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MeSiC: A Model-Based Method for 
Estimating 5 mC Levels at Single-
CpG Resolution from MeDIP-seq
Yun Xiao1,2,*, Fulong Yu1,*, Lin Pang1,*, Hongying Zhao1, Ling Liu1, Guanxiong Zhang1, 
Tingting Liu1, Hongyi Zhang1, Huihui Fan1, Yan Zhang1, Bo Pang3 & Xia Li1

As the fifth base in mammalian genome, 5-methylcytosine (5 mC) is essential for many biological 
processes including normal development and disease. Methylated DNA immunoprecipitation 
sequencing (MeDIP-seq), which uses anti-5 mC antibodies to enrich for methylated fraction of 
the genome, is widely used to investigate methylome at a resolution of 100–500 bp. Considering 
the CpG density-dependent bias and limited resolution of MeDIP-seq, we developed a Random 
Forest Regression (RFR) model method, MeSiC, to estimate DNA methylation levels at single-base 
resolution. MeSiC integrated MeDIP-seq signals of CpG sites and their surrounding neighbors as well 
as genomic features to construct genomic element-dependent RFR models. In the H1 cell line, a 
high correlation was observed between MeSiC predictions and actual 5 mC levels. Meanwhile, MeSiC 
enabled to calibrate CpG density-dependent bias of MeDIP-seq signals. Importantly, we found that 
MeSiC models constructed in the H1 cell line could be used to accurately predict DNA methylation 
levels for other cell types. Comparisons with methylCRF and MEDIPS showed that MeSiC achieved 
comparable and even better performance. These demonstrate that MeSiC can provide accurate 
estimations of 5 mC levels at single-CpG resolution using MeDIP-seq data alone.

DNA methylation, whereby an enzymatic modification occurs at 5′  position of cytosine pyrimidine ring, 
plays a central role in cellular processes such as genome regulation and development1. In somatic cells, 
the primary location of 5-methylcytosine (5 mC) is found exclusively in the context of CpG dinucleotide 
which constitutes only approximately 1% of genome. This modification is generally regarded as a ‘silenc-
ing’ epigenetic mark because of the recruitment of methyl-CpG binding proteins2. Changes in DNA 
methylation patterns are closely related with many diseases, particularly cancer3. Therefore, profiling 
DNA methylome is pivotal to understanding the roles of epigenetics in pathogenesis of diseases.

The field of DNA methylation is capitalizing on the sequencing technology. Whole genome bisulfite 
sequencing (BS-seq)4,5 is considered as a golden standard to quantify and analyze genome-wide DNA 
methylation levels at single-base resolution6. However, for reason of high cost of BS-seq, it is unfeasible 
to characterize the methylomes of large biological samples nowadays7. Reduced representation bisulfite 
sequencing (RRBS), which is introduced to reduce sequence redundancy by focusing the sequencing on 
predefined set of CG-rich regions, covers 2–3 million CpG sites in the human genome8. The Infinium 
HumanMethylation27 microarray is also a widely used platform, which is enable to interrogate more 
than 27,000 CpG sites from promoters of most protein-coding genes and some microRNAs9. Methylated 
DNA immunoprecipitation sequencing (MeDIP-seq), a popular 5 mC capture-based method, is rapid 
and cost-efficient to detect genome-wide DNA methylation levels at a resolution of 100–500 bp. This 
approach requires low-input DNA and has extensive applications in the study of DNA methylation10. 
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Recently, the use of MeDIP-seq has produced fruitful outcomes in understanding the role of DNA meth-
ylation in cancer genetics and epigenetics. For instance, global hypomethylation was observed as a hall-
mark of breast cancer11 and aberrant DNA methylation was found to play a major role in schizophrenia 
and bipolar disorder12.

Previous studies have proved that MeDIP-seq tends to introduce bias in CpG-poor regions13. A num-
ber of computational methods and bioinformatics tools have been developed for calibrating the intrinsic 
bias of MeDIP-seq to accurately estimate 5 mC levels, such as Batman14, MEDIPS15 and MeDUSA16. 
Batman, a Bayesian deconvolution-based strategy, is used to analyze DNA methylation profiles generated 
from oligonucleotide arrays (MeDIP-chip) or MeDIP-seq. It proposes the concept of coupling factors 
which measure the effect of varying densities of methylated CpG sites on MeDIP enrichment and help 
to accurately quantify methylation levels in windows of fixed size. MEDIPS integrates concepts from 
BATMAN and MEDME17 into MeDIP-seq data analysis pipeline, which weights raw MeDIP-seq signals 
with coupling factor-based normalization parameters that are identified by linear regression. Different 
from Batman and MEDIPS, MeDUSA combines numerous software packages to analyze MeDIP-seq 
data, which mainly focus on the identification of relative changes in DNA methylation (including poten-
tial non-CpG methylation) between cohorts. All these methods provide regional normalization of DNA 
methylation levels. Despite the recent progress, the limited resolution still hampers deeper analysis and 
interpretation of DNA methylation data. To further increase resolution, a recent approach methylCRF, 
combines MeDIP-seq and MRE-seq data to assess DNA methylation levels at single-base resolution by 
employing a Conditional Random Fields algorithm18.

In this study, we proposed a model-based methodology, MeSiC (prediction from MeDIP-seq data 
at single-CpG resolution), that only uses MeDIP-seq data to obtain reliable estimations of 5 mC levels 
at single-CpG resolution. We found that MeSiC was able to provide accurate estimations of 5 mC levels 
and calibrate the CpG density-dependent bias. Meanwhile, we further validated the accuracy of MeSiC 
models using additional biological samples. MeSiC had better performance than MEDIPS at regional 
levels. When comparison was performed at single-base resolution, MeSiC provided comparable accuracy 
with methylCRF.

Results
Characterization of CpG density-dependent bias in MeDIP-seq data.  MeDIP-seq, as a tech-
nique for measuring DNA methylation levels with high genome coverage and low cost, has been widely 
applied in DNA methylome analysis. However, MeDIP-seq biases toward genomic regions with high 
CpG density and shows deviations in CpG-poor genomic regions13,17. We therefore examined whether 
MeDIP-seq signals could be affected by CpG density in human embryonic stem cell line H1.

We divided the genome into 1-kb non-overlapping windows. For each window, we calculated the CpG 
density and a RPM value (reads per million) representing normalized read depth using MeDIP-seq data. 
Combining BS-seq and TAB-seq data, we calculated single-base resolution 5 mC levels (termed actual 
DNA methylation level) of 25882669 CpG sites (representing 91.73% of CpG sites in the human genome) 
by subtracting TAB-seq hits from BS-seq hits. The average 5 mC level of CpG sites within each window 

Figure 1.  CpG density-dependent bias in MeDIP-seq data. We divided the genome into 1-kb non-
overlapping windows and calculated average 5 mC level, RPM value and CpG density for each window. We 
classified the windows into 18 groups according to CpG density and we compared (A) the distribution of 
5 mC levels and (B) the distribution of RPM values among these groups.
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was obtained. Through comparing the distribution of 5 mC levels with that of MeDIP-seq derived RPM 
values, we found that highly methylated CpG sites were mainly enriched for windows with low CpG 
density but the enrichment was not observed in MeDIP-seq profile (Fig.  1A,B), suggesting the limited 
accuracy of MeDIP-seq data in low CpG density regions.

Construction and validation of MeSiC models.  MeDIP-seq uses antibody-based immunoprecip-
itation of 5-methylcytosine to retrieve methylated fragments from sonicated DNA. MeDIP-seq signals 
represent the methylation level of a certain genomic region rather than an individual CpG site, which 
are critically dependent on the degree of methylation, local CpG density and relative positions of CpG 
sites. Moreover, previous studies reported similar methylation levels between neighboring CpG sites19–21. 
Therefore, it is reasonable to assume that MeDIP-seq signals of single CpG sites are contributed by the 
DNA methylation levels of the CpG site itself and its surrounding CpG sites. That is, the 5 mC level of a 
certain CpG site can be reflected by the MeDIP-seq read counts of the CpG site itself and its surrounding 
CpG sites.

Based on the above-mentioned assumption, we proposed a method, MeSiC, that used the Random 
Forest Regression (RFR) algorithm to model 5 mC levels of single CpG sites using MeDIP-seq signals 
and genomic features. For each CpG site, we selected the 400 bp region centered on the CpG site to cal-
culate a total of 404 features referring to MeDIP-seq signals for single bases, coupling factors (cf), CpG 
density, GC content and evolutionary conservation. Subsequently, we built MeSiC models using the 5 mC 
levels and 404 features. Notably, we observed that different genomic elements exhibited different 5 mC 
distributions. CGI showed a unimodal 5 mC distribution (Fig. 2A), while promoter and intron showed 
a bimodal (Fig.  2B) and multimodal distribution (Fig.  2C), respectively. Thus, MeSiC trained different 
models for distinct genomic elements (see Methods).

Chromosome 1, the largest of the human chromosomes, is expected for more representative of genetic 
properties22. Thus, for each genomic element of chromosome 1, its 25% of CpG sites (the ‘training set’) 
were randomly selected to construct a RFR model that could be used to predict the 5 mC levels of the 
remaining 75% of CpG sites (the ‘test set’). We used two measurements to evaluate model performance: 
(i) Pearson correlation coefficient (PCC) between MeSiC predictions and 5 mC levels; (ii) concordance, 
that is the proportion of CpG sites with absolute methylation difference less than 0.25 between MeSiC 
predictions and 5 mC levels23. For each MeSiC model, we repeated 10 times to generate the training and 
test sets and the standard deviations of PCCs and concordances were both less than 0.003, indicating 
that taking 25% of CpG sites of chromosome 1 was enough to construct MeSiC models. We found that 
MeSiC showed high PCCs and concordances in CGI- and gene-related genomic elements, including CGI, 
shore, shelf, 5′ UTR, promoter, exon, intron and 3′ UTR of 24 chromosomes (Fig. 3A). The average PCCs 
of 24 chromosomes for most genomic elements were around 0.80 with the highest one of 0.85 in CGI. 
The concordances ranged from 0.83 to 0.92. For example, DNMT3A gene encodes an important DNA 
methyltransferase that catalyzes the transfer of a methyl group to CpG dinucleotide24. A genome browser 
view of actual, predicted 5 mC levels and normalized MeDIP-seq read counts of CpG sites around this 
gene were shown at single-base resolution (Fig. 3B), and we found a high concordance (0.90) between 
predictions and 5 mC levels. Moreover, similar results were observed when predictions and 5 mC levels 
were shown with a 100-kb sliding window on chromosome 2 (PCC and concordance increased to 0.91 
and 0.99, respectively; Fig. 3C). In addition, we applied the MeSiC models derived from chromosome 1 
to another MeDIP-seq data of the H1 cell line and found a high correlation with pervious predictions 
(PCC =  0.94, p-value <  1.2e−15). These results suggested that MeSiC could generate accurate estimation 
of 5 mC level at single-base resolution. Moreover, we observed that repetitive elements showed low PCCs 

Figure 2.  The different distributions of 5 mC levels at different genomic elements. The distribution of 
5 mC levels at CGI (A), promoter (B), intron (C).
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(Supplementary Figure 1), perhaps due to the unreliable MeDIP-seq signals or mapping errors25,26. In the 
following analysis, we mainly focused on the CGI- and gene-related genomic elements which include 
12894746 CpG sites (45.7% of all CpG sites in the human genome).

Next, we tested whether MeSiC could correct the effect of CpG density on the measurement of DNA 
methylation levels for MeDIP-seq data on the whole genome. For each CpG site, we calculated the CpG 
density of its flanking 500 bp region, based on which we divided CpG sites into different groups. We 
found that the medians of absolute differences between predictions and 5 mC levels were all less than 
0.15, and the concordances were from 0.82 to 0.95 (Fig. 3D). These results demonstrated that the high 
accuracies of MeSiC models were independent of CpG density.

Robust performance of MeSiC.  To evaluate the robustness of MeSiC, we respectively replaced the 
RFR algorithm with Multivariate Linear Regression (MLR) and Support Vector Regression (SVR) to train 
different types of models and compared their performances (Fig. 4A). RFR models nearly always showed 
the highest PCCs and concordances for all genomic elements. Notably, despite some differences, all three 
types of models obtained good performances, suggesting that the high performance was a direct result 

Figure 3.  MeSiC enabled to accurately predict 5 mC levels. (A) For each genomic element, we evaluated 
the performance of MeSiC on all 24 chromosomes. (B) The UCSC Browser screenshot of DNMT3A 
illustrating 5 mC levels (red), MeSiC predictions (green) and MeDIP-seq reads coverage (blue). (C) The 
UCSC Browser screenshot showing 5 mC levels (top track) and MeSiC predictions (bottom track) in a 
100-kb sliding window on chromosome 2. (D) The distribution of absolute differences between MeSiC 
predictions and 5 mC levels in different CpG-density groups.
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of the appropriate features which could comprehensively capture the information of DNA methylation 
patterns.

It has been demonstrated that sequencing depth is an important factor to impact the stability of 
MeDIP-seq detection15. Subsequently, we examined the effect of MeDIP-seq depth on the model per-
formance. By randomly selecting a decreasing number of MeDIP-seq reads from 100% to 10% in dec-
rements of 10%, we trained multiple models based on various proportions of reads and then calculated 
the PCCs and concordances between 5 mC levels and MeSiC predictions. We repeated the above process 
ten times and calculated the average PCC and concordance. We observed relatively stable performance 
of MeSiC even using 40% of total reads (Fig. 4B), suggesting that the sequencing depth of MeDIP-seq 
has little effect on MeSiC.

We further evaluated the anti-noise performance of MeSiC through replacing 5 mC levels of a per-
centage of CpG sites with random values (regarded as noise) when training models (Fig. 4C). With the 
percentage of noise increasing from 0 to 100% in increments of 5%, there was no distinct difference in 
prediction performance until the noise percentage was added up to 45%, suggesting that MeSiC models 

Figure 4.  Robust performance of MeSiC. (A) We compared concordances (left panel) and PCCs (right 
panel) between 5 mC levels and predictions of MLR (green), SVM (yellow) and RFR (dark blue) models. 
The concordances and PCCs between 5 mC levels and predictions of RFR models (B) with the percentage 
of MeDIP-seq reads decreasing from 100% to 10% in decrements of 10% and (C) with the percentage of 
noise increasing from 0 to 100% in increments of 5%. (D) The distributions of MeSiC predictions at CpG 
sites where MeDIP-seq coverages were 0 while the methylation status were either fully methylated (5 mC 
levels =  1) or fully unmethylated (5 mC levels =  0), and *** indicates p-value <  2.2e−16.
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were robust to random noise. Notably, although MeDIP-seq provides extensive coverage of human 
genome, there are still approximately 30% genomic regions covered by no MeDIP-seq reads25. In order 
to test the performance of MeSiC for distinguishing regions that are truly unmethylated (thus no reads) 
versus methylated regions that happen to have no reads (stochastic events in genomic experiments, 
regions that are difficult to assay), we identified two classes of CpG sites (referring to 3650434) with no 
reads, one showing fully methylation (termed “methylated group”) and the other showing unmethyla-
tion (termed “unmethylated group”) on CGI- and gene-related genomic elements. We found that CpG 
sites in the unmethylated group showed lower MeSiC predictions than those in the methylated group 
(Wilcox ranked sum test, p-values <  2.2e−16) in all genomic elements (Fig. 4D). Notably, the CpG sites 
in the methylated group consistently showed high MeSic predictions despite without read coverage in 
MeDIP-seq.

Benchmarking against diverse types of data.  Validation with different platforms.  Recently, there 
is a series of DNA methylation techniques which greatly contribute to understanding the biological func-
tion of DNA methylation. For example, Infinium HumanMethylation27 microarray is a reliable method 
to investigate DNA methylation levels at single-CpG resolution and previous studies have confirmed its 
quantitative accuracy9. Reduced representation bisulfite sequencing (RRBS) enables detection and quanti-
fication of DNA methylation levels at single-nucleotide resolution23. Both Infinium HumanMethylation27 
microarray and RRBS can be used to evaluate the accuracy of our models. We directly compared predicted 
CpG methylation levels of MeSiC models with those from Infinium HumanMethylation27 microarray 
or RRBS. After data preprocessing and filtering (see Methods), the common detected CpG sites in the 
H1 cell line were selected for the following analysis. The overall PCC of MeSiC predictions was 0.84 
relative to the hydroxymethylation-corrected 27 K data (Fig.  5A). We observed a bimodal methylation 
distribution of CpG sites, most of which showed high or low methylation and only a small portion of 
which showed intermediate methylation in both MeSiC predictions and Infinium HumanMethylation27 
microarray data. With respect to different genomic elements, we found that their PCCs were in the range 
of 0.78 to 0.87 and concordances were from 0.81 to 0.92 (Fig. 5B). Moreover, we obtained similar results 
when comparing MeSiC predictions with hydroxymethylation-corrected RRBS data. The overall PCC 
was 0.77 (Fig. 5C) and the range was from 0.73 to 0.82 at distinct genomic elements with corresponding 
concordances from 0.76 to 0.83 (Fig. 5D).

Validation with additional samples.  To further validate our models, we compared MeSiC predictions for 
the H1 cell line with Infinium HumanMethylation27 microarray data of the H9 cell line that has simi-
lar DNA methylation patterns to the H1 cell line27. The overall PCC was 0.84 (Fig. 5E), and PCCs and 

Figure 5.  Validation of MeSiC predictions with diverse data. Smoothed color density representation 
of the scatter plot showing PCCs between MeSiC predictions and (A) Infinium HumanMethylation27 
microarray data of the H1 cell line, (C) RRBS data of the H1 cell line and (E) Infinium 
HumanMethylation27 microarray data of the H9 cell line. For each genomic element, PCCs and 
concordances relative to (B) Infinium HumanMethylation27 microarray data of the H1 cell line, (D) 
RRBS data of H1 cell line and (F) Infinium HumanMethylation27 microarray data of the H9 cell line 
were calculated. Red solid line represents concordances and blue dash line represents PCCs.  
(G) Correlations and concordances of MeSiC relative to BS-seq data for BGMs and NCCs. Green and 
blue lines represent the results of BGMs and NCCs. Solid and dash lines represent concordances and 
PCCs, respectively.
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concordances were from 0.79 to 0.86 and from 0.80 to 0.91, respectively, at distinct genomic elements 
(Fig. 5F). These findings indicated that the predictions of MeSiC were highly consistent with Infinium 
HumanMethylation27 microarray data, especially at CGI, shore, 5′ UTR and exon, which was analogous 
to the observations in the H1 cell line.

Next, we sought to investigate whether MeSiC models derived from the H1 cell line could be used to 
estimate DNA methylation levels for other biological samples. We applied MeSiC models to MeDIP-seq 
data of Brain Germinal Matrix cells (BGMs) and Neurosphere Cultured Cells Cortex Derived (NCCs). 
To evaluate our prediction results, we obtained their BS-seq data from the Human Epigenome Atlas and 
calculated the beta values representing actual DNA methylation levels. The PCCs between predicted 
values of MeSiC and actual ones were from 0.73 to 0.90 for BGMs and from 0.73 to 0.91 for NCCs at 
different genomic elements (Fig. 5G). Concordances were from 0.76 to 0.91 for BGMs and from 0.79 to 
0.91 for NCCs. These results were similar to those shown in Fig. 3A, nearly reaching accuracy of those 
from the H1 cell line, suggesting that the H1 cell line-derived models could be applied to other tissue 
samples or cell types.

Comparison with other methods.  MEDIPS has been widely used to quantify and analyze 
genome-wide DNA methylation15. We compared the performance of MeSiC and MEDIPS (version 
1.12.0) at different genomic elements using MeDIP-seq data of the H1 cell line. Since MEDIPS nor-
malizes MeDIP-seq signals in fixed-size window instead of individual CpG site, we calculated the abso-
lute methylation score (ams) for each element. To compare with MEDIPS, we calculated the average 
MeSiC prediction values and the average 5 mC levels of CpG sites within each element. Because the 
ams and MeSiC prediction values have different magnitude ranges, we only used PCCs to compare the 

Figure 6.  Comparison of the performance of MeSiC with MEDIPS and methylCRF. (A) Correlation 
analysis of MeSiC predictions and MEDIPS-normalized ams relative to 5 mC levels at different genomic 
elements on 24 chromosomes of the H1 cell line. Correlation analysis of MeSiC predictions and MEDIPS-
normalized ams relative to BS-seq values at different genomic elements on 24 chromosomes of (B) BGMs 
and (C) NCCs. The ams which corrects for the CpG density of the element was calculated through dividing 
mean rms by mean coupling factors of bins that located in the element. (D) Concordance and (E) correlation 
analysis of the predictions of MeSiC and methylCRF relative to 5 mC levels at different genomic elements 
on 24 chromosomes of the H1 cell line. Solid and dash lines represent MeSiC and methylCRF, respectively. 
Different colors represent different genomic elements.
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performance of MeSiC and MEDIPS. On the whole, the PCCs between MeSiC predictions and 5 mC 
levels were almost all above 0.80, with the highest 0.96 at CGI (Fig. 6A). However, most PCCs between 
ams and 5 mC levels were from 0.20 to 0.50 except 0.80 for CGI, which were significantly lower than 
those of MeSiC (one-tailed Student’s t-test, p-value =  2.3e−05). In addition, we used MeDIP-seq data of 
BGMs and NCCs to compare the performance of both methods and the similar results with the H1 cell 
line further validated MeSiC’s superiority (Fig. 6B,C).

Next, we compared MeSiC with methylCRF which predicts DNA methylation levels at single-CpG 
resolution through integrating MeDIP-seq and methylation-sensitive restriction enzyme sequenc-
ing (MRE-seq) data based on Conditional Random Fields algorithm. Because methylCRF provides 
single-base predictions of DNA methylation levels, we thus directly used the MeSiC single-base pre-
dictions to compare with methylCRF. For each genomic element on each of the 24 chromosomes, we 
calculated the concordances and PCCs of MeSiC and methylCRF relative to 5 mC levels. Both methods 
showed stable performance. The average concordances were from 0.84 to 0.93 for MeSiC and from 0.83 
to 0.92 for methylCRF at different elements (Fig.  6D). The highest concordances were all above 0.91 
at intron, 5′  UTR and 3′  UTR for both methods. And the average PCCs ranged from 0.60 to 0.85 for 
MeSiC and from 0.65 to 0.87 for methylCRF (Fig. 6E). Both MeSiC and methylCRF displayed the highest 
PCCs at CGI and exon (more than 0.81). Taken together, MeSiC could generate comparable results with 
methylCRF even using MeDIP-seq data alone.

Discussion
In this study, we developed a model-based method, MeSiC, which accurately predicts DNA methylation 
levels at single-base resolution using MeDIP-seq data. Our models calculated 5 mC levels as reference 
standards through integrating BS-seq and TAB-seq data. MeSiC calibrated CpG density-dependent bias 
and provided accurate predictions of 5 mC levels at CGI- and gene-related genomic elements. MeSiC 
turned out to be robust through using distinct algorithms (including MLR, SVR and RFR) and add-
ing noise during model construction. In addition, the accuracy of MeSiC predictions was validated by 
Infinium HumanMethylation27 microarray and RRBS data. Notably, when applying models derived from 
the H1 cell line to MeDIP-seq data of BGMs and NCCs, MeSiC predictions also showed a high concord-
ance with actual DNA methylation levels, suggesting that MeSiC could be broadly applied to MeDIP-seq 
data of other cell types and tissues.

Figure 7.  Genome browser views of DNA methylation levels of three gene-related regions in BGMs and 
the H1 cell line. Red tracks represent beta values of BS-seq. Blue tracks represent predictions of MeSiC. 
Dark green tracks represent ams of MEDIPS. Gray tracks represent MeDIP-seq read counts (RPKM). Light 
green shadings represent regions with different methylation levels detected by MeSiC but not MEDIPS.



www.nature.com/scientificreports/

9Scientific Reports | 5:14699 | DOI: 10.1038/srep14699

We compared MeSiC with MEDIPS at regional resolution. The comparison result revealed that MeSiC 
predictions were more in agreement with reference methylation levels. Using MeDIP-seq data alone, 
MeSiC can generate comparable DNA methylation predictions with methylCRF, which combines both 
MeDIP-seq and MRE-seq data to estimate DNA methylation levels at single-base resolution. Noteworthy, 
this makes MeSiC more practical and feasible because of limited samples simultaneously detected by 
MeDIP-seq and MRE-seq.

In addition, we found that the concordance between MeSiC predictions and actual 5 mC levels on 
the whole genome was 0.93, suggesting that MeSiC could accurately predict 24070882 CpG sites (85.3% 
of CpG sites in the human genome). Comparison of MeSiC predictions between BGMs and the H1 cell 
line showed that MeSiC could help us to identify methylation differences (Fig. 7). For example, AJAP1 
has been reported to contribute to the pathogenesis of brain tissues28,29 and MeSiC predictions showed 
higher methylation levels in brain tissue than those in the H1 cell line, while we could not observe obvi-
ous differences using MEDIPS. L1TD1, which is associated with pluripotency of stem cell and cancer 
cell tumor-propagating capacity30–32, also exhibited higher methylation in BGMs and similar results were 
observed in DMRTA2, which plays important roles in the development of the telencephalon in zebrafish33 
and mammal34. Moreover, to explore whether our method can comprehensively capture the differences 
of DNA methylation levels, we additionally performed a genome-wide identification of differentially 
methylated regions (DMRs) between BGM and H1 cell line. We first retrieved regions with low PCC 
(PCC <  0.25) as candidate DMRs using a modified method described by Shaoke Lou35. Among these 
regions, we then identified 1190 DMRs with significant methylation differences using Wilcox ranked 
sum test. The p-values were adjusted by the Benjamini-Hochberg method to control FDR <  0.05. We also 
found some significantly enriched GO terms of DMR-associated genes, including “positive regulation of 
excitatory postsynaptic membrane potential”, “N-methyl-D-aspartate receptor (NMDAR) clustering” and 
“positive regulation of synaptic transmission, glutamatergic”. Since brain functions depend on synergy 
of both excitatory and inhibitory signal transmission and NMDARs are one of the major subclasses of 
glutamate receptors which play pivotal roles in synaptic plasticity, brain development and various psychi-
atric and neurodegenerative diseases36, these results suggest that MeSiC also enables to comprehensively 
detect the brain-related differences of DNA methylation levels between BGM and H1 cell line.

In this study, we considered 5 mC levels rather than BS-seq values as the actual DNA methylation lev-
els to train the models (termed 5 mC-model). In order to explore whether the hydroxymethylation cor-
rection is useful for the MeSiC method, we also used BS-seq values to train models (termed BS-model) 
in the H1 cell line. We calculated the concordances and PCCs of BS-model predictions and 5 mC-model 
predictions relative to actual 5 mC levels. Overall, the concordances and PCCs of 5 mC-model predictions 
were higher than those of BS-model predictions for almost all eight genomic elements (Supplementary 
Figure 2). The average concordance and PCC were 0.862 and 0.737 for BS-model, and 0.895 and 0.753 for 
5 mC-model. These results demonstrated that 5 mC-model predictions were more consistent with actual 
5 mC levels than BS-model predictions, implicating that hydroxymethylation correction is a necessary 
step for MeSiC models. Besides, we found that subtracting TAB-seq really made methylCRF predictions 
better—the PCC increased from 0.72 (uncorrected methylCRF predictions) to 0.80 (corrected methyl-
CRF predictions) and the concordance increased from 0.89 to 0.92, also supporting that it is valid to 
subtract TAB-seq values from BS-seq values for model construction of MeSiC.

Our results showed the high consistency between MeSiC predictions and 5 mC levels. In addition, 
we found 25430 common discordant CpG sites (with absolute differences between predictions and ref-
erences > 0.25) on chromosome 1 among the H1 cell line, BGMs and NCCs (Supplementary Figure 3). 
Considering that SNPs can influence reads alignment37–39, we thus examined whether the discordant CpG 
sites showed a significant enrichment of SNPs (see supplementary information). We found the 25430 
common discordant CpG sites were significantly enriched in SNPs (Fisher exact test, p-value <  2.2e−16; 
odds ratio, 8.57), suggesting that genetic variants may be one of the potential reasons.

Together, MeSiC permits to accurately estimate DNA methylation levels at single-CpG resolution. It 
would be a good candidate for quantifying 5 mC levels for MeDIP-seq or other enrichment-based tech-
niques such as MBD-seq. We also provided a web server, which is freely available at http://biocc.hrbmu.
edu.cn/MeSiC, to estimate 5 mC levels at single-CpG resolution from MeDIP-seq data for quantitative, 
high-resolution DNA methylome analysis.

Materials and Methods
Data.  BS-seq and MeDIP-seq data of the H1 cell line, Brain Germinal Matrix cells (BGMs) and 
Neurosphere Cultured Cells Cortex Derived (NCCs), and RRBS data of the H1 cell line were obtained 
from The Human Epigenome Atlas. TAB-seq data of the H1 cell line with pileup format was obtained 
from Gary C. Hon. Infinium HumanMethylation 27 microarray data of the H1 and H9 cell line were 
downloaded from GEO datasets. Detailed information of datasets was provided in Supplementary  
Table 1.

Known genes, CpG islands (CGI), human repetitive elements, phastCons scores and HapMap SNPs 
were downloaded from the UCSC genome browser40. According to the genomic locations of CpG sites, 
we classified all CpG sites into12 genomic element-related categories according to the annotation of CGI, 
UCSC known genes and repeat sequences. These 12 categories include CGI, shore (CGI + 2 kb/− 2 kb), 

http://biocc.hrbmu.edu.cn/MeSiC
http://biocc.hrbmu.edu.cn/MeSiC
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shelf (shore + 2 kb/− 2 kb), UTR5, promoter (TSS + 2 kb/− 1 kb), exon, intron, UTR3, SINE, LINE, LTR 
and others (the remaining CpG sites).

Data preparation and quality control.  According to the description of workflow and analysis pipe-
line from Epigenomes Data analysis and Coordination Center (EDACC), reads from BS-seq, MeDIP-seq 
and RRBS data were aligned to the human genome (hg19) using Bowtie software41. Only the nonredun-
dant, uniquely mapped reads were used for subsequent analysis.

MeDIP-seq reads were extended to 200 bp (the average fragments size). For RRBS data, we calcu-
lated beta values of single CpG sites using BEDTools software42. For the HumanMethylation27 microar-
ray data, probes with p-value ≥  0.05 were removed. In addition, we mapped coordinates of CpG sites 
detected by HumanMethylation27 microarray and TAB-seq from hg18 to hg19 with UCSC genome 
browser software liftOver utility, respectively.

Generally, BS-seq is considered as the gold standard for the detection of cytosine methylation lev-
els. However, it detects signals that are mixture of 5 mC and 5-hydroxymethylcytosine (5 hmC) and 
cannot distinguish them. TAB-seq, a Tet-assisted bisulfite sequencing strategy, can accurately detect 
genome-wide 5 hmC levels at single-base resolution. To obtain actual 5 mC levels for the H1 cell line, 
we combined BS-seq and TAB-seq as described by Miao et al.43. Briefly, we calculated BS-seq value and 
TAB-seq value for each cytosine, respectively. For BS-seq, beta values were calculated by (Nc/(Nc +  Nt)), 
where Nc represents the number of “C” base as methylated from BS-seq reads and Nt represents the 
number of “T” base as unmethylated. For TAB-seq, we used (Nhc/(Nhc +  Nht)) to calculate beta value 
for each cytosine, where Nhc represents the number of “C” base as hydroxymethylated from TAB-seq 
reads and Nht represents the number of “T” base as unhydroxymethylated. Next, in order to ensure the 
validity of beta values, we limited the analysis to CpG sites with only the ≥ 4 ×  BS-seq and TAB-seq read 
coverage. Then, the binomial distribution B(N, p) was used to access false positive rates of beta values, 
where N is (Nc +  Nt) for BS-seq or (Nhc +  Nht) for TAB-seq and p is the non-conversion rate (0.5% for 
BS-seq and 2.2% for TAB-seq). Using 1% as the threshold of false discovery rate for both BS-seq and 
TAB-seq, we identified 25882669 common detected CpG sites. Finally, the 5 mC levels were calculated 
by subtracting TAB-seq values from BS-seq values for these CpG sites. The genome-wide distribution of 
5 mC levels showed significant differences from BS-seq hits (Wilcox ranked sum test, p-value <  2.2e−16; 
Supplementary Figure 4).

Besides, to compare with MeSiC, we subtracted 5 hmC levels from methylCRF predictions as the 
predicted 5 mC levels of methylCRF in the H1 cell line.

Signal- and genome-related features.  For a CpG site s, the feature region was defined as the 
region of 2 mbp around s with m-1 bp upstream and m bp downstream (m represents the half of the 
average fragment size, default =  200). For the ith base (i from 1 to 2 m) in a certain feature region, we 
calculated its MeDIP-seq signal xi. If the ith base was cytosine residue within the CpG dinucleotide, xi 
was equal to RPM value (n), otherwise xi was 0. As shown in the following equation (1), we could obtain 
400 signal features for each CpG site:

=



 ( )

x n if i base is C within CpG dinucleotide
otherwise0 1i

th

Another feature was coupling factors (cf)14 which integrated both MeDIP-seq signal and genomic infor-
mation. Here, we used cf to weight each base in the feature region by its distance to s. It would be cal-
culated as equation (2):
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where wi and ci are calculated by equations (3) and (4):
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where wi is the weight of each base within the feature region, which is between 0 and 1. And ci is 1 when 
the ith base is cytosine residue within the CpG dinucleotide, otherwise ci is 0.

In addition, three genome-related features were taken into consideration, including GC content, 
CpG density and evolutionary conservation for each feature region. GC content and CpG density were 
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calculated using ‘nucBed’ function of BEDTools and evolutionary conservation was the average phast-
Cons scores of all bases within the feature region.

In total, 404 features for each CpG site were obtained.

Generation of random forest regression model.  Random forest is an ensemble method which 
combines many classification or regression trees44. During the past decade, random forest algorithm was 
widely used in the field of bioinformatics, such as transcriptional regulation45 and drug screen46. Random 
forest can cope with a large set of correlated variables as well as complex interaction structures and it has 
already shown excellent performance without any tuning parameters47. In random forest, two methods 
are used to ensure the models to reject randomness: (i) Bootstrap aggregation, that is, each tree in the 
forest is constructed based on a set of randomly selected samples from the training cases (default to 70% 
for regression). (ii) Random Subspace Method, that is, a small group of input variables are selected at 
random, at each node to split (default to 30% for regression). The final decision is generated by majority 
voting from aggregation of the predictions of all trees.

To estimate 5 mC levels at single-CpG resolution from MeDIP-seq data, we used 404 features to build 
a random forest regression (RFR) model for each genomic element in the H1 cell line. The CpG sites 
with at least one MeDIP-seq read mapping to the feature region were retained for the following analysis. 
For the regression model of each genomic element, we randomly selected 25% of CpG sites as training 
set and the remaining CpG sites were used as test set. A forest of 500 trees was fitted on each genomic 
element to predict response variable (5 mC levels). For a CpG site shared by multiple genomic elements, 
we calculated the average of predictions as the final MeSiC prediction.

The random forest regression was implemented using the R package “randomForest” (version: 4.6–7).

References
1.	 Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).
2.	 Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature reviews. Genetics 13, 484–492, 

doi: 10.1038/nrg3230 (2012).
3.	 Umer, M. & Herceg, Z. Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxidants & 

redox signaling 18, 1972-1986, doi: 10.1089/ars.2012.4923 (2013).
4.	 Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322, doi: 

10.1038/nature08514 (2009).
5.	 Bock, C. Analysing and interpreting DNA methylation data. Nature reviews. Genetics 13, 705–719, doi: 10.1038/nrg3273 (2012).
6.	 Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 

215–219, doi: 10.1038/nature06745 (2008).
7.	 Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nature reviews. Genetics 11, 191–203, doi: 

10.1038/nrg2732 (2010).
8.	 Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nature methods 7, 

133–136, doi: 10.1038/nmeth.1414 (2010).
9.	 Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1, 177–200, doi: 10.2217/

epi.09.14 (2009).
10.	 Taiwo, O. et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nature protocols 7, 617–636, doi: 10.1038/

nprot.2012.012 (2012).
11.	 Ruike, Y., Imanaka, Y., Sato, F., Shimizu, K. & Tsujimoto, G. Genome-wide analysis of aberrant methylation in human breast 

cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC genomics 11, 137, doi: 
10.1186/1471-2164-11-137 (2010).

12.	 Xiao, Y. et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PloS one 
9, e95875, doi: 10.1371/journal.pone.0095875 (2014).

13.	 Robinson, M. D. et al. Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification 
bias, and copy number variation. Genome research 20, 1719–1729, doi: 10.1101/gr.110601.110 (2010).

14.	 Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature 
biotechnology 26, 779–785, doi: 10.1038/nbt1414 (2008).

15.	 Chavez, L. et al. Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem 
cells along the endodermal lineage. Genome Res 20, 1441–1450, doi: 10.1101/gr.110114.110 (2010).

16.	 Wilson, G. A. et al. Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers. 
GigaScience 1, 3, doi: 10.1186/2047-217X-1-3 (2012).

17.	 Pelizzola, M. et al. MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based 
on microarray derived MeDIP-enrichment. Genome research 18, 1652–1659, doi: 10.1101/gr.080721.108 (2008).

18.	 Stevens, M. et al. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction 
enzyme sequencing methods. Genome research 23, 1541–1553, doi: 10.1101/gr.152231.112 (2013).

19.	 Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–29, doi: 10.1016/j.
ygeno.2011.07.007 (2011).

20.	 Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature genetics 38, 1378–1385, doi: 10.1038/
ng1909 (2006).

21.	 Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the 
human genome. Genome research 20, 883–889, doi: 10.1101/gr.104695.109 (2010).

22.	 Gregory, S. G. et al. The DNA sequence and biological annotation of human chromosome 1. Nature 441, 315–321, doi: 10.1038/
nature04727 (2006).

23.	 Harris, R. A. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic 
epigenetic modifications. Nature biotechnology 28, 1097–1105, doi: 10.1038/nbt.1682 (2010).

24.	 Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. 
Nature genetics 19, 219–220, doi: 10.1038/890 (1998).

25.	 Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28, 1106–1114, 
doi: 10.1038/nbt.1681 (2010).



www.nature.com/scientificreports/

1 2Scientific Reports | 5:14699 | DOI: 10.1038/srep14699

26.	 Krueger, F., Kreck, B., Franke, A. & Andrews, S. R. DNA methylome analysis using short bisulfite sequencing data. Nature 
methods 9, 145–151, doi: 10.1038/nmeth.1828 (2012).

27.	 Chen, P. Y., Feng, S., Joo, J. W., Jacobsen, S. E. & Pellegrini, M. A comparative analysis of DNA methylation across human 
embryonic stem cell lines. Genome biology 12, R62, doi: 10.1186/gb-2011-12-7-r62 (2011).

28.	 Han, L. et al. AJAP1 is dysregulated at an early stage of gliomagenesis and suppresses invasion through cytoskeleton reorganization. 
CNS neuroscience & therapeutics 20, 429–437, doi: 10.1111/cns.12232 (2014).

29.	 Lin, N. et al. Deletion or epigenetic silencing of AJAP1 on 1p36 in glioblastoma. Molecular cancer research: MCR 10, 208–217, 
doi: 10.1158/1541-7786.MCR-10-0109 (2012).

30.	 Wong, R. C. et al. L1TD1 is a marker for undifferentiated human embryonic stem cells. PloS one 6, e19355, doi: 10.1371/journal.
pone.0019355 (2011).

31.	 McLaughlin, R. N. Jr. et al. Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual 
role in genome defense and pluripotency. PLoS genetics 10, e1004531, doi: 10.1371/journal.pgen.1004531 (2014).

32.	 Narva, E. et al. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-
renewal and cancer cell proliferation. Stem cells 30, 452–460, doi: 10.1002/stem.1013 (2012).

33.	 Yoshizawa, A. et al. Zebrafish Dmrta2 regulates neurogenesis in the telencephalon. Genes to cells: devoted to molecular & cellular 
mechanisms 16, 1097–1109, doi: 10.1111/j.1365-2443.2011.01555.x (2011).

34.	 Konno, D. et al. The mammalian DM domain transcription factor Dmrta2 is required for early embryonic development of the 
cerebral cortex. PloS one 7, e46577, doi: 10.1371/journal.pone.0046577 (2012).

35.	 Lou, S. et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body 
methylation in transcriptional regulation. Genome Biol 15, 408, doi: 10.1186/s13059-014-0408-0 (2014).

36.	 Musazzi, L., Treccani, G., Mallei, A. & Popoli, M. The action of antidepressants on the glutamate system: regulation of glutamate 
release and glutamate receptors. Biol Psychiatry 73, 1180–1188, doi: 10.1016/j.biopsych.2012.11.009 (2013).

37.	 Day, D. S., Luquette, L. J., Park, P. J. & Kharchenko, P. V. Estimating enrichment of repetitive elements from high-throughput 
sequence data. Genome Biol 11, R69, doi: 10.1186/gb-2010-11-6-r69 (2010).

38.	 Ji, Y. et al. BM-map: Bayesian mapping of multireads for next-generation sequencing data. Biometrics 67, 1215–1224, doi: 
10.1111/j.1541-0420.2011.01605.x (2011).

39.	 Tonner, P., Srinivasasainagendra, V., Zhang, S. & Zhi, D. Detecting transcription of ribosomal protein pseudogenes in diverse 
human tissues from RNA-seq data. BMC Genomics 13, 412, doi: 10.1186/1471-2164-13-412 (2012).

40.	 Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic acids research 31, 51–54 (2003).
41.	 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the 

human genome. Genome biology 10, R25, doi: 10.1186/gb-2009-10-3-r25 (2009).
42.	 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842, 

doi: 10.1093/bioinformatics/btq033 (2010).
43.	 Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380, doi: 10.1016/j.

cell.2012.04.027 (2012).
44.	 Breiman, L. Random forests. Mach Learn 45, 5–32, doi: 10.1023/A:1010933404324 (2001).
45.	 Cheng, C. et al. Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome 

research 22, 1658–1667, doi: 10.1101/gr.136838.111 (2012).
46.	 Riddick, G. et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27, 220–224, doi: 10.1093/

bioinformatics/btq628 (2011).
47.	 Konig, I. R. et al. Practical experiences on the necessity of external validation. Statistics in medicine 26, 5499–5511, doi: 10.1002/

Sim.3069 (2007).

Acknowledgement
The authors wish to thank Gary C. Hon for providing TAB-seq data and helpful advice. This work 
was supported in part by the National High Technology Research and Development Program of China 
[863 Program, Grant Nos. 2014AA021102], the National Program on Key Basic Research Project [973 
Program, Grant Nos. 2014CB910504], the National Natural Science Foundation of China [Grant Nos. 
91439117, 61473106, 61170154, 31200997], the National Science Foundation of Heilongjiang Province 
(Grant Nos. C201207), Wu lien-teh youth science fund project of Harbin medical university [Grant Nos. 
WLD-QN1407], and Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), 
Ministry of Education.

Author Contributions
H.Z., L.L., T.L., H.Z., H.F., Y.Z. and B.P. collected and assessed the DNA methylation data. G.Z. developed 
the web interface. Y.X., F.Y. and L.P. contributed to writing the manuscript. X.L., Y.X., F.Y. and L.P. 
conceived the idea, coordinated the project and contributed to writing the manuscript. All authors 
reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Xiao, Y. et al. MeSiC: A Model-Based Method for Estimating 5mC Levels at 
Single-CpG Resolution from MeDIP-seq. Sci. Rep. 5, 14699; doi: 10.1038/srep14699 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	MeSiC: A Model-Based Method for Estimating 5 mC Levels at Single-CpG Resolution from MeDIP-seq

	Results

	Characterization of CpG density-dependent bias in MeDIP-seq data. 
	Construction and validation of MeSiC models. 
	Robust performance of MeSiC. 
	Benchmarking against diverse types of data. 
	Validation with different platforms. 
	Validation with additional samples. 

	Comparison with other methods. 

	Discussion

	Materials and Methods

	Data. 
	Data preparation and quality control. 
	Signal- and genome-related features. 
	Generation of random forest regression model. 

	Acknowledgement

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ CpG density-dependent bias in MeDIP-seq data.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The different distributions of 5 mC levels at different genomic elements.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ MeSiC enabled to accurately predict 5 mC levels.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Robust performance of MeSiC.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Validation of MeSiC predictions with diverse data.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Comparison of the performance of MeSiC with MEDIPS and methylCRF.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Genome browser views of DNA methylation levels of three gene-related regions in BGMs and the H1 cell line.



 
    
       
          application/pdf
          
             
                MeSiC: A Model-Based Method for Estimating 5 mC Levels at Single-CpG Resolution from MeDIP-seq
            
         
          
             
                srep ,  (2015). doi:10.1038/srep14699
            
         
          
             
                Yun Xiao
                Fulong Yu
                Lin Pang
                Hongying Zhao
                Ling Liu
                Guanxiong Zhang
                Tingting Liu
                Hongyi Zhang
                Huihui Fan
                Yan Zhang
                Bo Pang
                Xia Li
            
         
          doi:10.1038/srep14699
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep14699
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep14699
            
         
      
       
          
          
          
             
                doi:10.1038/srep14699
            
         
          
             
                srep ,  (2015). doi:10.1038/srep14699
            
         
          
          
      
       
       
          True
      
   




