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Abstract: Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used
thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents
near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of
soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated
soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased
risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes,
incomplete combustion can lead to the production of organic pollutants that can adsorb to the
surface of PM. Recent studies have demonstrated that their interaction with metal centers can
lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to
produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as
Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air
PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature,
thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around
Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation
and its environmental significance. Furthermore, we will address the lack of methodologies for
specifically addressing its risk assessment and challenges associated with regulating this new,
emerging contaminant.
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1. Introduction

Residents near Superfund sites are exposed to fine and ultrafine particles through a variety of
routes, including inhalation of windblown dust, ingestion of soil and sediments, and inhalation of
emissions from the on-site thermal treatment of contaminants. Since the particles may originate from
sites contaminated with hazardous substances, they may also be contaminated. While windblown
dust and soils contain a large fraction of coarse particles, designated by the US-EPA as PM10 (particles
with a diameter of less than 10 microns), they also contain fine particles, or PM2.5 (with a diameter
of <2.5 microns), and ultrafine or nanoparticles, PM0.1 (diameter of <0.1 microns or <100 nm).
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With publication of epidemiological data since 1990 linking exposure to PM2.5 with cardiopulmonary
diseases, the impact of PM2.5 and PM0.1 on human health has become a major environmental issue [1–3].

In general, the emission of organic pollutants during thermal treatment processes results from
poor mixing of gasses and formation of oxygen-starved pockets in various areas of the flame, including
the post flame and cool zones of the thermal treatment process. Combustion and/or oxidation are
incomplete in these areas, resulting in the formation of so-called “products of incomplete combustion”.
Semi-volatile and nonvolatile organic pollutants have long been thought to associate with particulate
matter through adsorption to the surface or within the particles’ pore system and cracks. These organic
compounds can also rapidly react with the surfaces of particles at moderately elevated temperatures
in thermal and combustion systems. It has been shown that such reactions are a major route to
the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, popularly
known as “Dioxins” [4–6]. During such reactions, the adsorbing molecules interact with metal centers,
leading to an electron transfer process and formation of surface stabilized metal-radical complexes [7,8].
Upon emission with particulate matter, such entities are resistant to further oxidation in the ambient
atmosphere, can persist in the environment for days, weeks or longer [9,10] and are thus referred
to as Environmentally Persistent Free Radicals (EPFRs). These EPFRs can be generated through
combustion of a variety of source materials and typically elicit a single broad, unstructured electron
paramagnetic resonance signal characteristic of an oxygen-centered radical, e.g., g value « 2.003 (see
Table 1) [11–14]. Indeed, recent studies have indicated the ubiquitous presence of similar radical
signatures in ambient air PM2.5 and have attributed its presence with EPFRs, similar to those formed
in thermal processes [15].

Table 1. Literature support for the formation of EPFRs formed through the combustion of
organic materials.

Source Material EPR Signal (g Value) (Free Radical) (Spins/g) Reference

Wood (fatwood, pine wood)
Coal (bituminous and anthracite) 2.0029–2.0035 2.3 ˆ 1017–1.2 ˆ 1018 [12]

Biochar (pine needles, wheat
straw and maize straw 2.0028–2.0037 1.96–30.2 ˆ 1018 [11]

DEP, GEP, woodsmoke, cigarette
tar, and airborne PM 1 2.0025–2.0040 1015–1017 [13]

TSP (Athens), Urban street dusts,
DEP, GEP 2.0036 (single, broad signal) [16]

DEP ~2.0 [17]
Polymer: PS, PVC, PE, PP, PET 2.0028–2.004 2 ˆ 1012–8 ˆ 1013 [14]

1: Collected as total suspended particulate at <0.3 µm in Athens, Greece. Samples were found
to contain trace metals, including iron, copper, zinc, vanadium, nickel, chromium and magnesium.
Abbreviations: DEP = diesel exhaust particles; GEP = gasoline exhaust particles; PS = poly(styrene);
PVC = poly(vinylchloride); PE = poly(ethylene); PP = poly(propylene); PET = poly (ethylene terephthalate),
TSP = total suspended particulates.

Early research demonstrated EPFR formation for thermal processes and combustion-derived
PM [11–14]. Though there are no data as yet for the levels of EPFRs in PM generated during the
thermal remediation of a Superfund site, soils collected in and around them have revealed the presence
of EPFRs, and these levels were 2–30-fold higher than in soils collected in areas removed from the
sites [18]. This is not unexpected, since soils at Superfund sites should contain many of the same
constituents of PM derived from its thermal remediation, including transition metals and organic
pollutants. In fact, at sites shown contaminated with pentachlorophenol [18,19] and PAHs [18], analysis
of collected soils using electron paramagnetic resonance revealed EPFRs of similar characteristics as
that generated by the combustion of similar hydrocarbons [20]. While combustion processes involved
in thermal remediation produce vast quantities of EPFRs with reaction times of seconds, in soils,
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similar EPFRs are likely formed, albeit at reaction times on the order of years rather than seconds.
The ability to form EPFRs in ambient conditions was further supported by their detection in tar
balls collected at the Gulf of Mexico shores of Louisiana and Florida after the Deepwater Horizon
platform oil spill [21]. On the other hand, laboratory studies have shown that low temperature thermal
treatment of contaminated soils can increase the concentration of EPFRs [22]. In this review, we will
summarize the evidence for the presence of EPFRs in a wide range of environmental matrices, e.g.,
soils, particulate matter, etc. Further, we will outline the evidence that despite a lack of risk assessment
strategies adapted for these pollutant-particle systems, EPFRs are an emerging contaminant that
deserves attention, research focus, and efforts in the development of appropriate methodologies for
real-time monitoring, risk assessment and public policy.

2. Epidemiological Studies of Hazardous Waste Incineration and Other Thermal Processes

Epidemiological data now strongly suggest an association between elevations in particulate
matter emissions and a number of cardiovascular and respiratory events. Specifically, air pollution
including PM has been shown to both exacerbate [23] and increase the onset of asthma [24–26].
In the Framingham Heart Study, short-term exposures to PM2.5, even within EPA standards
(PM2.5 < 12 µg/m3 annually), were shown associated with decreased lung function [27]. Moreover,
epidemiological data suggest a link between PM exposures and cardiovascular events and
mortality [28]. For example, results of the ESCAPE (European Study of Cohorts for Air Pollution
Effects) study revealed a 13% increase in coronary events for each 5 µg/m3 increase in annual mean
PM2.5 exposures [29]. In a population-based cohort study in Canada, incident hypertension was shown
to be associated with elevations in PM2.5, with a 13% increase in risk for every 10 µg/m3 increase
in PM2.5 levels [30]. Using Medicare program hospital admissions coupled to spatial resolution
of PM exposure data within 20 km of EPA air monitoring stations, Kloog et al. [2], showed that
admissions for respiratory and cardiovascular events, such as those related to valvular disease, stroke,
ischemic heart disease and chronic obstructive pulmonary disease, were associated with elevations in
PM2.5 exposures.

Given reports that ~40%–70% of airborne fine particles are derived from emissions from
combustion sources [31,32], it is reasonable to assume that combustion-derived PM plays a role
in epidemiological data linking PM exposures and cardiopulmonary diseases. In fact, some studies
have directly determined the contribution of combustion-derived PM in these health effects outcomes.
A notable example is the association between decreased lung function and increased prevalence of
chronic obstructive pulmonary disease (COPD) and respiratory infections reported in populations
exposed to particulates from the combustion of biomass fuels for cooking [33,34]. In another
example, the National Particle Component Toxicity (NPACT) initiative sought not only to determine
an association between PM levels and health effects, but also utilized data from the EPA’s Chemical
Speciation Network (CSN) to compare these health outcomes across putative sources of particulates [3].
Findings from this study suggested that PM2.5 derived from fossil fuel combustion was associated
with both short-term and long-term health effects. Moreover, PM2.5 originating from residual oil
combustion and traffic sources were associated with short-term health effects, while PM2.5 derived
from coal combustion was correlated with long-term health consequences [3].

As has been reviewed extensively by others, [35,36] the initiation of cardiovascular diseases such
as atherosclerosis typically results from cycles of oxidative stress and inflammation within affected
cells. Given the known relationship between certain heavy metals and their ability to initiate oxidative
stress [37], many laboratories have sought to elucidate whether the metal content of PM has a role in
exacerbating PM-related cardiovascular diseases. As an example, studies have shown elevations in
ischemic heart disease in trucking industry workers exposed chronically to particulate emissions [38],
and PM emitted from diesel engines is associated with a wide range of heavy metals [39,40].
Moreover, these exposures were associated with elevated plasma biomarkers for oxidative stress
and inflammation [41], suggesting that these factors may play a role in the biological mechanisms of
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action of these PM. In addition, plasma obtained from workers exposed to metal-rich PM, particularly
iron, exhibited elevated levels of oxidative stress markers [42]. The investigators hypothesize that the
oxidative stress condition induced by inhalation of metal-containing PM serves as a critical systemic
link between PM exposures and its associated increased risk of cardiovascular disease.

Other epidemiological and basic science research studies have revealed disparate findings with
respect to the role of metals in mediating the health effects of PM. For example, comparing biological
specimens obtained from volunteers in cities in Japan and China with comparable ambient air PM2.5

levels but dramatically different metal content, Niu et al., showed that exposures to PM2.5 containing
Ni, Cu, As, and Se produced more dramatic reductions in circulating endothelial progenitor cells but
increased levels of inflammatory cytokines and other markers [43]. On the other hand, analysis from
two large cohorts revealed no relationship between cardiovascular mortality and the levels of Cu, Fe,
K, N, S, Si, Va, Zn present in PM [44]. Conversely, in a study assessing incidences of low birth weights
in California, increased rates were associated with PM2.5 containing specific metals, such as Va, Fe, Ti,
Mn, and Cu [45]. Thus, our understanding of the role of the metal component of PM in its health risk
of exposure is incomplete. As will be explained below, elucidating its contribution to the health risk of
PM exposure may require delving beyond its behavior as an individual unit to that of its role in a more
complex pollutant-particle system. Specifically, we believe that the metal is important as an entity
necessary to form the pollutant-particle systems responsible for EPFR formation, and that different
metals impart differences in radical formation and stability in the environment and in the host.

3. The Case for Environmentally Persistent Free Radicals

Combustion of organic materials is generally known to generate free radicals due to gas phase
reactions (at 600 ˝C–1200 ˝C). These radicals evolve from the thermal dissociation/scission of chemical
bonds and the reaction of these radicals with other radicals and molecules present in the plasma
region of the flame, i.e., that which contains ionized gases. These radicals are very reactive and
short-lived, with a half-life of nano- to- milliseconds, depending on the particular species. Thus, the
discovery of EPFRs and elucidation of mechanisms for their formation [8] has created a new paradigm
for the perception of combustion-borne radicals as long-lived entities. Studies utilizing laboratory
simulations of a combustion reactor showed that in the cool-zone region, where temperatures are
100 ˝C–600 ˝C, chemicals on the surfaces of particles condense to form additional pollutants and stable
free radicals detected using Electron Paramagnetic Resonance (EPR) [46]. Recognition of the presence
of long-lived carbon-centered radicals in solid matrices such coals, chars, and soots dates back to
the 1950’s [47,48] and were associated with delocalized electrons in a polyaromatic organic polymer,
although with differing spectral characteristics (g ~2.002–2.003). Long-lived radicals in cigarette tar
exhibiting spectral characteristics similar to EPFRs were identified as semiquinone radicals [49,50].
These semiquinone radicals were shown associated with a quinone/hydroquinone redox cycle capable
of producing reactive oxygen species (ROS) [49,50] and an ability to induce DNA damage [49,51].
EPR studies conducted as early as 1982 demonstrated similar free radical species in diesel exhaust
particles [52]. Since then, numerous laboratories have demonstrated the presence of long-lived free
radicals formed in combustion products from a wide range of sources, ranging from wood, coal and
biochar, to diesel and gasoline exhaust products, to ambient PM and polymer waste products, as is
highlighted in Table 1 [11–14,17,53]. Importantly, PM2.5 examined from 5 different sites across the
country (LA, AZ, CA, NC, PA) demonstrated levels of free radicals comparable to that of cigarette
smoke—1016–1017 radicals/gram [54]. As is illustrated in Figure 1, which depicts an EPR spectrum of
ambient PM from Atlanta compared to that of cigarette tar, the spectral parameters of these persistent
free radicals, including g-values in the range of 2.0031–2.004, were similar to phenoxyl/semiquinone
radicals, and this radical could be detected in samples stored for several months.
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g-value for each spectrum. 
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These compounds can adsorb onto condensed refractory metal oxides at temperatures ranging from 
120 to 900 °C, forming particulate matter and culminating in the formation of pollutant particle 
systems that include EPFRs capable of producing ROS. In support of this claim, virtually every metal 
and organic compound observed at increased body burden downwind of incinerators has been found 
to be contained within particulate emissions from these incinerators, as are a number of known 
carcinogens and other toxic compounds [58–60]. 
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transition metal oxides can be easily reduced by a chemisorbed organic (Figure 2) [13]. Using X-ray 
spectroscopy and FTIR methodologies, as well as surrogate systems for copper-containing fly ash, it 
was demonstrated that in the post-combustion zone, organic compounds react with surface-dispersed 
CuO to generate phenolate products, while at the same time, Cu(II) is reduced to Cu(I) [61]. In the 
process of reducing the metal, a surface-associated organic free radical is formed. This research has 
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stabilizes the radical [7]. In fact, these radicals are stable for days in air at room temperature. The 
precise mechanism promoting their stabilization is not clear. We postulate that their resistance to 
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In both cases, the observed spectra is typical of an EPFR. The larger width of the tobacco tar signal is
indicative of more complex convolution due to the presence of multiple radicals. Arrows point to the
g-value for each spectrum.

4. Mechanisms for EPFR Formation

The mechanism for EPFR formation involves the chemisorption of undestroyed parent molecules,
incomplete combustion byproducts or molecules formed de novo onto freshly incepted particles,
along with metal center domains. Studies aimed at characterizing EPFR formation have shown that
incomplete combustion of carbon, carbon and chlorine, carbon and nitrogen and carbon and bromine
forms a number of products, including small hydrocarbons such as ethylene, acetylene and others,
but also benzene, phenols, and PAHs, including their chlorinated and brominated derivatives [55–57].
These compounds can adsorb onto condensed refractory metal oxides at temperatures ranging from
120 to 900 ˝C, forming particulate matter and culminating in the formation of pollutant particle systems
that include EPFRs capable of producing ROS. In support of this claim, virtually every metal and
organic compound observed at increased body burden downwind of incinerators has been found to be
contained within particulate emissions from these incinerators, as are a number of known carcinogens
and other toxic compounds [58–60].

Most aromatic compounds will chemisorb to the surface of metal-oxide-containing particulate
matter under post-combustion, cool-zone conditions (120 ˝C–400 ˝C). Chemisorption is defined as the
formation of a chemical bond between the particle and a pollutant, resulting in a new metal-pollutant
entity that will exist until a subsequent chemical reaction occurs to separate or destroy them. Many
transition metal oxides can be easily reduced by a chemisorbed organic (Figure 2) [13]. Using X-ray
spectroscopy and FTIR methodologies, as well as surrogate systems for copper-containing fly ash, it
was demonstrated that in the post-combustion zone, organic compounds react with surface-dispersed
CuO to generate phenolate products, while at the same time, Cu(II) is reduced to Cu(I) [61]. In the
process of reducing the metal, a surface-associated organic free radical is formed. This research
has revealed that the association of the free radical with the surface of the metal-containing particle
stabilizes the radical [7]. In fact, these radicals are stable for days in air at room temperature. The precise
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mechanism promoting their stabilization is not clear. We postulate that their resistance to oxidation in
air is mainly due to the electronic resonance of the radical and the distribution of the unpaired electron
over the entire molecule and extending further to the metal center.
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Figure 2. Interaction of a pollutant with a metal oxide cluster. In this representation, monochlorphenol
is chemisorbed to the surface of the particle by the elimination of a molecule of water. A 1-electron
transfer then results in Cu II reduction to Cu I and the formation of a surface-stabilized, oxygen-centered
radical. It is resonance with a carbon-centered radical(s) on the ring further stabilizes the radical.

We have now completed multiple studies indicating these EPFRs form and persist in soils from
contaminated Superfund sites, PM generated from the thermal treatment of hazardous substances
including e-wastes (unpublished data), airborne fine PM, and even e-cigarette aerosols [62]. We have
determined the conditions under which persistent free radicals are generated and can reproduce
these conditions in the laboratory to produce surrogate systems for biomedical, chemical and
physical studies.

Superfund sites, in particular, are a rich source of organics and metals that together can form
matrices containing EPFRs. As an example, it has already been shown that semiquinone radicals form
from the oxidation of PCBs [63], and PCBs are a common contaminant at Superfund sites. Moreover,
sediments and soils contaminated with pentachlorophenol in and around a Superfund wood treatment
site generated EPFRs [64]. Follow-up studies also indicated the presence of EPFRs in soil and sediment
samples from Superfund sites in Montana and Washington [18]. Thus, EPFRs can be presumed
a common species in Superfund sites nationwide.

5. EPFR-Induced Production of Reaction Oxygen Species (ROS) and Their Potential
Health Effects

As mentioned earlier, metal and organic compounds observed at increased body burden
downwind of incinerators have been found to be contained within particulate emissions generated
by these nearby incinerators [58–60]. Some have argued that although these metals are accessible for
human exposures through even non-inhalation pathways—i.e., via water, foliage, soils, etc.—levels
observed in those sources are likely more reflective of ordinary ambient air exposures [65].
Nevertheless, given that combustion-derived metals may exist as a component of an EPFR, these
metal-pollutant complexes may exhibit toxicities that are much greater than, or “more-than-additive”,
compared to that of their metal and organic components, per se. Thus, risks associated with exposure
to these combustion-derived metals may be misinterpreted.

Studies published in the last decade have suggested the EPFR’s ability to generate ROS such
as hydroxyl radical, and consequently, their ability to induce the oxidation of biomolecules in vitro
(Table 2) [17,66–68]. Early studies examined the ability of airborne PM to induce oxidative DNA
damage [13,17,53,67]. Valavanidis et al., showed than upon suspension together with H2O2, particulates
such as PM10, PM2.5, diesel and gasoline exhaust particles and wood smoke soot induced the
hydroxylation of 21-deoxyguanosine in a manner correlated with its content of both transition metals
and a free radical species detected by EPR [53]. Later that same year, though, the group reported
that these same PM were capable of producing ROS independent of exogenously added hydrogen
peroxide [13]. EPR characterization of the PM demonstrated a single, broad signal at g = 2.0036,
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indicative of a semiquinone radical. The authors argue that the broadness of the signal suggested
a group of semiquinone radicals in a polymeric matrix. Alaghmand and Blough likewise found that
suspensions of airborne PM from a variety of sources, but particularly that derived from diesel exhaust
(DEP), generated hydroxyl radical in a metal ion-dependent manner [69]. Biological electron donors
such as NADPH further stimulated hydroxyl radical production, and through experiments involving
centrifugation and filtration, they showed that hydroxyl radical formation was likely due to particle
surface reactions rather than reactions occurring in solution via solubilized PM components [69].
DiStephano et al., also found that DEP and PM collected at sites across California were capable of
generating hydroxyl radical in a manner correlated with its Cu content [70]. Similar to studies by
Alaghmand and Blough, hydroxyl radical production was further stimulated by co-incubation with
an electron donor, in this case, ascorbate [70]. In sum, these studies suggest that PM is a complex
mixture, but its ability to redox cycle to produce ROS likely derives from an interaction between its
semiquinone radical and transition metal content, presumably through Fenton-type reactions [71] on
the particle surface. The implication of the particles’ ability to produce ROS is that the particles may
have long-lasting effects in biological systems.

Table 2. Evidence for the ability of EPFRs to generate reactive oxygen species.

Source Finding References

TSP (Athens); Urban
street dusts; DEP; GEP

PM generates hydroxyl radical in aqueous suspension. Hydroxyl
radical formation was linked with redox-active metal content. [72]

Biochar Biochar contains persistent free radicals evident by EPR. Biochar
can activate H2O2 to produce hydroxyl radical. [11]

DEP; Coal fly ash
Suspensions of DEP and coal fly ash produce hydroxyl radical.
Metal ions and superoxide implicated in its production. Neither
kaolinite nor silica produce ¨ OH.

[69]

Ambient air PM
(California); DEP

In the presence of ascorbate, ambient air PM and DEP both generate
¨ OH. ¨ OH production is correlated with Cu content [70]

Abbreviations: DEP = diesel exhaust particles, GEP = gasoline exhaust particles, TSP = total suspended particulates.

Although our colleagues have observed EPFRs in all ambient air PM2.5 samples examined
to date [15,73], there are as yet no human exposure data. However, model pollutant-particle
systems have been developed to study the biological effects of EPFRs, their ROS formation and
their cytotoxicity [8]. These EPFR surrogates contain phenolic and/or chlorinated aromatic precursors
(e.g., monochlorophenol or dichlorobenzene) adsorbed onto metal oxide domains bound to a fumed
amorphous silica matrix. In in vitro studies, these EPFR surrogates were capable of generating ROS,
including superoxide and the highly reactive hydroxyl radical, with a comparable yield to ambient
air PM2.5 [64,68,74]. The measured cycle lengths for these particle systems indicate that they undergo
numerous redox cycles [68]. Our hypothesis for EPFR-induced initiation of a redox cycle within
a biological environment and their ability to generate ROS is illustrated in Figure 3. In support of this
hypothesis, absence of any one of the components of the particle system, be it the transition metal or
the organic, produced particles that generated little or no ROS, and the particles containing an EPFR
were more toxic to cells in vitro than particles lacking an EPFR [68]. While a number of laboratories
have reported that combustion-derived PM exposures elicit oxidative stress responses in both cultured
cells and rodents [10,66,75–77], our studies utilizing model particle systems demonstrate that EPFRs
produce greater levels of oxidative stress and overall toxicity compared to particles that do not contain
an EPFR and are not themselves capable of producing ROS [66,68]. Studies using EPFR surrogates
have also demonstrated their ability to induce both pulmonary and cardiovascular dysfunction in
animals. In rodent models of asthma, EPFRs increased oxidative stress, dendritic cell activation
and innate immune responses in the lungs of adult animals [78]. In neonates, EPFRs, but not size
identical particles lacking an EPFR, induced airway inflammation and hyper-responsiveness, [79] as
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well as an increased severity of influenza disease [80]. Finally, EPFR-exposed neonatal mice exhibited
an exacerbated allergic inflammation when challenged with allergen as adults [81]. With respect
to cardiovascular toxicities, EPFR-exposed rats exhibited decreased cardiac function and increased
oxidative stress at baseline, as well as after ischemia/reperfusion (I/R) injury [82]. EPFR inhalation
also prevented the heart’s ability to compensate for deficits in left ventricular function induced by
an IR injury [83]. These two findings may help to explain the association between PM exposures
and mortality due to myocardial ischemic injury. Finally, in healthy rats, EPFR inhalation reduced
left ventricular function associated with an increased oxidative stress, whereas exposures to particles
lacking an EPFR exhibited no functional deficits or oxidant injury [84]. We have not yet specifically
examined the impact of particle size on EPFR-mediated functional outcomes in animals, but given that
the surrogate EPFR systems can be synthesized at varying sizes, such experiments are possible and
likely warranted.
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Figure 3. Proposed cycle for the generation of ROS by a pollutant-CuO particle system. The process
begins when CuO is chemisorbed to the surface of the particle (Figure 2). For simplicity, in this
example, hydroquinone is shown as an example of an organic pollutant. Beginning with the structure
indicated in blue and working counter-clockwise, hydroquinone is adsorbed to the surface of the
CuO-particle system and an electron is transferred from hydroquinone to Cu(II) to generate Cu(I)
and semiquinone free radical. Following deprotonation of the other phenolic proton, an electron
is transferred from the chemisorbed-radical compound to molecular O2 to produce superoxide and
a non-radical product. Finally, the superoxide is converted to H2O2 in the presence of NADPH,
ascorbate or thiols, all in high abundance on the lung surface. The resulting H2O2 can undergo
Fenton-type reactions with the chemisorbed Cu(I) to produce¨ OH, and can regenerate Cu(II) on the
particle to complete an ROS-generating redox cycle.

In conclusion, numerous published reports establish that EPFRs induce ROS production and
biomolecule oxidation (Table 2), and several in vivo studies demonstrate that EPFRs exhibit greater
toxicity than non-EPFR PM [79,80,84]. These outcomes suggest that adequate risk assessment of PM
exposures will require a strategy for detecting EPFRs associated with PM and for estimating the
contribution of EPFRs to disease risk. Therefore, a better understanding of EPFRs, their mechanisms of
toxicity and careful risk assessment strategies for handling EPFRs appear in order.



Int. J. Environ. Res. Public Health 2016, 13, 573 9 of 17

6. Exposure Models of Toxicity—Challenges and Unresolved Questions

6.1. Particle Aggregation

It is now widely accepted that the toxicological study of nanoparticles either in vitro or in vivo
is plagued by a number of methodological challenges. For example, do the nanoparticles actually
exist as nanoparticles or as aggregated micron-sized particles? Even more important, to study their
effects in vitro and in vivo, do we prevent them from aggregating? For example, if they do indeed
aggregate, do the EPFRs interact to form new entities that themselves elicit cytotoxic properties,
and should these new entities be studied? Nevertheless, most studies typically involve dispersal
and suspension in solution with the aid of surfactants or other such agents to prevent their rapid
aggregation. We typically utilize solutions of saline containing a small amount of Tween 80 and
have found this surfactant to be relatively non-toxic to cells and not to contribute to ROS production.
One may still wonder, though, whether we should be studying the monodispersed nanoparticles or the
aggregates or even whether the use of a surfactant alters the mechanism of action of the particle system.
Nanoparticles of many types are furthermore known to reduce the accuracy of cellular cytotoxicity
measurements, as the particles typically either quench fluorescence or bind to reagents utilized in
assays [85]. Moreover, nanoparticles are known to bind to cytokines, making the accurate assessment
of cytokines through ELISA problematic [85]. Although we have found that many of these same
challenges apply to the experiments utilizing EPFR-containing PM, as will be described below, the
study of EPFR toxicity is associated with numerous other unresolved challenges over and beyond that
of other nanoparticle exposures.

6.2. Particle Storage

A critical factor that cannot be overlooked is the storage of particles. Our prior data has
shown that certain radical species associated with PM survive for months after extraction from
the environment [54]; however, some radicals are less stable (i.e., hours/minutes). Furthermore,
suspension in solution for the sake of creating monodispersed nanoparticles can result in quenching
and thus, their storage as dry particles under vacuum is important for maintaining their shelf life [8].
Thus, PM experiments conducted with less than optimal storage conditions likely culminates in EPFR
quenching prior to experimentation and may not reflect the exposure effects associated with an EPFR,
per se. Since filter systems designed to trap airborne PM typically generate only small quantities of
particles over short periods of time, extending the collection time—i.e., days to a few weeks—likely
results in the quenching of radical collected in the beginning of the collection period. Consequently, it
is hard to conceive of collecting sufficient EPFR-containing PM in a pristine condition for performing
animal studies. In our own experience, studies such as these were restricted to in vitro designs only.
Thus, it is likely that animal exposure studies conducted to date that assess the toxicity of PM collected
from biological sources poorly assess the contribution of the EPFR. Thus, risks associated with PM
exposures may be underestimated.

6.3. Use of Controls

Given that PM exposures themselves, independent of the EPFR, can elicit tissue responses such
as inflammation, design and utilization of appropriate controls is important, but is also frustratingly
difficult to achieve. Our research team has addressed a number of our experimentation issues by
developing model EPFR [8,66]. Our laboratory-generated pollutant-particle systems have certainly
overcome the issue of obtaining sufficient pristine EPFR-containing PM samples for exposing animals.
However, design of the most appropriate surrogate PM for use as a control has proven problematic.
For example, although we have sometimes utilized an EPFR surrogate system containing only
a transition metal such as Cu(II) as a control, Cu(II) is itself a known oxidant in biological systems [86].
Considering that it may be unlikely to encounter a particle in the environment that contains only
copper, and given that the Cu(II)-particle control will likely present with toxicity but with a differing
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mechanism of action, it seems unlikely that such a surrogate serves as an ideal control. One might
also utilize, for example, amorphous silica as an appropriate control having a similar particle size but
lacking an EPFR. Although a reasonable solution, silica does not contain an organic component that
together with the EPFR, may be necessary for promoting biologic effects. To date, we have attempted
to utilize a number of similar surrogate systems as controls [66,68], but despite our efforts, have yet to
identify an ideal control for biological studies.

6.4. Mixtures

PM2.5 is a complex mixture of particles, along with sulfate, nitrates, ammonium, elemental carbon,
metals, and organic carbon [87], as well as biological components such as lipopolysaccharide [88].
Epidemiological studies suggest that these components may exacerbate cardiopulmonary disease
onset or progression. For example, as reviewed by Guarnieri and Balmes [1], NOx may potentially act
as an adjuvant, such that combinations of PM and NOx interact to promote asthma symptomology
or onset. Moreover, ozone has been shown associated with allergic sensitization [89]; thus, ozone
may further exacerbate PM-induced asthma presentation. Therefore, animal experimentation should
address not only the impact of PM exposures and the role of EPFR, but also the synergistic/antagonistic
effects of EPFR-containing PM mixtures with other components of air pollution. It is possible that the
numerous components synergize to elicit an increased risk of cardiopulmonary disease that may be
underestimated from individual exposure studies.

In summary, exposure to elevated levels of combustion derived PM has been associated with
adverse cardiopulmonary events. EPFRs exist on airborne PM2.5 at concentrations that are high
compared to most organic pollutants (~1–10 µM/g). Traditional methods of analyzing PM (i.e., solvent
or alkaline extraction) result in their conversion to molecular species that may or may not contain
an EPFR [90], suggesting that EPFRs are being misidentified as molecular pollutants or worse, not
being detected at all. Thus, we believe that EPFRs represent a new paradigm for the human health
impacts of environmental PM and that risk assessment for EPFRs is timely and critical.

7. EPFRs and the Regulatory Framework

Since EPFRs are a new class of pollutant, policy makers in the U.S. have not formulated specific
regulations to address the potential public health risks. However, existing policy governing the
incineration of hazardous materials and the Clean Air Act’s standards for fine particulate matter
predict how EPFR regulation might be addressed.

7.1. Incineration of Hazardous Materials

Emissions from hazardous waste incinerators are regulated under the Clean Air Act (CAA).
The policy is implemented by the states through permitting of hazardous waste incineration operations.
Under the existing policy, states may adopt more stringent permit requirements than those required by
the CAA. The CAA is designed to protect human health and the environment from the most harmful
effects of air pollution by requiring significant reductions in the emissions of the most dangerous air
pollutants. These pollutants are known or suspected to cause serious health problems such as cancer
or birth defects, and are referred to as hazardous air pollutants (HAPs).

Under the original CAA, the Environmental Protection Agency established National Emission
Standards for Hazardous Air Pollutants (NESHAPs) for seven HAPs. The 1990 amendments to the
CAA required that the standards be based not on a specified level, but on the maximum achievable
control technology (MACT) for a category of emission sources within an industry group, such as
hazardous waste incinerators. The policy applies an environmental policy tool or instrument known
as “design standards” and requires that the regulated entity apply the technology used by the most
successful pollution-reduction firm within an industrial category.

The specific regulations for hazardous waste incinerator operators are found in the Code of
Federal Regulations, Part 264, Subpart O. (USEPA website). Permitted incineration facilities are
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required to conduct risk assessments to ensure that the incineration process does not emit materials
that may pose a public health threat. EPA sets a relatively stringent standard for hazardous waste
incinerators at 10 times more protective than the allowable limits of the same substances involved in
other permitted processes. The required risk assessment must include direct and indirect potential
pathways of human exposure. Direct pathways include inhalation and ingestion, while indirect routes
include deposition on soil and in waterways, leading to possible introduction of the material into
the food chain. Under current regulations, the estimated emissions must account for any metals,
dioxin, and other products of incomplete combustion (PICs) that may be present. There is as yet no
requirement for EPFR monitoring.

7.2. Clean Air Act (CAA) Regulation of Particulate Matter

The current version of the CAA also provides guidelines and protocols for limits on PM10 and
PM2.5, based on their physical properties as pulmonary irritants. The EPA recognizes the ability of
these coarse (PM10) and fine (PM2.5) particles to decrease lung function, aggravate existing asthma,
and induce chronic bronchitis, irregular heartbeats, and nonfatal heart attacks. All of these health
effects are based solely on the mechanical properties of particulates small enough to enter and irritate
airways and alveolar sacs. However, ultrafine particles (PM0.1) have recently been shown to cause
much more severe problems [91,92]. As a percentage of mass, these particles only make up a small
portion of the total particulate assemblage, but as a percentage of the total number of particles, the
ultrafines comprise up to 90% of the assemblage [91]. However, it is already widely appreciated
that the ultrafine particles are capable of greater penetration into lung tissues. Nevertheless, many
unknowns concerning the intersection of ultrafines and EPFRs remain. For example, it is unknown
whether EPFR concentrations are greater in ultrafines compared to PM2.5 or PM10. Moreover, given
the findings of our studies [66,68], EPFR-containing ultrafine particles present with greater toxicity
than those absent an EPFR. Thus, the contribution of EPFR cannot be overlooked in either strategies
for risk assessment or for the development of additional policies for regulating PM exposures.

What is the outlook for more specific or stringent policy guidelines in the future? Public policy
theory offers insights. Kingdon’s conceptual model of policy “agenda setting” [93] describes the
process by which issues are recognized as important enough to warrant a policy response. The first
component of the process is the “problem stream”, wherein scientific certainty concerning risks
associated with a substance is high and public sentiment supports a policy response to address the
risk. Often, a “triggering event” is necessary to convince observers that the hazard is significant and
that the regulatory status quo is not adequate. Next, policy approaches recognized as appropriate and
effective means for addressing the problem, ranging from direct command-and-control regulations
to incentive-based programs, are designed to promote best practices [94]. Finally, solutions to the
problem are typically defined largely by the responsible government agency and regulated entities
that would bear increased costs associated with new or more stringent regulation. Affected economic
interests are more likely to accept new regulation if they believe the regulations would be implemented
equitably without bias throughout the industry, and would not introduce unreasonable costs or
onerous reporting requirements [93,95]. As a result of the inherent difficulties of achieving movement
within these policy realms, many environmental concerns do not advance to the public policy agenda.

Applying this descriptive model to the case of EPFRs and PM0.1, federal funding opportunities
and recent research have increased awareness of the issues and likely risks, at least among the research
community and government agencies. However, there is significant uncertainty concerning the extent
to which the general public is subject to exposure risks. The dearth of research to date concerning the
contribution of EPFRs to PM-associated health effects, and the lack of an ability to measure EPFRs in
real-time hinder progress toward scientific certainty. As a result, the “problem stream” for EPFRs is
not well-defined, and advancement through the public policy agenda is not yet supported.
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8. Conclusions

The discussion points introduced here provide a context for the consideration of additional
research and public policy actions to address EPFRs, an important emerging contaminant. The lack of
scientific certainty concerning the extent to which EPFR’s may pose risks to public health and our lack
of an ability to measure them in real-time are major impediments to accurate risk assessments and
new guidelines to address the threat. As also outlined here, another critical need is the development of
risk assessment strategies for EPFR-containing PM, and this can only happen once substantial in vitro
and in vivo experimentation has been completed.

A feasible next step concerning EPFR’s would be to work within the existing policy framework
to promote additional monitoring, environmental sampling for EPFRs around permitted hazardous
waste incinerators, and studies aimed at mapping human exposures around these sites. This could
provide a key source of data to support more refined estimates of the location and extent of human
exposure risks associated with EPFR’s. This information along with a better understanding the science
and development of technologies that could minimize the risk of EPFR formation in the incineration
process could be implemented within the MACT program to reduce public exposure risks associated
with this emerging contaminant.
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The following abbreviations are used in the manuscript:

CAA Clean Air Act
EPFR Environmentally persistent free radical
EPR Electron paramagnetic resonance
DEP Diesel exhaust particles
GEP Gasoline exhaust particles
PE Poly(ethylene)
PET Poly (ethylene terephthalate)
PM Particulate matter
PM10 Particulate matter (diameter < 10 µm)
PM2.5 Particulate matter (diameter < 2.5 µm)
PP Poly(propylene)
PS Poly(styrene)
PVC Poly(vinylchloride)
ROS Reactive oxygen species
TSP Total suspended particulates
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