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Renal ischemia-reperfusion (I/R) injury is a common but severe scientific problem. Luteolin has great anti-inflammatory and
antioxidant effects. In this study, we studied the effect of luteolin on renal I/R injury in rats. Intragastric administration of
luteolin or saline was performed in Sprague-Dawley rats before (40mg/kg for three days) and after (one day) renal I/R
modeling. Kidney and blood samples were harvested to detect the severity of renal injury 24 hours after operation. The results
showed that luteolin-treated rats exhibited milder histomorphological changes with lower scores of renal histological lesions;
lower blood urea nitrogen and creatinine levels; lower renal malondialdehyde (MDA), 8-oxo-deoxyguanosine (8-OHdG), and
myeloperoxidase (MPO) levels; and higher superoxide dismutase (SOD) and catalase (CAT) activities in the kidney. Luteolin
attenuated the increased levels of serum and renal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, renal high
mobility group box-1 (HMGB1), and nuclear factor kappa β (NF-κB) expression levels in I/R rats. Furthermore, luteolin
treatment significantly reduced renal cell apoptosis and endoplasmic reticulum (ER) stress caused by renal I/R injury. In
conclusion, luteolin improved renal function in I/R rats by reducing oxidative stress, neutrophil infiltration, inflammation, renal
cell apoptosis, and expression of HMGB1 and NF-κB, and ER stress.

1. Introduction

Renal ischemia-reperfusion (I/R) injury is mainly induced
by surgery requiring clamping of the aorta, renovascular
surgery, shock, trauma, and renal transplantation, which
is the most frequent cause of acute kidney injury (AKI)
[1, 2]. In particular, in renal transplantation, the I/R damage
could cause graft dysfunction and rejection, resulting in
severe postoperative complications and death [3]. Despite
many efforts have been done, the pathophysiology and exact
mechanisms of I/R-induced renal injury are still not well
illustrated. Dysfunction of tubular epithelial cells, microcir-
culatory disorders, robust inflammatory reaction, loss of
endothelial integrity, activation of neutrophils, and release
of reactive oxygen species (ROS) are generally accepted path-
ologic processes that all play important roles in I/R-induced
renal injury. The methods applied for the attenuation of renal
I/R injury include various anti-inflammatory and antioxidant
drugs, endocrine hormones, erythropoietin, small interfering

RNA, and others [4]. However, various drawbacks have pre-
vented their clinical application. It is important to explore
new and effective methods to decrease renal I/R injury to
solve this problem.

Luteolin (3′,4′,5,7-tetrahydroxyflavone) is abundant in
vegetables, fruits, and plants [5]. Basic and clinical studies
show that luteolin has major biological properties, including
antioxidant, antiapoptosis, and anti-inflammation effects.
Therapeutic applications of luteolin have been reported in
some chronic inflammatory diseases, atherosclerosis, drug-
induced liver injury, diabetes, cancer treatment, antibacterial
therapy, and so forth [6]. In regard to its effect in renal dis-
eases, luteolin can protect against colistin/cisplatin-induced
nephrotoxicity, diabetic nephropathy, lipopolysaccharide-
(LPS-) induced acute renal injury, and so forth [7–9].
However, the role of luteolin treatment on I/R-induced
renal damage has not been explored. The aim of the
present study was to explore the effect and mechanism
of luteolin in reducing ROS, inflammation, apoptosis,
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and endoplasmic reticulum (ER) stress in the kidney of
rats caused by renal I/R damage.

2. Materials and Methods

2.1. Experimental Rats and Reagents. Adult male Sprague-
Dawley rats (210–250 g, Animal feeding center of Xi’an
Jiaotong University Health Science Center) were used in
the present study. The experimental rats were fed a conven-
tional and standard rat chow and clean water under a
12 h light-dark cycle. This experiment was approved by
and cared for in accordance with the ethical committee,
Xi’an Jiaotong University Health Science Center. The drug
of luteolin was purchased and from Sigma-Aldrich Co.
LLC. (Sigma-Aldrich, St Louis, MO).

2.2. Renal I/R Modeling. Intraperitoneal injection (i.p) of
chloral hydrate (10%, 250mg/kg) was used to anesthetize
the rats. After middle laparotomy, right nephrectomy was
performed first. Then, the left renal pedicle was clamped by
the microaneurysm clamp. The microaneurysm clamp was
removed 45 minutes after clamping, and the rat was moni-
tored alive. The abnormal incision was sutured in 2 layers
[10]. The rats received 1ml saline subcutaneous injection
for recovery from anesthesia and were allowed free chow
and clean water after the operation.

2.3. Experimental Groups. The rats were randomly divided
into the following three groups: (1) sham control group: after
laparotomy, the bilateral kidneys were isolated from the sur-
rounding tissues and replaced gently without resection; (2)
saline-treated I/R group (I/R group): saline was given orally
before (40mg/kg for three days) and after (40mg/kg for
one day) renal I/R experimentation; and (3) luteolin-treated
I/R group (I/R+ luteolin group): luteolin (40mg/kg/day)
was given orally before (40mg/kg for three days) and after
(40mg/kg for one day) renal I/R experimentation. The rats
(n = 6 in each group) in these experimental groups were

sacrificed 24 hours after surgery to determine the degree of
renal injury. The experimental schematic is presented in
Figure 1. Kidney and blood samples were harvested for fur-
ther detection. Serum samples were separated from blood
samples by centrifugation at 4°C and 3000×g for 15min.

2.4. Sample Collection and Renal Function Measurement.
Serum levels of blood creatinine (Cr) and urea nitrogen
(BUN) were detected as the index of renal function in the
clinical laboratory, The Second Affiliated Hospital, Xi’an
Jiaotong University. Renal tissues were removed and fixed
by 10% buffered formalin and embedded 24 hours later in
paraffin for histopathologic examination. The rest of the
kidney specimen was snap frozen by liquid nitrogen and kept
at −80°C for biochemical analyses.

2.5. Histological Study and Renal Injury Scoring. Serial sec-
tions of the paraffin-embedded kidney (5μm thickness) were
made and treated with hematoxylin and eosin (H&E) stain-
ing to assess the pathologic changes. Renal injury scores were
determined by two researchers in a blinded fashion accord-
ing to the extent of kidney injury, as previously described.
Briefly, the scoring grading was mainly based on the hem-
orrhage, tubular cell necrosis, tubular dilatation, and cyto-
plasmic vacuole formation. The grading system was shown
as the following scoring: 0 (normal kidney); 1 (0–5% injury,
minimal damage); 2 (5–25% injury, mild damage); 3 (25–
75% injury, moderate damage); and 4 (75–100% injury,
severe damage) [11].

2.6. Apoptosis Assessment. Serial sections of paraffin-
embedded kidneys (4μm thickness) were used to perform
the terminal deoxynucleotidyl transferase-mediated nick
end labeling apoptosis assay (TUNEL). 4′,6-diamidino-2-
phenylindole (DAPI) was used to label the nucleus (blue),
and TUNEL assays were performed to detect the apoptotic
renal cells (green). The results were observed using a

Day ‒3 Day ‒2 Day ‒1 Day 0

45 min

Day 1

Treatment Right nephrectomy + left renal ischemia

Left renal reperfusion Sacrifice + blood and kidney collection

Group Treatment Surgical procedures

Control group Gavage of saline (40 mg/kg) Sham operation

I/R group Gavage of saline (40 mg/kg) Renal I/R modeling

I/R + luteolin group Gavage of luteolin (40 mg/kg) Renal I/R modeling

Figure 1: The experimental schematic of the study.
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fluorescence microscope. The apoptotic cells were calculated,
as previously described [12].

2.7. Cytokine Measurement in Murine Serum and Kidney.
Serum and renal tissue levels of TNF-α, IL-1β, and IL-6 were
assessed by relevant commercial ELISA kits and performed
according to the instructions (Beyotime Biotechnology,
Shanghai, China).

2.8. Oxidative Stress Measurement in Murine Kidney. Renal
tissue homogenate (10%, w/v in saline) was prepared and
centrifuged at 4°C and 4000×g for 30min to collect the
supernatants. Malondialdehyde (MDA), 8-hydroxy-2′-deox-
yguanosine (8-OHdG), superoxide dismutase (SOD), cata-
lase (CAT), and myeloperoxidase (MPO) activities in the
supernatants were measured by using the activity assay
kits and ELISA kits according to the manufacturer’s
instructions (Nanjing Jiancheng Bioengineering Institute
and Beyotime Biotechnology).

2.9. Immunohistochemistry (IHC). For HMGB1 and NF-κB
localizations and semiquantitation, serial sections of the
paraffin-embedded kidney (4μm thickness) were mounted
onto saline-coated slides, dewaxed, rehydrated in a graded
series of alcohol, and rinsed in distilled water. The polyclonal

antibodies of HMGB1 (1 : 50) and NF-κB (1 : 100) (Biosyn-
thesis Biotechnology Co., Ltd, Beijing, China) were used.
The semiquantitative of HMGB1 and NF-κB expressions
was calculated according to the intensity and extent of IHC
staining. The intensity grading system: 0, negative; 1, weak;
2, moderate strong; and 3, strong. The extent grading system
basing on the positive cells staining: 0, negative; 1, 1%–25%;
2, 26%–50%; 3, 51%–75%; and 4, 76%–100%. The staining
score was the mean of the sum of the intensity and extent
scoring from six fields ranging from 0–12.

2.10. Western Blotting Analysis. The renal proteins were
loaded and separated on 8% polyacrylamide gel and
transferred to polyvinylidene difluoride membranes. The
membranes were blocked overnight with 5% (w/v) skimmed
milk and probed with goat anti-C/EBP homologous protein
(CHOP), 78 kDa glucose-regulated protein (GRP78), activat-
ing transcription factor 4 (ATF4), spliced X-box binding pro-
tein1 (XBP1s) (Biosynthesis Biotechnology Co., Ltd, Beijing,
China), and rabbit anti-actin antibodies at 37°C for 2.5 hours.
Subsequently, the membranes were washed and further incu-
bated with anti-rabbit or anti-goat IgG for 2 hours. The
diaminobenzidine method was used to detect positive bands.
The blots were analyzed and calculated by ImageJ software
(https://imagej.nih.gov/ij/).
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Figure 2: Luteolin treatment reduced the renal ischemia-reperfusion (I/R) injury in rats 24 hours after reperfusion. Renal tissues and blood
samples from control, I/R, and I/R + luteolin group rats were collected 24 hours after reperfusion. (a) Representative photomicrographs of
renal tissues stained by hematoxylin and eosin at 100 and 200 magnification, (b) renal injury score, (c) serum creatinine, and (d) serum
BUN were adopted to detect the protective effect of luteolin on renal I/R injury. All data are expressed as the mean± SEM, n = 6. ∗P < 0 05,
∗∗P < 0 01, and ∗∗∗∗P < 0 0001.
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2.11. Statistical Analyses. GraphPad Prism 6.0 software
(version 6.0, GraphPad Software, Inc., La Jolla, CA, USA)
was used for statistical analysis. All data were expressed and
presented as mean and standard error of mean (mean±
SEM). Statistical differences between two or multiple groups
were analyzed by Student’s t-test or one-way ANOVA.
Significant differences were determined by P < 0 05.

3. Results

3.1. Luteolin Treatment Was Effective in Alleviating Renal I/R
Injury. The H&E staining results showed that the kidneys
from the I/R group rats displayed hemorrhage, detachment
and swelling of the tubular epithelial cells, interstitial edema,
tubular cell casts and dilatation, and necrosis. However,
luteolin treatment decreased the impaired histopathology
and preserved the normal morphology of the kidney, show-
ing slight edema of the tubular cells and less necrosis
(Figure 2(a)). The renal injury scoring (I/R group versus
I/R+ luteolin group, 3.625± 0.2631 versus 2.375± 0.3750,
P = 0 0163, Figure 2(b)) showed that luteolin treatment

could significantly decrease the renal I/R injury, which was
consistent with the H&E results.

3.2. Luteolin Treatment Was Effective in Improving Renal
Function. Both the Cr and BUN were significantly increased
24 hours after the renal I/R operation in the I/R group
when compared with the control group (I/R group versus
control group, Cr: 70.67± 2.712 versus 19.33± 2.246μmol/L,
P < 0 0001; I/R group versus control group, BUN: 29.31±
1.832 versus 5.700± 0.4868mmol/L, P < 0 0001). Luteolin
treatment resulted in significantly reduced serum levels of
Cr and BUN (I/R group versus I/R+ luteolin group, Cr:
55.87± 4.545 versus 70.67± 2.712μmol/L, P = 0 0189; I/R
group versus I/R+ luteolin group, BUN: 17.14± 1.463 versus
29.31± 1.832mmol/L, P = 0 0058) at 24 hours after reperfu-
sion (Figures 2(c) and 2(d)).

3.3. Luteolin Treatment Was Effective in Inhibiting Oxidative
Stress and Improving the Antioxidant Enzymatic Activities. A
balance between promoting and suppressing oxidative stress
is associated with I/R-induced renal injury. Oxidant stress
was assessed by detecting the MDA and 8-OHdG levels in
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Figure 3: Luteolin treatment attenuated oxidative stress and increased antioxidant ability in rats 24 hours after reperfusion. Renal tissues
from control, I/R, and I/R + luteolin group rats were collected 24 hours after reperfusion. Markers of oxidative stress including (a) MDA
and (b) 8-OHdG and markers of antioxidant ability including (c) SOD and (d) CAT were detected using the activity assay and ELISA kits.
All data are expressed as the mean± SEM, n = 6. ∗P < 0 05, ∗∗P < 0 01, ∗∗∗P < 0 001, and ∗∗∗∗P < 0 0001.
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the kidney 24 hours after experimentation. The treatment of
luteolin could significantly decrease the renal MDA and 8-
OHdG levels in comparison to saline treatment in the I/R
group (Figures 3(a) and 3(b)). Luteolin treatment signifi-
cantly improved the SOD and CAT activities compared with
the I/R group (Figures 3(c) and 3(d)).

3.4. Luteolin Treatment Was Effective in Inhibiting
Neutrophil Infiltration. The MPO activity was measured
24 hours after the experiment to reflect the neutrophil
infiltration and accumulation in the kidney. When com-
pared with saline treatment in the I/R group, luteolin
treatment significantly decreased the MPO activity and
neutrophil infiltration (Figure 4).

3.5. Luteolin Treatment Was Effective in Inhibiting
Inflammation. The serum and renal levels of TNF-α, IL-1β,
and IL-6 were significantly elevated after renal ischemia
compared with the control group. However, luteolin treat-
ment could significantly decrease both the serum and
renal levels of TNF-α, IL-1β, and IL-6 in comparison to
the I/R group (Figure 5).

3.6. Luteolin Treatment Was Effective in Inhibiting NF-κB
and HMGB1 Expressions. The inflammation associated pro-
teins HMGB1 and NF-κB were detected by IHC staining.
The results showed that HMGB1 and NF-κB staining in the
kidney were significantly increased after the I/R operation.
However, luteolin treatment could significantly decrease
the HMGB1 and NF-κB staining (Figure 6(a)). For semi-
quantification, the positive staining cells and intensity were
assessed. IHC scoring of HMGB1 was higher in the I/R kid-
ney (I/R group: 8.857± 0.5948) when compared with the
luteolin-treated rats (I/R + luteolin group: 6.429± 0.8123) or
control group (control group: 0.6000± 0.2449). The immu-
nostaining of NF-κB was also significantly higher in the
saline-treated kidneys (I/R group: 9.571± 0.5714) compared
with the luteolin-treated kidneys (I/R+ luteolin group:

6.857± 0.5948) and nonischemic controls (control group:
0.5000± 0.2887) (Figure 6(b)).

3.7. Luteolin Treatment Was Effective in Inhibiting Renal Cell
Apoptosis. Kidneys from the I/R group showed major posi-
tive TUNEL staining, predominantly in the cortex and outer
medulla. At 24 hours after experimentation, luteolin treat-
ment had a significant effect on renal cell apoptosis. Kidneys
from the luteolin-treated group had less TUNEL-positive
staining (Figure 7(a)). The semiquantitation of TUNEL
staining showed that the count of TUNEL-positive cells was
remarkably reduced in the luteolin-treated group in compar-
ison to the I/R rats after 24 hours of reperfusion (Figure 7(b)).

3.8. Luteolin Treatment Was Effective in Inhibiting ER Stress.
Endoplasmic reticulum (ER) stress played an important role
in the development of renal I/R injury. We tested the ER
stress in the renal tissues by Western blot. Kidneys from
the I/R group displayed high expression levels of CHOP,
GRP78, XBP-1s, and ATF-4 when compared with the con-
trol and I/R+ luteolin group. However, treatment with
luteolin could significantly decrease the expression levels
(Figure 8(a)). The relative band intensities of these proteins
were calculated and the scoring showed the same results with
the blotting (Figure 8(b)).

4. Discussion

Treatment and mechanism-related studies of ischemia-
reperfusion-induced renal injury remain popular in the
development of kidney-related surgery and transplantation.
The results of the present study showed that luteolin could
reverse the renal dysfunction, histological damages of renal
injury, oxidative stress, neutrophil accumulation, inflamma-
tory reaction, apoptosis, and endoplasmic reticulum stress
during renal I/R injury in rats. It could be concluded that
anti-inflammation, antioxidative stress, antiapoptosis, and
antiendoplasmic reticulum stress functions of luteolin might
play key roles in mitigating the renal I/R injury (Figure 9).

Because of its special architectural features, the kidney
is extremely sensitive to anoxia, which makes it vulnerable
to hypoxic injury. Oxidative stress is considered the key
step in the initiation and development of renal I/R injury
[13]. For example, severe oxidative stress can make renal
transplantation grafts very prone to acute and chronic rejec-
tion [14]. ROS are initially triggered by dysfunction of the
mitochondrial respiratory chain in the ischemia phase and
magnified in the reperfusion phase, which can cause cell
death by directly impairing DNA, proteins, and lipids [15].
Enzymatic and nonenzymatic systems are the endogenous
defenses for ROS [16]. However, excessive ROS production
and reduction of antioxidant capacity results in the deteriora-
tion of I/R-induced renal injury [17]. MDA (bioproducts of
lipid peroxidation) and 8-OHdG (bioproducts of oxidative
DNA damage) are the classical indicators of oxidative stress.
SOD and CAT, the endogenous antioxidants, are indirect
markers of the ability of free radical generation. They are
the “negative and positive” markers of the levels of oxidative
stress [18]. Our study showed that luteolin significantly
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and I/R + luteolin group rats were collected 24 hours after
reperfusion. A marker of neutrophil infiltration (MPO) was
measured using the activity assay kits. All data are expressed as
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reduced the MDA and 8-OHdG levels and increased the
SOD and TAC activities after renal I/R injury. Luteolin treat-
ment might reduce the oxidative stress, increase the antioxi-
dant capacity, and then decrease subsequent renal injury.
Previous studies have showed that luteolin has great antioxi-
dant effects. Yu et al. found that luteolin could decrease MDA
levels and increase SOD levels in myocardial I/R injury [19].

Luteolin also exerted antioxidant abilities in acetaminophen-
induced liver injury, cancer development, d-galactose-
induced renal damage, and so forth [20–22].

Polymorphonuclear neutrophil infiltration is characteris-
tic of acute injury induced by tissue ischemia-reperfusion,
drug toxicity, shock, and so forth [23]. The migration and
activation of neutrophils in the ischemic kidney will release
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Figure 5: Luteolin treatment inhibited inflammation in rats 24 hours after reperfusion. Renal tissues from control, I/R, and I/R + luteolin
group rats were collected 24 hours after reperfusion. Proinflammatory cytokines including (a) TNF-α, (b) IL-1β, and (c) IL-6 were
detected by ELISA kits. All data are expressed as the mean± SEM, n = 6. ∗P < 0 05, ∗∗P < 0 01, ∗∗∗P < 0 001, and ∗∗∗∗P < 0 0001.
ns: no significance.
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Figure 6: Luteolin treatment inhibited HMGB1 and NF-κB expression in rats 24 hours after reperfusion. Renal tissues from control, I/R, and
I/R + luteolin group rats were collected and subjected to immunohistochemical staining (IHC) 24 hours after reperfusion. (a) Representative
photographs of HMGB1 and NF-κB expression levels in the renal tissues (original magnifications, ×200); (b) the IHC scoring was calculated.
All data are expressed as the mean± SEM, n = 6. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗∗P < 0 0001.
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ROS, MPO, inflammatory factors, and so forth which can
promote and exacerbate the renal injury [24]. Linas et al.
showed that activated neutrophils could significantly aggra-
vate the renal I/R injury [25]. The results of the present study
showed that luteolin treatment could significantly inhibit

tissue neutrophil infiltration and MPO activity and protect
the tissue against I/R injury. This was not the first discovery
that luteolin could inhibit neutrophil infiltration. Kuo et al.
found that luteolin suppressed infiltration of neutrophils
and activation of MPO activity in mice with endotoxin-
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Figure 7: Luteolin treatment inhibited renal cell apoptosis in rats 24 hours after reperfusion. Renal tissues from control, I/R, and I/R + luteolin
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Figure 8: Luteolin treatment suppressed endoplasmic reticulum (ER) stress in rats 24 hours after reperfusion. Renal tissues of control, I/R,
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n = 6. ∗P < 0 05, ∗∗P < 0 01, ∗∗∗P < 0 001, and ∗∗∗∗P < 0 0001.
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induced acute lung injury [26]. Domitrovic et al. also discov-
ered that luteolin could decrease the MPO activity in CCL4-
induced hepatotoxicity in mice [27]. The inhibition of ROS
production by luteolin might contribute to reduce neutrophil
infiltration because of the close relationship between neutro-
phil activation and ROS production.

The inflammatory response is an important pathophysi-
ological process in I/R-induced renal injury [4]. Neutrophil
infiltration, ROS production, and tubular epithelial cell acti-
vation all can trigger and exaggerate the inflammatory cas-
cade through the innate and adaptive immune systems. In
turn, proinflammatory cytokines, including TNF-α, IL-1β,
and IL-6, can promote the localized tissue injury to remote
injury through the neutrophil activation and infiltration
[28]. The TNF-α, IL-1β, and IL-6 levels were increased in
renal I/R injury in the majority of studies. TNF-α is the
upstream molecule of the inflammatory cascade, which can
initiate the upregulation of cytokines and chemokines. IL-
1β and IL-6 are the downstream molecules in the inflamma-
tory cascade, which can directly impair the renal cell [29].
HMGB1 is a proinflammatory cytokine that exerts its actions
mainly through the receptors for RAGE and through TLRs
[30]. Wu et al. found that endogenous HMGB1 contributed
to renal I/R injury, and the administration of recombinant
HMGB1 could provide significant protection [31, 32]. In
turn, the augmentation of inflammatory responses by releas-
ing cytokines can be regulated by NF-κB, which is also an
important therapeutic target [33]. In the study, the renal tis-
sue levels of TNF-α, IL-1β, and IL-6 were significantly
increased in renal I/R injury. However, luteolin treatment
could decrease these cytokines to protect the kidney against
I/R-induced renal injury. Moreover, the immunohistochem-
ical staining results showed that luteolin treatment could also

decrease the expression levels of NF-κB and HMGB1. Luteo-
lin has anti-inflammatory effects that involve the activation
of the antioxidative enzyme system, the suppression of NF-
κB, and the inhibition of proinflammatory cytokine release.
Seelinger et al. showed that TNF-α, IL-1β, IL-6, and NF-κB
were all targets of luteolin [34]. Chen et al. also found that
luteolin could inhibit LPS-triggered secretion and relocation
of HMGB1 in septic diseases [35].

Evidence shows that apoptosis also contributes to renal
I/R damage [36]. The study found that luteolin adminis-
tration significantly decreased the TUNEL-positive cells
in the I/R rats. Our study suggested that the mitigation
of I/R-induced renal injury presented by luteolin might
involve the amelioration of apoptosis. The potential of luteo-
lin in inhibiting apoptosis has been widely explored. Yu et al.
found that luteolin could inhibit apoptosis in myocardial I/R
injury [19]. Xin et al. also found that luteolin inhibited
tubular apoptosis in lipopolysaccharide-induced acute
renal injury in mice [9].

The endoplasmic reticulum is the subcellular organelle
for protein folding and transporting, as well as for the
biosynthesis of some lipids. Insults to the ER can lead to
the accumulation of unfolded proteins in the ER and
cause ER stress [37]. The process mainly involves hypoxia
and nutritional deprivation during tissue I/R causing ER
stress. In regard to renal I/R injury, renal tissues from
patients, in vivo and in vitro experiments, showed that
ER stress plays a key role in I/R-induced renal injury
[38]. Our data suggested that inhibiting ER stress might
contribute to the effect of luteolin on I/R-induced injury.
Significant evidence has suggested that luteolin treatment
could inhibit ER stress induced by physiological and patho-
logical processes [20, 39, 40].

Renal ischemia-reperfusion challenge

Proinflammatory cytokines
TNF-�훼, IL-6, IL-1�훽

Inflammatory mediators
NF-�휅B, HMGB1

MDA, 8-OHdG
SOD, CAT

CHOP, GRP78, XBPIs, ATF4

ER stressOxidative stress

Apoptosis

Cell death Renal ischemia-reperfusion injury

Neutrophil 
infiltration
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Luteolin Luteolin

Luteolin
Luteolin
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Inhibition
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Figure 9: Schematic diagram of the protective role of luteolin in renal ischemia-reperfusion injury.
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In conclusion, the present study found that luteolin treat-
ment had protective capacity on I/R-induced renal injury in
rats. The present study indicated that luteolin protected the
kidney mainly by blocking ROS generation, inhibiting oxida-
tive stress and increasing antioxidant ability, suppressing
inflammation, decreasing cell apoptosis, and endoplasmic
reticulum stress. Further studies should be performed to ver-
ify the safety and efficacy of luteolin in clinical applications.
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