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The effects of dehydration and rehydration on brain regional density and

homogeneity are unknown and have been infrequently studied. In this

pilot self-control study, twelve participants aged 18-25 years were recruited

and the brain was scanned using magnetic resonance imaging for three

tests under different hydration statuses. In three tests, urine osmolality was

determined to assess hydration status. Test 1 was conducted after 12 h of

overnight fasting. Test 2 was conducted in a dehydration state induced by

36 h of water deprivation. Test 3 was conducted in a rehydration state,

which was induced by 1.5 L of purified water supplementation. Compared

with test 1, participants under the dehydration state in test 2 had higher

cerebrospinal fluid density (p < 0.001). Compared with test 2, participants

under the rehydration state in test 3 showed an extensive increase in gray

matter density in widespread brain regions, mainly involving the left middle

temporal gyrus, cuneus, right thalamus, left rolandic opercula, Brodmann area

39, right precentral, left postcentral gyrus, and cingulate gyrus (p < 0.001); a

higher white matter density in the temporal lobe, sub-lobar, and sub-gyral

areas; and a lower cerebrospinal fluid density (p < 0.001). The multimodal,

multiscale neuroimaging marker of the human brain connection—the regional

homogeneity (ReHo) index—was used for evaluating the connectivity of nodes

in the brain. Compared with test 1, participants in test 2 had a lower ReHo

value in the right amygdala, left occiput median, right lingual, opercula part

of right inferior frontal gyrus, and right precuneus (p < 0.01). Compared

with test 2, participants in test 3 had a higher ReHo value in the right

amygdala, right lingual, opercula part of the right inferior frontal gyrus, and

right precuneus (p < 0.01). Dehydration state increased cerebrospinal fluid
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density, decreased brain regional homogeneity. Rehydration state increased

brain gray matter and white matter density widespreadly, and increased brain

regional homogeneity.
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Introduction

Water, as an important nutrient, is essential for the survival
and development of life (1). Water plays important roles
in various physiological processes, including maintaining the
normal osmotic pressure and electrolyte balance of the body
fluid, participating in the metabolism of the body, regulating
body temperature, etc. (1). Maintaining adequate water intake is
vital in ensuring normal physiological functions (1). Insufficient
water intake has negative impacts on cognitive performance and
physical activity, and it also increases the risk of urinary and
cardiovascular diseases (2, 3). Some surveys in China about fluid
intake showed that a large proportion of adults, and middle
and primary school children did not drink the recommended
amount of water, and about a quarter were in a dehydration
state, which was judged using the standard of 24 h urine
osmolality exceeding 800 mOsm/kg (4–6). According to the
results of surveys on water intake in some other countries,
the dehydration state is also a common phenomenon due to
insufficient water intake in daily life around the world (7–9).
However, not enough attention has been paid to the importance
of water to health.

The water content of the brain reaches 75% of the brain
mass. The water content of the brain’s white and gray matter
reaches approximately 70 and 82% in brain white and gray
matter mass, respectively (1). The sensation of thirst is the
basic instinct to acquire water to maintain a normal hydration
state (24 h urine osmolality ≤ 800 mOsm/kg) (10). The
sensation of thirst is caused by increased osmotic pressure
in the internal environment (1). The hypothalamus is the
receptor and regulatory center of osmotic pressure (1). When
osmotic pressure rises, the hypothalamus first receives the
stimulation but does not produce the sensation of thirst (1).
Then, it passes through the afferent nerve to the cerebral cortex,
which triggers the sensation of thirst. In the brain, the Na(+)
concentration, plasma osmolality, and cerebrospinal fluid (CSF)
are continuously monitored to adjust body-fluid homeostasis
(11). In addition, the brain also participates in the control of
water intake behaviors (1). When the human body feels thirsty,
activations of the subfornical organ, orbitofrontal cortex, and
pregenual anterior cingulate cortex are involved in generating
a pleasant subjective sensation in response to water intake (12,
13). Thus, it is hypothesized that the brain’s structure, brain

regional density and homogeneity may be susceptible to changes
in the hydration state induced by water intake and water loss.

A few studies have explored the effects of water
intake and hydration on brain structure and function and
achieved inconsistent results. In a study in 2011, 10 healthy
adolescents were recruited, and a dehydration state (urine
osmolality > 675 mOsm/kg) was induced by a thermal exercise
protocol. The results of brain magnetic resonance imaging
(MRI) in the study showed that the blood-oxygen-level-
dependent (BOLD) response in the fronto-parietal area was
stronger under a dehydrated state (14). It is speculated that
the reason for this result was that neuronal activity was higher
when dehydrated (14). In a study in 2014, the brains of ten
healthy adult participants were scanned using MRI under
the dehydration and rehydration states. Additionally, the
dehydration state was caused by 14 h of fasting. The rehydration
state was reduced after 1.5L of water supplementation. The
results showed that the spinal cord cross-sectional area (CSA)
decreased under the dehydration state (15). In 2005, a study was
conducted among 20 healthy adults, and its results showed that
the dehydration state induced after water restriction for 16 h
led to a decrease of 0.55% in the brain’s volume. Meanwhile,
rehydration after 1.5 L of mineral water supplementation led to
an increase of 0.72% in the brain’s volume (16). In a study in
2016, the brains of 20 healthy adults were scanned with MRI
under a dehydration state after 9 h of overnight fasting and
under a rehydration state after 3L of water was consumed over
12 h (17). The results indicated that no statistical changes were
found for brain total water content and brain volume under
different hydration states (17). One more study in 2016 found
that the dehydration state induced by exercise without replacing
fluid losses reduced total brain volume among 10 sportsmen
(18). There was one study that investigated the changes in
brain structure under the dehydration state using voxel-based
morphology, and it showed that there were associations
between the decrease in gray matter (GM) and white matter
(WM) volume and the dehydrated state in various brain regions
(19). In a study conducted among nine physically active adult
participants aged 24 years old, it was found that a dehydration
state induced by exercise and heat stress with 2.8% body mass
loss decreased intracranial volume, reduced subcortical gray
matter volume, and expanded the ventricle and cerebrospinal
fluid volumes (20). In a long-term hydration experiment,
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six healthy young adults 25 years old were recruited, and a
dehydration state was induced in two days by water restriction
to 150 mL water per day (19). Related studies are few, related
studies has been summarized in Supplementary Table 1. It is
meaningful to conduct further studies to explore the effects of
the hydration state on the brain structure and functions using
the method of brain magnetic resonance imaging.

The purposes of this study are, first, to analyze the effects of
slowly progressive dehydration after 36 h of water deprivation
on brain regional density and homogeneity using the method of
MRI and, second, to explore the effects of rehydration after an
adequate amount of water supplementation on brain regional
density and homogeneity among healthy young adults in China.
The results of MRI in this study provide more evidence about the
importance of hydration. It is also meaningful to bring attention
to drinking an adequate amount of water and maintaining an
optimal hydration state.

Materials and methods

Participants

Twelve healthy male young adults were recruited from one
college in Cangzhou, China.

The inclusion criteria were as follows: the age of participants
was between 18 and 25 years; the participants were in a
healthy state. The exclusion criteria were as follows: the age
of participants were <18 years or >25 years; the participants
have a history of smoking, habitually consume a large amount
of alcohol (>20 g/day), or perform intensive physical exercise
(> 6 METs); or they have diseases of the gastrointestinal tract
or of the kidney, cognitive disorders, or other chronic and
metabolic diseases.

Sample size calculation

Based on the formula N =
[

(α+β)σd
δ

]2
, to achieve a power

(1-beta) of 0.9 with alpha = 0.05, sigma_d = 1.4 and delta = 1.17,
12 subjects were required. Here, sigma_d = 1.4 and delta = 1.17
were based on reference (17). This sample size was also
consistent with previous studies in which the sample size was
in the range of 6-20.

Ethics

The study protocol and instruments were reviewed and
approved by the Ethical Review Committee of Chinese
Nutrition Society on November 10, 2015. The code of
identification is CNS-2015-001. The study was conducted in
accordance with the guidelines of the Declaration of Helsinki.

Prior to the conduction of the study, all participants read and
signed informed consent voluntarily.

Study design and procedure

The study procedure of the self-control trial is shown in
Figure 1. During the study, volunteers were asked to not
perform vigorous-intensity physical activities (e.g., running,
race-walking, hiking uphill, etc.), to not smoke or drink alcohol,
and to not consume any kinds of caffeine-containing beverages.
All participants were monitored by research supervisors and
investigators. Three MRI tests were performed, including test
1 under baseline state, test 2 under dehydration state caused
by 36 hours of water deprivation, and test 3 under rehydration
state after water supplementation. All tests were conducted in
Cangzhou Central Hospital.

Day 1: All participants fasted overnight from 8:00 p.m. and
were told to sleep no later than 11 p.m. They were required to
not urinate until awaking on day 2.

Day 2: First, urine samples were collected at 8:00 a.m. in the
morning using a sterile urine sample accumulator and then sent
to be tested by lab technicians in the hospital. Cubital venous
blood was collected and sent to determine the blood osmolality
and blood glucose. Body measurement and blood pressure were
also conducted. Visual analog scales on thirst were conducted,
and brain magnetic resonance imaging (MRI) was performed as
baseline test 1. After test 1 under the baseline state, participants
could eat and drink. After 8:00 p.m., participants were required
to fast without any food and water for 12 h.

Day 3: Participants could not drink any fluid and lasted
for 24 h from 8:00 a.m. on day 3. Three specified solid meals
were supplied to participants by a researcher at 7:00 a.m., for
breakfast; at 12:00 a.m., for lunch; and at 5:30 p.m., for dinner.
No other food was eaten. Fluid intake from foods was assessed
using methods of weighing, duplicate portion, and laboratory
analysis. Each urine sample was collected by the participants and
then sent for evaluation of the 24 h urine volume by researchers.
The urine osmolality of each urine sample was also determined.
Participants were required to sleep no later than 11 p.m. and to
not urinate until awaking on day 4.

Day 4: At 8:00 a.m., test 2 under dehydration state, the
same procedure as test 1, was conducted on participants. Brain
magnetic resonance imaging was performed under dehydration
state caused by 36 h of water deprivation. Participants drank
1,500 mL of purified water in fifteen minutes at 8:30 a.m. and
were required to drink 500 mL every 5 min. After resting for
an hour, test 3 under rehydration state was performed. Brain
magnetic resonance imaging was performed under rehydration
state after water supplementation.

The temperature and humidity of the living environment
among participants during these days were measured and noted.
In the whole process of the study, participants who failed to meet
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FIGURE 1

Procedure of the study. H is the abbreviation for height; W is weight; BP is blood pressure; VAS is visual analog scales; MRI is magnetic
resonance imaging.

these requirements needed to let investigators know. Finally,
all participants finished the study, and no one failed to meet
the requirements.

Definition of hydration state

The standard for the dehydration state was the urine
osmolality exceeding 800 mOsm/kg (21). Optimal hydration
state was judged in accordance with the standard of urine
osmolality less than or equal to 500 mOsm/kg (22). When urine
osmolality was more than 500 mOsm/kg and less than or equal
to 800 mOsm/kg, it can be judged as the middle hydration
state (6). The rehydration state after water supplementation was
defined as a urine osmolality less than or equal to 800 mOsm/kg
(21).

Assessment of water intake from foods

Weighing, duplicate portion, and laboratory analysis
methods were used to assess water intake from foods. See (23)
for the specific steps and calculation methods.

Anthropometric measurements

Wearing light clothing and no footwear, height (H)
was measured twice with 0.1 cm accuracy and weight
(W) was measured twice with 0.1 kg accuracy by trained
investigators using a height–weight meter (HDM-300; Huaju,
Yiwu, Zhejiang, China).

Blood pressure (BP) was measured twice with 2 mmHg
accuracy by a nurse with electronic sphygmomanometer (HEM-
7051; Omrom, Dalian, Liaoning, China). Two measurements
were conducted after 2 min intervals.

BMI (Body Mass Index) = weight (kg)/height squared (m2).

Tests of urine biomarkers

Random spot urine samples were collected in disposable
urine storage bags by participants, and then, the samples were
stored at +4◦C. Starting with the second voiding on day 3
and ending with the first voiding on day 4, all urine samples
were collected as total 24 h urine volume on day 3. Urine
volume was measured with the accuracy 0.1 kg with electronic
desktop scale (YP20001; SPC; Shanghai, China). Additionally,
urine osmolality was tested using an osmotic pressure molar
concentration meter (SMC 30C; Tianhe, Tianjin, China).

Assessment of blood biomarkers

Cubital venous blood was also used to test osmolality and
glucose of blood. Blood osmolality was tested with an osmotic
pressure molar concentration meter (SMC 30C; Tianhe, Tianjin,
China). Blood glucose was tested with an automatic biochemical
analyzer (Cobas C501; Roche, Basel, Switzerland).

Assessment of subjective thirst
sensation

Visual analog scales (VAS) are a self-rated 10 cm line
designed to quantitatively measure the subjective feeling of
thirst (24). The labels “not at all” and “extremely” were anchored
at the beginning of the line and its end. Participants were
required to draw a vertical line corresponding to their degree
of thirst. The range of scores for thirst varied between 0 and 10.

Magnetic resonance imaging scans

Magnetic resonance imaging scans were administered on
a 3-teslas SIGNA HDx scanner (Discovery MR 750, General
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Electric; Milwaukee, WI). Participants laid flat on the scanning
stage. The heads of participants were placed centrally, the
mandibular was adducted, and intracranial anterior commissure
and posterior commissure (AC-PC) line were as parallel as
possible to the axial line. If necessary, the localization of head
was realigned. Participants were required to stay awake, to close
their eyes, to breathe quietly, and to plug their ears with a rubber
stopper to reduce noise interference.

Scout image: First, the scout images were acquired by
setting a sequence with parameters TE (time of echo) = 1.6 ms,
slice number = 5, slice sickness = 7 mm, FOV (field of
view) = 30 mm × 30 mm, matrix = 288 × 128, and NEX
(number of excitations) = 1.

Structural MRI: Based on the scout images, structural
MRI was performed in parallel with the AC-PC line. The
sequence of 3D BRAVO was used with parameters TR
(repetition time) = 8.2 ms, TE = 3.2 ms, slice number = 132,
slice sickness = 1.2 mm, spacing = 0, flip angle = 12◦,
FOV = 240 mm × 240 mm, matrix = 256 × 256, NEX = 1, and
bandwidth = 31.25.

Temperature and humidity

The temperature and humidity indoor and outdoor were
recorded at 10:00 a.m., 2:00 p.m., and 8:00 p.m. with a
temperature hygrometer by researchers during the experiment.

Analysis of structural MRI

Data processing of structural MRI was carried out on the
network platform of MATLAB (2012a, MathWorks, Natick,
MA, USA). VBM (voxel-based morphometry) of the T1 image
was analyzed using the neuroimaging computing software SPM8
(Statistical Parametric Mapping1) with toolboxes of VBM8 and
DARTEL. The process mainly included the following steps:
(a) correction, in which the T1 images were reoriented and
calibrated to ensure that the anterior commissure was the
origin (0,0,0); (b) segmentation, in which the T1 images after
the original point correction were segmented into GM (gray
matter), WM (white matter), and CSF (cerebrospinal fluid)
voxel fraction images; (c) template generation, in which the
group template was generated using the DARTEL method (25)
and iterated several times; (d) normalization, in which all images
of participants were spatially normalized by registration to the
Montreal Neurological Institute brain template (MNI152) and
the voxel size after registration was 1.5 mm× 1.5 mm× 1.5 mm;
and (e) smoothing, in which the smoothing kernel with 8 mm
FWHM (full-width at half maximum) was used to smooth
the registered GM, WM, and CSF images. The images for the

1 http://www.fil.ion.ucl.ac.uk/spm

location of brain regions with statistical differences between the
two groups were presented by conventional axial bitmap using
Software MRICron2 and BrainNet Viewer3.

Analysis of functional MRI in resting
state (rs-fMRI)

Data processing of fMRI was also carried out on the
platform of MATLAB. SPM8 software toolkit was used for
data preprocessing. The processing steps were as follows: (a)
the data of the first ten time points were removed to ensure
data quality and magnetic balance; (b) slice timing correction,
in which due to the protocols of fMRI acquisition, slices
in the acquisition plane were not acquired simultaneously
or sequentially and, thus, slice timing was corrected for this
temporal misalignment; (c) realignment, in which realignment
strategies were implemented by aligning each image in the
time series to the first reference image, and the subjects were
excluded if the head was translated by more than 2 mm or
rotated more than 2◦; (d) covariates, in which analyses were
performed by treating WM, CSF, and other signals that were
not related to GM as covariates; (e) normalization, in which
spatial normalization of the fMRI images was carried out for
the differences in anatomical structure, all images were spatially
normalized by registration to the MNI152 template, and the size
of the voxel after registration was 3 mm × 3 mm × 3 mm; and
(f) analysis of regional homogeneity (ReHo) was performed with
DPABI software4 (26).

Statistical analysis

SAS 9.2 (SAS Institute Inc., Cary, NC, USA) was used.
The mean and standard deviation (SD) were used to describe
the quantitative parameters; count data (hydration state) were
presented as n (percentage). The differences in brain gray matter,
brain white matter, and cerebrospinal fluid among brain areas
were calculated using SPM8software. The method of one-way
analysis of variance (ANOVA) with replicate measures was used
to compare the quantitative parameters among test 1, test 2, and
test 3. Then the obtained differential brain regions are subjected
to multiple comparison correction (FDR corrected). Finally, the
differential brain regions corrected by multiple comparison were
used as a mask for post hoc test. The significance levels were
set at 0.05 (p < 0.05, voxel cluster > = 10). The classification
data such as the distribution of hydration state were compared
using the method of Chi-square test. When the conditions were
not suitable for Chi-square test, such as the expected frequency

2 http://people.cas.sc.edu/rorden/mricron/index.html

3 https://helab.bnu.edu.cn/

4 http://rfmri.org/dpabi
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was less than 5, Fisher exact test was used for comparison and
analysis. Significance levels were set at 0.05.

Results

Participants characteristics and the
environment

All participants finished the study. The average age of
these 12 male young adults was 20.8 years, ranging from
19.2 to 23.7 years. The height, weight, BMI, and systolic
and diastolic pressures under test 1 were 176.0 ± 5.5 cm,
68.0 ± 10.9 kg, 21.9 ± 3.0 kg/m2, 114.3 mmHg, and
75.1 mmHg (Supplementary Table 2). However, there was
statistical significance in blood glucose when compared between
test 1, test 2, and test 3 (4.3 ± 0.3 vs. 4.5 ± 0.4 vs. 4.9 ± 0.2,
mmol/L; F = 11.67, p < 0.001), and blood glucose among
participants in test 2 was lower than that in test 3. The average
temperature of day 1 to 4 was 16.2◦C indoors and 20.4◦C
outside, and the humidity was 32% indoors and 33% outside.

Hydration state, thirst, and related
urine, and blood biomarkers

Among 12 participants, the average water intake from food
was 939 ± 146 ml. The 24 h urine volume of participants
was 799 ± 145 ml. The void number was 5 ± 2 on day 3
(Supplementary Table 3). The urine osmolality was 1,004± 163
(mOsm/kg). Nine participants (75%) were in the dehydration
state for the whole day (Supplementary Figure 1).

Statistically, significance was found in blood and urine
osmolality and the thirst when compared among three tests.
Compared with test 1, the urine osmolality and thirst scores
in test 2 were higher, with statistical significance (F = 32.8,
p < 0.01; F = 19.62, p = 0.001). Compared with test 2,
participants in test 3 had a lower thirst score, urine osmolality
and blood osmolality (F = 27.64, p < 0.001; F = 100.95,

p < 0.001; F = 23.31, p = 0.001). There was also statistical
significance in the distribution of hydration state in three
tests (χ2 = 31.270, p < 0.001). Compared with test 1, more
proportion of dehydration was found in test 2 (50 vs 100%).
Compared with test 2, less proportion of dehydration was found
in test 3 (100 vs 8.3%) (Table 1).

Changes of brain gray matter density in
different hydration states

Compared with test 2, participants in the rehydration state
after water supplementation in test 3 showed an extensive
increase in gray matter density in widespread brain regions,
mainly involving the left middle temporal gyrus, cuneus, right
thalamus, left rolandic opercula, Brodmann area 39, right
precentral, left postcentral gyrus, and cingulate gyrus (p< 0.001)
(Table 2 and Figure 2).

Changes in brain white matter density
in different hydration states

Compared with test 2, participants in a rehydration state
after water supplementation in test 3 had higher white
matter density in the temporal lobe, sub-lobar, and sub-gyral
(p < 0.001) (Table 3 and Figure 3).

Changes of cerebrospinal fluid in
different hydration states

Compared with test 1 for the baseline, participants in a
dehydration state after 36 hours of water deprivation in test
2 had a higher cerebrospinal fluid density (voxel = 5118;
T = −10.74; MNI coordinates: −24, −40.5,13.5; p < 0.001)
(Figure 4). Compared with test 2, participants in a rehydration
state in test 3 had a lower cerebrospinal fluid density
(voxel = 5342; T = −11.07; MNI coordinates: 6, 16.5,7.5;
p < 0.001) (Figure 5).

TABLE 1 Biomarkers related to the hydration state of participants.

Test 1 Test 2 Test 3

Blood osmolality (mOsm/kg) 304.6± 7.1 305.7± 6.4 295.3± 7.8#

Urine osmolality (mOsm/kg) 803.2± 171.7* 1123.3± 65.7 387.0± 268.3#

Thirst 3.3± 2.2 * 6.8± 2.6 1.9± 1.5#

Hydration state

Dehydration state 6 (50.0%) a 12 (100.0%) 1 (8.3%)

Optimal hydration state 0 (0.0%) 0 (0.0%) 9 (75.0%)

Middle hydration state 6 (50.0%) 0 (0.0%) 2 (16.7%)

*, Statistically significant differences between test 1 and test 2, P < 0.025. # , Statistically significant differences between test 2 and test 3, P < 0.025. a , Statistically significant differences was
found in the distribution of hydration state in three tests when compared with the method of Fisher exact test.
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TABLE 2 Differences in brain gray matter among participants in rehydration state in test 3 and participants in dehydration state in test 2.

Brain areas Voxel T P MNI coordinates

Temporal_Mid_L (aal) 249 7.25 < 0.001 −48 −16.5 −12

Lentiform Nucleus 55 7.53 < 0.001 16.5 −1.5 −6

Cuneus 1655 11.11 < 0.001 13.5 −69 1.5

Lingual_L (aal) 141 6.12 < 0.001 −13.5 −75 3

Occipital_Mid_L (aal) 117 6.28 < 0.001 −48 −67.5 1.5

Thalamus_R (aal) 413 8.17 < 0.001 9 −12 7.5

Rolandic_Oper_L (aal) 463 15.27 < 0.001 −45 −12 7.5

Precentral Gyrus 56 7.29 < 0.001 −61.5 −4.5 13.5

Transverse Temporal Gyrus 67 6.74 < 0.001 57 −21 12

Brodmann area 39 386 9.88 < 0.001 −49.5 −67.5 22.5

Frontal_Sup_Medial_L (aal) 63 8.30 < 0.001 1.5 45 24

Cuneus_L (aal) 202 6.02 < 0.001 −9 −76.5 27

Postcentral_R (aal) 54 5.55 < 0.001 64.5 1.5 30

Sub-Gyral 192 6.58 < 0.001 −31.5 −78 21

Frontal_Inf_Oper_L (aal) 21 5.35 < 0.001 −42 6 22.5

SupraMarginal_L (aal) 24 6.31 < 0.001 −52.5 −48 27

Precentral_R (aal) 412 7.34 < 0.001 45 −15 51

Postcentral_L (aal) 767 11.19 < 0.001 −43.5 −15 36

SupraMarginal_R (aal) 143 8.88 < 0.001 51 −43.5 40.5

Parietal_Inf_L (aal) 109 5.82 < 0.001 −54 −24 37.5

Cingulate Gyrus 1186 9.10 < 0.001 9 −22.5 49.5

Precuneus 39 7.64 < 0.001 −24 −63 39

Precentral_L (aal) 80 9.25 < 0.001 −46.5 0 49.5

Inferior Parietal Lobule 40 6.54 < 0.001 −42 −54 51

MNI is the abbreviation of Montreal Neurological Institute.

FIGURE 2

Regional changes on the voxel-based three-dimensional displayed brain gray matter among participants when compared with test 3 in
rehydration state and test 2 in dehydration state. Warm colors mean that the gray matter density among participants in the rehydration test was
higher than that in the dehydration test; cold colors mean that the gray matter density among participants in the rehydration test was lower
than that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of cluster >10.
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TABLE 3 Differences in brain white matter among participants in the rehydration state in test 3 and participants in the dehydration state in test 2.

Brain areas Voxel T P MNI coordinates

Midbrain 91 7.34 < 0.001 19.5 −21 −10.5

Temporal Lobe 796 8.44 < 0.001 −43.5 −43.5 7.5

Middle Occipital Gyrus 26 6.15 < 0.001 −28.5 −88.5 −3

Lingual_R (aal) 23 −6.26 < 0.001 12 −75 1.5

Corpus Callosum 143 7.91 < 0.001 4.5 28.5 1.5

Thalamus_L (aal) 10 6.09 < 0.001 −15 −22.5 3

Sub-lobar 503 9.01 < 0.001 6 −34.5 12

Sub-Gyral 390 7.14 < 0.001 −25.5 −51 13.5

Insula_R (aal) 57 5.99 < 0.001 30 21 15

MNI is the abbreviation of Montreal Neurological Institute.

FIGURE 3

Regional changes on the voxel-based three-dimensional displayed brain white matter among participants when compared with test 3 in
rehydration state and test 2 in dehydration state. Warm colors mean that the white matter density among participants in the rehydration test
was higher than that in the dehydration test; cold colors mean that the white matter density among participants in the rehydration test was
lower than that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of cluster >10.

Changes in brain homogeneity in
different hydration states

Compared with test 1 for baseline, participants in a
dehydration state after 36 hours of water deprivation in test
2 had lower ReHo values in the right amygdala, left occiput
median, right lingual, opercula part of right inferior frontal
gyrus, and right precuneus and a higher ReHo value in the right
supplementary activity area (p < 0.01) (Table 4 and Figure 6).

Compared with test 2, participants in a rehydration state
after water supplementation in test 3 had higher ReHo values in
the right amygdala, right lingual, opercula part of right inferior

frontal gyrus, and right precuneus and lower ReHo values in the
left cerebellopontine area 1 and middle frontal gyrus (p < 0.01)
(Table 5 and Figure 7).

Discussion

Currently, most studies focus on the effects of Alzheimer’s
syndrome, ischemic brain injury, epileptic encephalopathy,
and other clinical diseases on the brain’s structure and the
connectivity of brain nodes. However, studies about the effects
of hydration on brain structure and the connectivity of brain
nodes among healthy adults are scarcely reported. In the
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FIGURE 4

Regional changes on the voxel-based three-dimensional displayed brain cerebrospinal fluid among participants when compared with test 1 in
baseline hydration state and test 2 in dehydration state. Warm colors mean that the cerebrospinal fluid density among participants in the
baseline hydration test was higher than that in the dehydration test; cold colors mean that the cerebrospinal fluid density among participants in
the baseline hydration test was lower than that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of
cluster > 10.

FIGURE 5

Regional changes on the voxel-based three-dimensional displayed brain cerebrospinal fluid among participants when compared with test 3 in
rehydration state and test 2 in dehydration state. Warm colors mean that the cerebrospinal fluid density among participants in the rehydration
test was higher than that in the dehydration test; cold colors mean that the cerebrospinal fluid density among participants in the rehydration
test was lower than that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of cluster > 10.
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TABLE 4 Differences in brain regional homogeneity (ReHo) among participants in test 1 for the baseline state with participants in the dehydration
state in test 2.

Brain areas Voxel T P MNI coordinates

Amygdala_R (aal) 8 6.15 < 0.001 24 6 −15

Occipital_Mid_L (aal) 5 4.78 0.001 −39 −84 3

Lingual_R (aal) 10 5.45 < 0.001 6 −57 3

Frontal_Inf_Oper_R (aal) 7 10.42 < 0.001 57 12 6

Precuneus_R (aal) 20 5.74 < 0.001 6 −54 21

Supp_Motor_Area_R (aal) 5 −3.77 0.003 12 3 48

MNI is the abbreviation of Montreal Neurological Institute.

FIGURE 6

Regional changes on the voxel-based three-dimensional displayed brain regional homogeneity (ReHo) among participants when compared
with test 1 in baseline hydration state and test 2 in dehydration state. Warm colors mean that the ReHo value among participants in the baseline
test was higher than that in the dehydration test; cold colors mean that the ReHo value among participants in the baseline test was lower than
that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of cluster > 10.

TABLE 5 Differences in brain regional homogeneity (ReHo) among participants in test 3 for the rehydration state with participants in the
dehydration state in test 2.

Brain areas Voxel T P MNI coordinates

Cerebelum_Crus1_L (aal) 7 −5.91 < 0.001 −39 −60 −33

Amygdala_R (aal) 6 2.81 0.016 24 6 −18

Lingual_R (aal) 6 4.00 0.002 9 −54 6

Frontal_Inf_Oper_R (aal) 6 3.64 0.004 57 12 6

Precuneus_R (aal) 20 5.25 0.002 6 −51 21

Middle Frontal Gyrus 6 −3.49 0.005 39 6 51

MNI is the abbreviation of Montreal Neurological Institute.
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FIGURE 7

Regional changes on the voxel-based three-dimensional displayed brain regional homogeneity (ReHo) among participants when compared
with test 3 in rehydration state and test 2 in dehydration state. Warm colors mean that the ReHo value among participants in the rehydration
test was higher than that in the dehydration test; cold colors mean that the ReHo value among participants in the rehydration test was lower
than that in the dehydration test; p < 0.05 after false-discovery rate correction, voxel threshold of cluster > 10.

study, the effects of hydration on brain regional density and
homogeneity were measured using the method of MRI.

It was shown that dehydration increased cerebrospinal
fluid density. Rehydration caused an extensive increase in gray
matter density and white matter density in some specific brain
regions. As one indicator of the connectivity of brain nodes,
the ReHo value was also affected by the state of hydration.
In China, there have been no other studies about the effects
of hydration on the brain’s structure and the connectivity of
brain nodes. A few related studies have been conducted in
some other countries. The results of one study suggested that
dehydration induced by a 16 hour period of fluid restriction
reduced the total brain volume, and brain volume was restored
following rehydration (16). In a study conducted among sight-
active men participants, it was found that dehydration with
2.9% body mass loss induced by intermittent exercise in a warm
environment caused reductions in cerebrospinal fluid (27). In
two other related studies, the results showed that ventricular
volume changes under a hypohydration state in terms of 1.7
to 2.9% body mass loss, but brain volume did not change (28,
29). With ten trained endurance males aged 23 years old as
participants, one study found that hypohydration at 3% of body
mass loss induced by running on a treadmill reduced total brain
volume (30). In one study, MRI scans were also conducted to
explore the mechanisms of an acute dehydration state among

participants, and it was found that there was an expansion of
the ventricular system with the largest change appearance in the
left lateral ventricle, which may induce the short-term changes
of cognitive performances controlled by the brain. In another
study with the method of brain MRI scans, it was suggested
that blood-oxygen-level-dependent (BOLD) responses in the
fronto-parietal increased and lateral ventricle were enlarged in
acute dehydration induced by a thermal exercise protocol (29).
However, in a study with twenty healthy volunteers, brain MRIs
were scanned in three conditions: a baseline scan, a scan after
hydration when consuming 3L of water over 12 h, and a scan
after dehydration after overnight fasting for 9 h. Additionally,
it was found that brain volume and brain total water content
were not substantially affected (17). The ReHo value of regional
homogeneity was usually used to evaluate spontaneous neural
activity during the resting state and can be used to explore the
connectivity of brain nodes and cognitive performances (31).
One study demonstrated that changes in ReHo were correlated
with changes in cognitive performance in some circumstances
(32). The mechanism of the effects of hydration on brain
structure and the connectivity of brain nodes may be explained
by the following reasons. Dehydration is usually accompanied
by hypovolaemia, which may cause an increase in the ventricular
system volume and a reduction in brain volume (19, 28, 33, 34).
Serum osmolality induced by acute dehydration could produce
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an osmotic gradient, resulting in an increased diffusion of
intracellular water stores into extracellular space. The changes
cause shrinkage of cells, particularly astrocytes, which have a
vital role in the transport of water, and thus leads to ventricular
system expansion (19).

Adverse health effects and related symptoms of mild and
moderate dehydration in daily life often do not receive enough
attention. In this study, the changes in brain regional density and
homogeneity under different hydration states were discovered.

This study has some strengths and weaknesses. Referring
to the method of inducing dehydration, dehydration can be
induced by heat stress, fluid restriction, exercise, diuretics,
or combinations of the above methods in current studies.
However, some methods of inducing dehydration may affect
brain regional density and homogeneity, such as heat stress and
exercise. In this study, water deprivation and supplementation
were used to induce changes in hydration states among
participants, which may be more meaningful in exploring the
effects of hydration on brain structures clearly. In addition,
it is also very important to ensure the quality control during
water deprivation. The osmolality of urine during the period
of water deprivation was continuously monitored to explore
the changing trend of hydration state and to verify the
adherence of participants, which showed that the study had
restricted and high quality control. In some studies, the objective
physiological and biochemical indexes are not used to monitor
the quality control during water deprivation. In consideration
of weakness, gender differences and the effects of long-term
water intervention on brain regional density and homogeneity
were not studied. In addition, this is a pilot self-control trial
to explore the effects of dehydration and rehydration on brain
regional density and homogeneity. Randomized controlled
design studies could obtain more effective results and reveal
scientifically effects of hydration state on brain structure and
function more clearly and accurately. In this study, only brain
regional density and homogeneity was analyzed. Some other
indexed such as brain volume and blood oxygen level dependent
were not analyzed, more comprehensive indexes would be
helpful to explore the effective of hydration on brain structure
and function. Based on this pilot self-control trial, more high-
quality research and analysis can be carried out in the future.

Conclusion

In summary, dehydration state increased cerebrospinal fluid
density, decreased brain regional homogeneity. Rehydration
state increased brain gray matter and white matter density
widespreadly, and in-creased brain regional homogeneity.
Maintaining a normal hydration state through sufficient
water intake is helpful in maintaining brain regional density
and homogeneity.
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