and public toolboxes
(including EEGLAB and Brainstorm) in MATLAB (Tadel
et al., 2011). Specifically, the head model of the three-layer
boundary element was calculated, and a rotating dipole with
3,003 vertices was then produced on the cortical surface.
The lead field matrix of the dipole activities related to the
EEG was acquired, and the minimum norm estimation
(MNE) was used in the inverse model; the dipole direction is
limited to the normal of the cerebral cortex (Lin et al., 2006).
Functional connectivity based on the dWPLI correlation was
computed among 31 regions of interest (ROIs) in the Montreal
Neurological Institute space, stemmed from independent
components analysis parcellation of functional magnetic
resonance imaging connectivity of 38 healthy individuals used in
a previous study (Toll et al., 2020). The dWPLI can be defined as:

�̂w
=

∑N
j = 1

∑
k = j+1 Wj,kd(Xj,Xk)

N(N − 1)Ŵ
(1)

where Ŵ represents the average weight, i.e., the weight
normalization expressed as 1

N(N−1)

∑N
j = 1

∑
k = j1 Wj,k. The

dWPLI ranges from 0 to 1. The higher the dWPLI value, the
higher the coupling between neural oscillations (Vinck et al.,
2011). Finally, excluding self-connectivity, 465 unique ROI pairs
were calculated in each of the five frequency bands (delta: 1–4 Hz,
theta: 5–7 Hz, alpha: 8–12 Hz, beta: 13–30 Hz, gamma: 31–
45 Hz).

Statistical Analyses
Statistical analyses were conducted using the IBM Statistical
Package for the Social Sciences (SPSS; IBM Corp., Armonk,
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NY, United States) Version 25.0 and MATLAB. For analysis of
variance, normality was tested by Shapiro–Wilk test; normally
distributed data were represented as means and standard
deviations, while non-normally distributed data were represented
as medians and interquartile ranges. Group differences in
age, education level, UPDRS-III score, and PSQI score were
compared using independent-samples t-tests. Group differences
in the disease course, H&Y stage, neuropsychological tests, and
LEDD were compared using Mann–Whitney U tests, and sex
differences between groups were compared using chi-squared
tests. Network-based Statistics (NBS) (Zalesky et al., 2010), a
nonparametric statistical test controlling for the family wise
error rate resulting from multiple comparisons, was used to
analyze differences in functional connectivity between the PD-
MCI and PD-NC groups based on the following steps: (1)
a two-sample t-test was conducted at each connection, and
generating a test statistic value matrix demonstrating significant
functional connectivity differences between the groups; (2)
application of a component-forming threshold to obtain a
set of supra-threshold matrices, and computing the size of
the connected component in the matrices; (3) generating
an empirical null distribution of largest component sizes by
mean of randomly permuting the PD-MCI and PD-NC group
membership, calculating the test statistic of interest, storing
the largest component sizes, and repeating for 5,000 times;
(4) estimating the p-value of the connected element (i.e., the
proportion of the empirical null component sizes that was
greater than the actual value), and p < 0.05 was defined as
a significant difference between the groups. Partial correlation
analysis was performed to evaluate the correlations between
the seed-based functional connectivity and the MoCA score (as
well as the MoCA subdomains, including executive, memory,
visuospatial, language, and attention functions), adjusting for
sex, age, and education level. To measure the power of
the seed-based functional connectivity differences, receiver
operating characteristic (ROC) curve analysis was performed.
The statistical significance level was set at p < 0.05.

RESULTS

Demographic and Clinical
Characteristics
Based on the above inclusion and exclusion criteria, 71 patients
were initially included in this study; however, three participants
were removed due to poor signal quality. Consequently, the
final sample included 68 patients (37 males and 31 females),
with 32 patients belonging to the PM-MCI group and the other
36 individuals to the PD-NC group. Relative to the PD-NC
group, the PD-MCI group presented significantly lower MoCA
scores (as well as the MoCA subdomains, including executive,
memory, visuospatial, language, and attention functions; see
Supplementary Table 1) and education levels, and a significantly
higher mean age. No other significant differences were found
between the two groups. The detailed demographic and clinical
characteristics, as well as the statistical results, are shown in
Table 1.

Seed-Based Functional Connectivity
With Bilateral PMFG
NBS analysis revealed stronger brain-wide functional
connectivity in the PD-MCI group than in the PD-NC group in
the theta band under EC condition but not in any other bands
or conditions. Specifically, components, including 216 edges
connected to 31 nodes, showed enhanced connectivity strength
between the groups, involving the visual, somatosensory, dorsal
attention, default mode (DMN), frontoparietal control, and
ventral attention networks (Figures 1A,B). When the left
and right PMFG were selected as seed ROIs, the identified
clusters involved multiple networks; for the left PMFG, the
identified clusters involved the somatosensory, dorsal attention,
default mode, frontoparietal control, and ventral attention
networks; while the identified clusters for the right PMFG
involved the visual, somatosensory, dorsal attention, default
mode, frontoparietal control, and ventral attention networks

TABLE 1 | Main demographic and clinical characteristics in each group.

All PD-MCI PD-NC t/z/χ2 P value

N 68 32 36

Sex (M/F) 37/31 17/15 20/16 0.040 0.841

Age (year) 63.97 ± 9.09 66.67 ± 7.33 61.50 ± 9.92 −2.443 0.017*

Education (year) 8.59 ± 4.32 6.27 ± 4.06 10.72 ± 3.39 4.961 <0.001*

Duration (year) 2.5 (1.5, 5) 3 (1.5, 5.375) 2 (1, 5) −0.321 0.748

UPDRS-III score 23.16 ± 11.30 24.79 ± 11.49 21.67 ± 11.08 −1.149 0.255

H&Y stage 2 (1.5, 2.5) 2 (1.5, 2.5) 1.75 (1, 2.375) −1.053 0.292

PSQI score 9.36 ± 4.28 9.65 ± 4.33 9.05 ± 4.31 −0.431 0.669

LEDD (mg) 258.335 (118.75, 400) 233.335 (0,346.875) 275 (176.25, 446.875) −1.044 0.297

HAMA 9 (6, 14.5) 9 (6, 17) 9 (5.25, 12.75) −0.801 0.423

HAMD 11 (6.5, 15) 11 (4.5, 16) 11 (7, 14.75) −0.096 0.923

MoCA 24 (19, 27) 19 (13.5, 22) 26.5 (25, 27.75) −7.159 <0.001*

*p < 0.05 (comparison between PD-MCI and PD-NC group). HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale; H&Y, Hoehn and Yahr;
LEDD, levodopa equivalent dose daily; MoCA, Montreal Cognitive Assessment; PD-MCI, Parkinson’s Disease with mild cognitive impairment; PD-NC, Parkinson’s Disease
with normal cognition; PSQI, Pittsburgh Sleep Quality Index; UPDRS-III, Unified Parkinson’s Disease Rating Scale-III.
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FIGURE 1 | Left and right PMFG-based functional connectivity changes in the theta frequency band under EC condition in PD-related mild cognitive impairment.
(A) Functional connectivity matrices of the PD-MCI and PD-NC groups. (B) NBS analysis of group differences (PD-MCI group > PD-NC group, including the left
PMFG and the right PMFG-based functional connectivity). Differential functional connectivity between the two groups (left), and 3D brain connectivity patterns
showing the left side, right side, and the upper view, respectively (right). In (B), the red matrix element represents the variant edges of the NBS analysis and the size
of the node indicates the sum of the number of surviving edges for each node. EC, eyes closed; PD-MCI, Parkinson’s disease with mild cognitive impairment;
PD-NC, Parkinson’s disease with normal cognition; NBS, network-based statistics; L, left; R, right; ORB, orbitofrontal cortex; AMFG, anterior division of the middle
frontal gyrus; FEF, frontal eye field; SEF, supplementary eye field; PMFG, posterior division of the middle frontal gyrus; IFJ, inferior frontal junction; SMC, sensorimotor
cortex; SUP, supramarginalgyrus; IPS, intraparietal sulcus; IPL, inferior parietal lobule; ANG, angular gyrus; MTG, middle temporal gyrus; V1, primary visual cortex;
INS, insular cortex; MPFC, medial prefrontal cortex; DACC, dorsal anterior cingulate cortex; PCC, posterior cingulate cortex.

(Figure 1B). For all patients with PD, we next calculated the
nodal functional connectivity for the selected ROIs as the average
functional connectivity between the bilateral PMFG and all other
identified clusters revealed by NBS. The seed-based functional
connectivity significantly increased in the PD-MCI group, and
the MoCA scores were negatively correlated with the left and
right PMFG-based functional connectivity values (r = −0.426,
p < 0.001 and r = −0.437, p < 0.001, respectively), after
adjusting for sex, age, and education level (Figure 2). Concerning
the subdomains of the MoCA, poorer visuospatial function
was associated with higher right PMFG-based functional
connectivity (r = −0.335, p = 0.005) and poorer attention
function was associated with higher left and right PMFG-based
functional connectivity (r = −0.380, p = 0.001 and r = −0.256,
p = 0.035, respectively) after adjusting for sex, age, and education
level (Supplementary Figure 1).

Prediction of Cognitive Outcome
Enter logistic regression analysis was performed for mild
cognitive impairment based on the significant functional
connectivity with the left and right PMFG, respectively, adjusting
for sex, age, and education level. The logistic regression
analysis results are shown in Table 2. The significant functional
connectivity with the left and right PMFG were both independent
risk factors for mild cognitive impairment in patients with PD
[odds ratio (OR): 2.949, 95% confidence interval (C) 1.294–
6.725, p = 0.01; OR: 11.278, 95% CI: 2.578–49.335, p = 0.001,
respectively, per 0.1U]. In contrast to these findings, the logistic
regression analysis based on the significant power spectral density
from univariate analysis in the PMFG region failed to detect
any significant results after adjusting for sex, age, and education
level (data not shown). The ROC analysis results are shown in
Figure 3 and Table 3. The area under the ROC curve (AUC) of
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FIGURE 2 | The MoCA scores are negatively correlated with the left PMFG-based functional connectivity change (A) and the right PMFG-based functional
connectivity change (B) after adjusting for sex, age, and education level. Scatterplot depicting seed-based functional connectivity significantly differed between the
groups. dWPLI, debiased weighted phase lag index; MoCA, Montreal Cognitive Assessment; PD-MCI, Parkinson’s disease with mild cognitive impairment; PD-NC,
Parkinson’s disease with normal cognition.

TABLE 2 | Logistic regression analysis for cognitive status in PD patients based on the significant functional connectivity with the left PMFG and right PMFG, respectively.

B S.E. Wald p value OR 95% CI

Left PMFG, per 0.1 U 1.082 0.421 6.616 0.01 2.949 1.294–6.725

Right PMFGI, per 0.1 U 2.423 0.753 10.354 0.001 11.278 2.578–49.335

CI, confidence interval; OR, odds ratio; PMFG, posterior division of the middle frontal gyrus.

significant functional connectivity with the left PMFG was 0.770,
with a sensitivity of 87.50% and a specificity of 61.10%. The AUC
of significant functional connectivity with the right PMFG was
0.809, with a sensitivity of 87.50% and a specificity of 69.40%.

DISCUSSION

Using resting-state EEG dWPLI measurement, the present
study revealed abnormal PMFG-based functional connectivity
associated with cognitive impairment in patients with PD in
the theta frequency bands under the EC condition. Logistic
regression and ROC curves analyses found that such abnormal
functional connectivity was an independent risk factor for
cognitive impairment and could be used to discriminate the

cognitive condition of patients with PD. Critically, based on
PMFG regional power spectral density, a measure commonly
used in previous EEG studies (Mostile et al., 2019), the logistic
regression analysis did not identify any risk factors.

Cognitive Disruption in PD and Changes
in Brain Connectivity
Cognitive dysfunction is pervasive in PD and negatively
impacts patients’ quality of life (Hanagasi et al., 2017).
Therefore, investigations of the clinical features or predictive
biomarkers for this condition in an early stage are essential.
Electroencephalography functional connectivity could make a
meaningful contribution to this procedure, given that altered
signal rhythms in PD-MCI patients are related to underlying
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FIGURE 3 | ROC curve for predicting cognitive status in patients with PD based on the significant functional connectivity with the left PMFG (A) and right PMFG
(B).The x-axis indicates the percentage of (100 – specificity), and the y-axis indicates the percentage of sensitivity. AUC, area under the receiver operating
characteristic curve; ROC, receiver operating characteristic; PMFG, posterior division of the middle frontal gyrus.

TABLE 3 | Receiver operating characteristic results predicting cognitive status in
PD patients based on the significant functional connectivity with the left PMFG and
right PMFG, respectively.

Variable AUC 95% CI Sensitivity (%) Sensitivity (%)

Left PMFG 0.770 0.652–0.864 87.50 61.10

Right PMFG 0.809 0.696–0.895 87.50 69.40

AUC, area under the receiver operating characteristic curve; CI, confidence interval;
PMFG, posterior division of the middle frontal gyrus.

neuropathological changes (Geraedts et al., 2018). Several
studies have reported alterations in functional connectivity
in patients with PD compared with healthy controls, and
these abnormalities are exacerbated by cognitive impairments
(Bertrand et al., 2016; Sanchez-Dinorin et al., 2021). The PD-
MCI patients in the current study had stronger brain-wide
functional connectivity in the theta frequency band compared
with PD-NC patients. Different EEG bands have different
normal functions and anatomical connections. Correspondingly,
increased slow frequency (e.g., in the theta and delta bands)
activity is characteristic of dysfunction in the diffuse gray
matter in the cortical and subcortical regions along with local
deafferentation in the cerebral cortex (Steriade et al., 1990). Thus,
the hyper-synchronization in this frequency band is probably the
result of a compensatory mechanism through which additional
brain regions are enlisted to maintain cognitive performance
(Gorges et al., 2015).

The DLPFC, thought to be a part of the limbic cortical-
striatal-pallidal-thalamic network, has been proven to be one
of the primary regions of interest for neuromodulation, and
various imaging studies have demonstrated direct or indirect
relationships between cognitive function and the DLPFC
(Gratwicke et al., 2015; Rosero Pahi et al., 2020). In terms
of the nodes located in the DLPFC, the bilateral PMFG are
widely used as accessible cortical stimulation sites for NIBS
(Chen et al., 2013). What happens to the brain connectivity

patterns that interact with these sites? Our results demonstrate
that the identified clusters involve multiple networks, implying
that cognitive functions require coordinated communication
among multiple brain regions. In support of these findings, a
systematic review of neuroimaging studies investigating non-
motor symptoms in PD suggested that several anatomically
separated brain areas, including the sensorimotor and executive
networks (particularly, the DLPFC and the anterior cingulate
cortex), as well as the DMN, visual, auditory, salience
(insular), frontal, parietal, and temporal networks, are all
functionally connected during resting states, and the functional
connectivity between these brain regions plays a pivotal role
in coordinating complex cognitive processes (Prell, 2018).
Furthermore, abnormal functional connectivity was associated
with the MoCA score, which represents a global test scale
for cognitive function, indicating that abnormal PMFG-based
functional connectivity is involved in cognitive performance
in patients with PD. Notably, Nissim et al. found that paired
active-transcranial direct current stimulation (tDCS) over the left
DLPFC together with cognitive training significantly increased
working memory performance, as well as functional connectivity
between the left DLPFC and right inferior parietal lobule in
older adults (Nissim et al., 2019), which may also indicate that
the DLPFC connectivity pattern plays a crucial role in cognitive
function. On the other hand, our results also corroborate
previous studies of changed functional connectivity in patients
with PD that is related to their cognitive impairments (Bertrand
et al., 2016; Hassan et al., 2017; Chaturvedi et al., 2019;
Sanchez-Dinorin et al., 2021). Among them, Hassan et al.
demonstrated that lower edge-wise connectivity in the alpha1
and alpha2 frequencies was associated with lower cognitive
state, particularly in the frontotemporal areas (Hassan et al.,
2017). While another study using the phase-locking value found
enhanced functional connectivity within the frontal regions over
all frequency bands, and changes in the delta and theta frequency
bands were associated with poorer cognitive performance
in PD patients (Sanchez-Dinorin et al., 2021). Indicators of
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functional connectivity determined by different algorithms may
disclose different underlying neural mechanisms. The results
of functional connectivity measures depend on the type of
functional connectivity measures and the cognitive behavioural
measurement instrument used (Geraedts et al., 2018). Notably,
the dWPLI correlation used in this study, could potentially
exclude significant zero-lag connectivity caused by a mixture
of true and spurious correlations; additionally, it is expected
to detect real-time lagged functional couplings of brain source
activities (Lau et al., 2012).

Furthermore, patterns of altered functional connectivity may
be domain-specific, and relevant studies that consider functional
connectivity in the context of cognitive domains are rare. While
we only used the MoCA score as a measure of global cognitive
function in the current study, we attempted to correlate the
subitem scores of the MoCA with the significant functional
connectivity in order to preliminarily explore the relationship
between specific cognitive domain functions and the changes
of PMFG-based functional connectivity. The performances
of visuospatial and attention functions are associated with
PMFG-based functional connectivity. These findings confirm the
discoveries of a recent study: increased frontal synchronization
of slow oscillations predicts global cognitive and visuospatial
functions (Sanchez-Dinorin et al., 2021). In addition, another
study found that attention and memory correlated significantly
with the phase lag index in the beta and theta frequency bands,
respectively (Chaturvedi et al., 2019). Nevertheless, as we did
not have extensive reliable assessment measurements for specific
cognitive domains, conclusions about specific cognitive domains
need to be interpreted with caution and warrant further research.

EEG Measures Predict Cognitive
Impairment in PD Patients
The reduction in EEG background frequency has been found
to be associated with phosphorylated α-synuclein in autopsy
tissue of the posterior cingulate cortex (Caviness et al., 2016),
and several studies have also suggested that EEG features
(frequency and power features of special regions) could be
used to distinguish the severity of cognitive dysfunction or
longitudinal cognitive decline in patients with PD using various
approaches, including machine learning, which confirms the
reliability and reproducibility of EEG in identifying cognitive
impairment (Arnaldi et al., 2017; Betrouni et al., 2019; Zhang
et al., 2021). Together, these findings provide strong evidence
that EEG measures can be used as reliable biomarkers of
cognitive decline in patients with PD. However, these studies
only used the frequency and power features of EEG rather than
functional connectivity that may better reflect the complexity
of information processing in the cerebral cortex and may
therefore be more closely related to behavior (Bullmore and
Sporns, 2012). As described above, brain connectivity would
be expected to disclose the properties of brain processing, and
current studies have begun to address the issue of changes
in brain connectivity, which broadens our understanding of
the neural mechanisms of neurodegenerative diseases. Our
results reveal that significant functional connectivity with the

bilateral PMFG are independent risk factors for mild cognitive
impairment in patients with PD, and, in addition, the ROC
curve analysis demonstrated that the observed abnormalities
of PMFG functional connectivity showed robust discriminative
power when determining the cognitive condition in PD. Thus,
the presence of such changes could be used as potential
markers for identifying cognitive impairment in patients with
PD. This corresponds to the higher theta band phase lag
index in PD-MCI patients reported by Chaturvedi et al.
(Chaturvedi et al., 2019). However, we paid more attention
to the brain connectivity related to NIBS targets, which is
essential for exploring the neural mechanisms and therapeutic
mechanisms of diseases.

Clinical Significance
Generally, neuropsychological assessments are used to define
the status and severity of cognitive impairment in patients with
PD. However, it must be acknowledged that neuropsychological
assessments require specialized neuropsychological experts,
which is both time-consuming and requires good patient
cooperation. Resting-state EEG is easily accessible with high test-
retest reliability and objectively reflects the pathophysiological
functioning of the brain (Salinsky et al., 1991). Furthermore,
this procedure can be repeated multiple times without learning
bias. Using this procedure, our study found that PMFG-based
connectivity could predict the cognitive condition of patients
with PD. Regarding clinical considerations, these findings hold
promise as practical adjuncts to neuropsychological studies.
Moreover, it may be possible to improve cognitive function in
patients with PD by adjusting the EEG functional connectivity
in specific regions.

This study has several limitations. First, it should be noted that
we used the MoCA score as a global cognitive function measure
to determine the level of cognition and cognitive impairment that
meets the level I diagnostic criteria of PD-MCI; this measure does
not assess specific cognitive domains and may, therefore, provide
less diagnostic accuracy. To mitigate this issue, the diagnosis
of idiopathic PD, as well as the determination of cognitive
status in all included patients, were unanimously decided by
movement disorder specialists and neuropsychological experts.
Second, the alterations in connectivity observed in the present
study are outwardly not specific to PD-MCI, as an increased
slowing of activities is also common to other types of dementia.
However, the pathophysiological mechanisms of dementias with
different etiologies can be reflected through types of different
brain connectivity; this aspect requires more extensive research in
the future. Third, because of the heterogeneity of PD, it is difficult
for a single marker to achieve an accurate diagnosis, and the
combination of multimodal markers may improve the accuracy
of diagnosis. Consequently, it would be of great significance to
further explore multimodal markers for cognitive impairment
associated with PD. Fourth, the current study is cross-sectional,
and future longitudinal studies are warranted. It is expected
that the methodology established in this study can be extended
by integrating follow-up data to further predict the progression
of cognitive impairment in patients with PD. In addition, the
current study lacks an age-matched healthy control group, which
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would be important to highlight unique features in the PD-
NC group. Although our purpose was to identify patients with
cognitive impairment from PD patients, future in-depth studies
incorporating data from the control group are warranted.

CONCLUSION

We found abnormal PMFG-based functional connectivity
patterns associated with cognitive impairment in patients with
PD exclusively in the theta frequency bands under EC condition
and demonstrated that this abnormal functional connectivity was
an independent risk factor for cognitive impairment in PD. As
such, abnormal PMFG-based functional connectivity patterns
have the potential to act as reliable biomarkers for identifying
cognitive impairment in patients with PD. These results provide a
direction for elucidating the neuropathology of PD-MCI and the
mechanism of NIBS.
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