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ABSTRACT

Nanomaterial diffusion through mucus is important to basic and applied areas of research such as drug delivery. However, it is often
challenging to interpret nanoparticle dynamics within the mucus gel due to its heterogeneous microstructure and biochemistry. In this study,
we measured the diffusion of polyethylene glycolylated nanoparticles (NPs) in human airway mucus ex vivo using multiple particle tracking
and utilized machine learning to classify diffusive vs sub-diffusive NP movement. Using mathematic models that account for the mode of
NP diffusion, we calculate the percentage of NPs that would cross the mucus barrier over time in airway mucus with varied total solids con-
centration. From this analysis, we predict rapidly diffusing NPs will cross the mucus barrier in a physiological timespan. Although less effi-
cient, sub-diffusive “hopping” motion, a characteristic of a continuous time random walk, may also enable NPs to cross the mucus barrier.
However, NPs exhibiting fractional Brownian sub-diffusion would be rapidly removed from the airways via mucociliary clearance. In sam-
ples with increased solids concentration (>5% w/v), we predict up to threefold reductions in the number of nanoparticles capable of crossing
the mucus barrier. We also apply this approach to explore diffusion and to predict the fate of influenza A virus within human mucus. We
predict only a small fraction of influenza virions will cross the mucus barrier presumably due to physical obstruction and adhesive interac-
tions with mucin-associated glycans. These results provide new tools to evaluate the extent of synthetic and viral nanoparticle penetration
through mucus in the lung and other tissues.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0091025

I. INTRODUCTION

Airway mucus acts as a natural filter to capture inhaled particu-
lates by coating lung epithelial surfaces and is a critical component of
innate defenses in the respiratory tract. Mucus is comprised of secreted
gel-forming mucins, which form into a biopolymer network with low
viscous and elastic moduli allowing for efficient transport at airway
surfaces.1 The mucus layer is continually transported by the coordi-
nated beating of cilia on airway epithelial cells, which is the primary
mechanism of removing mucus from the lungs, referred to as muco-
ciliary clearance (MCC).2 The network structure of the mucus gel ena-
bles the trapping and removal of micro- and nanoscale particles via
MCC. MCC provides our body’s first line of defense against inhaled
pathogens such as respiratory viruses.3 Similarly, MCC may also limit
the bioavailability of therapeutic nanocarriers, posing a significant
challenge in inhaled drug delivery applications.4

Whether therapeutics or pathogens, the ability of particles to
overcome the mucus barrier is dependent on the particle’s surface
chemistry, size, shape, and rigidity. Particles with a positively charged
or hydrophobic surface adhere strongly to the mucus network due to
their net negatively charged and hydrophobic domains within
mucins.1 It has been shown in previous work that mucoadhesion can
be limited by coating hydrophobic and/or charged nanoparticles
(NPs) in a layer of polyethylene glycol (PEG).5 PEG is a hydrophilic,
net-neutral polymer, which prevents hydrophobic and charge-
mediated interactions with mucins, allowing particles to move more
freely through the mucus layer. A previous study has also shown that
nanoparticles with peptide coatings having a net-neutrally charged
amino acid sequence are capable of rapid diffusion through the mucus
network.6 For pathogens like influenza, specific interactions of viral
particles with mucin glycans can potentially lead to their entrapment
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in the mucus layer.7 Depending on their dimensions, nanoscale par-
ticles may also be physically immobilized within the mucus gel when
much larger than the mucus pore size which ranges from 100 to
500nm.8 Particles that are smaller than the mesh network are likely to
diffuse at a rate that corresponds to the viscosity of the fluid-filled
pores between the network fibers.9 However, heterogeneity of the
mucus network can also lead to non-uniformity in nanoparticle diffu-
sion with more rapid movement in regions with decreased mucin den-
sity, whereas regions with increased mucin density can significantly
hinder and immobilize particles even when densely coated in PEG.2

To characterize the diffusion and transport of nanomaterials,
multiple particle tracking (MPT) analysis is a commonly used tech-
nique to directly measure the diffusion rate of individual nanoparticles
within mucus and other complex biological fluids.10 However, as a
result of the heterogeneity in the mucus gel previously noted, the type
of diffusion may vary substantially as of function of spatial position.
This complicates interpretation of MPT experiments as the ability of
nanoscale particles to navigate through the mucus barrier will be
highly dependent on the mode of diffusion. Furthermore, MPT analy-
sis is most often limited to timescales on the order of seconds whereas
nanomaterial diffusion and transport through mucus in the lung and
other mucosal tissues occur over physiological timespans over minutes
to hours.11 Thus, new analytical pipelines have been sought to connect
MPT analysis to physical models of traversal time through the mucus
barrier.12 However, these models often require generalized assump-
tions about the mode of diffusion, which are unlikely to fully capture
NP dynamics within the highly complex mucus microenvironment.

Toward this end, we combine machine learning and mathematical
models to predict the passage times of nanoparticles and viruses across
the mucus barrier. Specifically, we use a previously developed machine
learning-based analysis called MotionNet (MoNet) to classify the type of
diffusion exhibited in individual particle trajectories.13 With these classi-
fications determined, the percentage of particles able to penetrate a
mucus layer with a physiological thickness of 10lm is calculated using
diffusion mode-dependent analytical expressions.14 We applied this ana-
lytical approach to interpret trajectories of PEGylated fluorescent nano-
particles (NP) in human mucus acquired using MPT in 30 distinct
humanmucus samples. In addition, we evaluated expected passage times
for influenza in human mucus using our recently published dataset.15

The results of this work provide an approach to predict the timescales,
in which synthetic and viral nanoparticles diffuse through the mucus
layer in the airway and other mucosal tissues.

II. RESULTS
A. Predicted classification of muco-inert nanoparticles
in human mucus samples

We utilized the MoNet analysis developed in the previous work13

on experimental MPT data of 100nmNP diffusion within humanmucus
samples collected from endotracheal tubes (ETs). Using this analysis, we
considered three diffusion modes: Brownian motion (BM), fractional
Brownian motion (FBM), and continuous time random walk (CTRW).
BM is a standard model for diffusion in a Newtonian fluid (e.g., water),
where a particle undergoes a random walk, taking steps left or right with
equal probability.14 BM would most likely be reflective of free diffusion
within aqueous regions of the gel. FBM and CTRW are both sub-
diffusive models but driven through distinct processes. CTRW motion is
characterized by random jumps in time and space leading to “hopping”

NP diffusion. In FBM, NPs follow a random walk, but subsequent steps
are anti-correlated, meaning that there is a higher probability that the
next step will be in the opposite direction than the previous step.13 While
FBM ismore commonly observed in viscoelastic fluids,16 hoppingmotion
has been more recently considered as a mode of NP diffusion through
biopolymer matrices.17 Based on the MoNet analysis, we observed all
three forms of diffusion in our dataset with representative trajectories for
each type of motion shown in Fig. 1(a). A representative walkthrough of
the MoNet analysis is shown in Figs. 1(b) and 1(c) for data collected in an
individual patient sample. The MoNet analysis determines the probability
that an individual particle will exhibit one of the three types of motion
[Fig. 1(b)] and then predicts the type of motion for that individual particle
based on these probabilities [Fig. 1(c)]. Using this analysis, we found the
predominant type of NP motion in all samples tested to be FBM with a
smaller fraction of NPs exhibiting CTRW or BM [Fig. 1(d)].

B. Classification of trajectories correlates with extent
of nanoparticle confinement within mucus network

Due to inherent patient-to-patient variability in mucus proper-
ties,18–20 we compared the type of NP diffusion exhibited in individual
patient samples. Based on the measured logarithm based 10 (log10) of the
mean squared displacement (MSD) values at a lag time of 1 s
(log10[MSD1s]), a measure of diffusivity [Fig. 2(a)], we found that the dif-
fusivity varied dramatically from sample to sample with median
log10[MSD1s] spanning over �3 orders of magnitude. We utilized the
MoNet analysis on the individual trajectories of each sample and com-
pared the percent of NPs exhibiting each type of motion. We then
observed how the frequency of diffusion modes changed in individual
samples as a function of the NP confinement within the mucus network
[Fig. 2(b)]. The extent of NP confinement was estimated based on a
dimensionless parameter calculated as the ratio of the probe radius (a) to
the square root of the median MSD (MSD1/2). Interestingly, we observed
that as the NP became more confined (with a/MSD1/2 approaching or
exceeding 1)—the percent of FBM NPs increased and the percent of BM
NPs decreased. CTRW diffusion was observed least frequently in individ-
ual samples (0%–33.3%) but was observed in 20 out of 30 samples tested.

C. Prediction of anomalous diffusion exponents
and diffusion coefficients

To further investigate the correlation between the diffusion rate
of NP in mucus and the classification of motion, we compared
log10[MSD1s] values in each classification (BM, FBM, CTRW) across
all samples tested [Fig. 3(a)]. We observed significant differences in
the log10[MSD1s] values, where as expected FBM NPs have the lowest
diffusivity, BM NPs have the highest diffusivity, and diffusivity
of CTRW NPs was in an intermediate range (i.e., FBM < CTRW
<BM). Using the MoNet analysis, we generated the predicted anoma-
lous diffusion exponent (a) for each NP [Fig. 3(b)], which was, subse-
quently, used to calculate the effective diffusion coefficient (Deff) for
each NP [Fig. 3(c)]. We note a ¼ 1 for all BM NPs indicative of nor-
mal diffusion and a< 1 for FBM or CTRW NPs indicative of anoma-
lous sub-diffusion. Based on the measured MSD and a, we find
effective diffusion coefficients vary significantly between diffusion
types following the same trend as observed in the log10[MSD1s] values;
FBM NPs have the lowest effective diffusion coefficients, BM NPs
have the highest, and the CTRWNPs are in an intermediate range.
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D. Probability of muco-inert nanoparticles traversing
through the mucus barrier

Reframing these data in a physiological context, we utilized a
mathematical model developed in the previous work14 to predict
mean traversal times across the mucus layer. The median anomalous
diffusion exponents and diffusion coefficients for each type of motion
(Table I) were used to generate the survival function [Fig. 4(a)], indi-
cating which fraction of particles would remain trapped in a 10lm
mucus layer over time. Taking the inverse of the survival function, we
obtain the cumulative distribution function [Fig. 4(b)], indicating the
fraction of particles would cross through the mucus layer over time.
Of note, we predict none of the FBM particles would travel across the
mucus layer within a 10-h timespan. We predict all BM NPs would
reach the underlying cells in �30min, whereas 30%–40% of CTRW
NPs would bypass the mucus layer in the 30–60-min timeframe.

E. Variation of percent solids in human mucus effects’
particle diffusion time

The mucus barrier may also be altered as a function of the overall
solids concentration, where more concentrated mucus will likely pre-
sent a more significant barrier to effective nanoparticle drug delivery.1

To account for the potential changes to the mucus barrier because of
varied solids concentrations, ten samples were grouped based on mea-
sured percent solids [Fig. 5(a)] with 5% solids as the transition point

between low and high percent solids. The log10[MSD1s] values are
grouped by percent solids [Fig. 5(b)] and further separated by each type
of motion [Fig. 5(c)]. The a andDeff values for each type of motion were
calculated for each sample and grouped by the percent solids. The distri-
bution of Deff values for NPs exhibiting each type of motion is shown
for samples grouped by low and high percent solids [Fig. 5(d)]. Notably,
there is a significant difference between theDeff values for BM NPs with
BM NPs in high percent solids samples having lower Deff values. The
median a andDeff values for low and high percent solids (Table II) were
then used in the particle survival analysis. The resulting cumulative dis-
tribution function was used with the normalized percentage of particles
for each type of motion to calculate the percentage of particles that
would be able to cross the 10lmmucus barrier [Fig. 5(e)]. The resulting
percentages indicated that in mucus with low percent solids, a larger
fraction of BM and CTRW particles are predicted to cross the mucus
barrier in a shorter amount of time than in mucus with high percent sol-
ids. However, regardless of percent solids, the FBM NPs are not pre-
dicted to cross the mucus barrier.

F. Probability of influenza A virus particles crossing
the mucus barrier

We then applied the MoNet and particle survival analyses to a
recently published dataset for influenza A virus (IAV) particle diffu-
sion in human mucus from ten different patient donors.15 The

FIG. 1. Machine learning based analysis to
classify NP trajectories. (a) Representative
trajectories for each NP motion type; FBM,
BM, and CTRW. Trajectory color corre-
sponds to the frame of video with purple as
the first frame and yellow as the last frame.
Nanoparticle motion was captured at a
frame rate of 33.3 frames per second. (b)
and (c) Representative walk-through of
MoNet analysis with the probabilities for
each trajectory (b) and the predicted
motion (c). (d) Percent of trajectories exhib-
iting FBM, CTRW, or BM across all sam-
ples (n¼ 30 samples).
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trajectories were classified via the MoNet analysis and the percent
of the IAV particles exhibiting each type of motion are shown in
Fig. 6(a). The distribution of Deff values for the IAV is grouped by
motion type and is shown in Fig. 6(b). The median a and Deff values
for the IAV particles (Table III) were then used in the particle survival
analysis. The percentage of particles that would be able to cross the
10lm mucus barrier based on the cumulative distribution function
and the normalized percent of particles is shown in Fig. 6(c). We

FIG. 2. Patient-to-patient variation in NP
mobility and diffusion classifications. (a)
Distribution of log10[MSD1s] values for each
individual NP in each patient sample
(n¼ 30 samples). Patient samples were
ordered by decreasing median log10[MSD1s]
values. (b) Normalized percent of particles
exhibiting each type of motion in individual
patient samples (left y-axis). For comparison
on the right y-axis, a dimensionless parame-
ter is shown that reflects the extent of NP
confinement calculated as the ratio of parti-
cle radius (a) to square root of the median
MSD (�MSD). This dimensionless quantity
approaches zero for unconfined, highly diffu-
sive NP (i.e., �MSD� a). The value of this
parameter approaches or exceeds 1 for par-
ticles confined within the mucus gel network
(i.e., when �MSD � a). Whiskers are drawn
down to the fifth percentile up to the 95th
percentile, and outliers are plotted as points.

FIG. 3. NP mobility in human mucus is highly dependent on the mode of diffusion. (a) Median log10[MSD1s] values for NP exhibiting each type of motion across all patient sam-
ples (n¼ 30 samples). (b) and (c) Median predicted anomalous diffusion exponents (b) and median diffusion coefficients (c) for particles exhibiting each type of motion across
all patient samples. Line at mean and error bars represent standard deviation. Dataset statistically analyzed with one-way analysis of variance (ANOVA) and �S�ıd�ak’s multiple
comparisons test: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001.

TABLE I. Median a and Deff values across all samples.

Anomalous diffusion
exponent (a)

Diffusion coefficient
(Deff, lm

2 s�1)

FBM 0.1878 0.003 568
CTRW 0.8541 0.026 11
BM 1 0.192 5
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FIG. 4. Probability of NPs crossing the mucus barrier based on the MoNet analysis. (a) Survival function showing fraction of particles trapped in the mucus barrier layer of
10 lm thickness over time. (b) Cumulative distribution function showing the fraction of particles that cross the 10lm mucus barrier over time.

FIG. 5. Effect of the solids concentration on NP mobility and penetration through the mucus barrier. (a) Human mucus samples (n¼ 10 samples total) classified into low per-
cent solids (n¼ 4 samples) or high percent solids (n¼ 6 samples). Lines indicate mean and standard deviation. (b) and (c) Distribution of log10[MSD1s] values for NPs in
patient samples classified as having low or high percent solids (b) and NPs of classified by motion type and percent solids (c). (d) Distribution of effective diffusion coefficients
(Deff) for particles exhibiting each type of motion. (e) Percent of particles to cross the 10lm mucus barrier over time, calculated from the cumulative distribution function and
normalized percent of particles. Line at mean and error bars represents standard deviation. Dataset statistically analyzed with one-way ANOVA and �S�ıd�ak’s multiple compari-
sons test: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001.
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found only a small percentage of IAV particles are predicted to cross
the mucus barrier, all of which are classified as BM particles.

III. DISCUSSION

In this work, we examined the different types of particle motion
that NPs exhibited in human airway mucus samples collected and ana-
lyzed ex vivo. We showed that FBM is the predominant type of motion
(Fig. 1) and identified a potential link between the network structure,
quantified by extent of NP confinement, and the distribution of diffu-
sion modes observed (Fig. 2). We found clear differences in diffusivity
for each type of particle based on measured log10[MSD1s] and effective
diffusion coefficients (Fig. 3). As expected, BMNPs traverse the mucus
layer most rapidly, whereas CTRW NPs can travel through the mucus
layer given adequate time (Fig. 4). However, FBM NPs remain trapped
in the mucus layer even at longer timescales up to 3weeks (data not
shown). This suggests that for effective drug delivery, particles would
need to exhibit either BM or CTRW movement to traverse the mucus
barrier to reach the underlying airway epithelium.

We also found that the percent solids play an important role in
how quickly NPs cross the barrier, where a much larger fraction of
particles traversed through the mucus barrier with sub-5% total solids
content (Fig. 5). This could be explained by the overall density and
reduced mucus network pore size expected in mucus with high per-
cent solids (>5%), which more greatly impedes NP movement. This
observation is further corroborated by the increased percentage of

CTRW NPs and decreased percentage of BM NPs in mucus with
high percent solids. However, there was no clear correlation between
the percentage of solids in individual samples and the percentage of
particles for each classification or the Deff and a values (supplemen-
tary material Figs. 1 and 2). When considering rapidly moving BM
NPs, we find the median effective diffusion coefficients for BM NPs
are �fivefold higher at low solids concentration as compared to NPs
dispersed in mucus with high percent solids [Fig. 5(d) and Table II].
This is likely due to crowding in mucus with high percent solids as
compared to mucus with low percent solids. These findings are con-
sistent with a previous study by Markovetz et al., in which they
found that nanoparticles in human mucus exhibited restricted, sub-
diffusive motion, and particle motion restriction increased with
increased concentration of solids.20 However, we note our study did
not account for possible dehydration of airway mucus during intu-
bation, which if present may lead to altered physical properties of
samples collected.

The ramifications of these results are particularly interesting, as
previous studies have shown that the percent solids concentration of
airway mucus positively correlates with disease severity in obstructive
lung diseases such as cystic fibrosis and chronic bronchitis.21 Thus,
one would anticipate nanomedicine used in the treatment of these dis-
orders would encounter a mucus barrier with increased percent solids,
which could potentially reduce their efficacy However, at very high
percent solids, 7%–10%, the cilia compresses, causing reduced MCC,21

and this may provide a larger timeframe for NPs to successfully reach
the underlying airway epithelial cells. Through these analyses, we can
interpret experimental MPT data collected and make more accurate

TABLE II. Median a and Deff values across samples grouped by percent solids.

Anomalous diffusion
exponent (a)

Diffusion coefficient
(Deff, lm

2 s�1)

Low %
solids

High %
solids

Low %
solids

High %
solids

FBM 0.2173 0.174 0.004 806 0.002 777
CTRW 0.8614 0.8641 0.032 42 0.014 35
BM 1 1 0.293 1 0.060 79

FIG. 6. Application to influenza A virus diffusion in human mucus. (a)–(c) MoNet analysis applied to experimental data from Ref. 15. (a) Percent of IAV particles exhibiting
each type of motion (n¼ 10 samples). (b) Median effective diffusion coefficients (Deff) for IAV in human mucus classified by motion type. (c) Percent of IAV particles to cross
the 10lm mucus barrier over time, calculated from the cumulative distribution function and normalized percent of particles. Lines at mean and error bars represent standard
deviation. Dataset statistically analyzed with one-way ANOVA and �S�ıd�ak’s multiple comparisons test: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001.

TABLE III. Median a and Deff values for IAV in human mucus.

Anomalous diffusion
exponent (a)

Diffusion coefficient
(Deff, lm

2 s�1)

FBM 0.097 14 0.001 23
CTRW 0.857 6 0.004 367
BM 1 0.012 35
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predictions of the NP passage through the mucus barrier in healthy
airways and airways of individuals with respiratory disease.

We have also applied these analyses to the diffusion of IAV par-
ticles in airway mucus. Intriguingly, while IAV has been shown to be
primarily subdiffusive in previous studies,22,23 there is a small percent-
age, 2%–4%, of particles that are predicted to cross the mucus barrier
in a physiological 30–60-min time frame, all of which exhibit BM. The
outer envelope of IAV contains neuraminidase (NA) and hemaggluti-
nin (HA), which impact their interactions with airway mucus.24 While
HA binds to sialic acid, which is present on mucins, NA is responsible
for cleaving sialic acid. The resulting NA-driven movement is likely
responsible for the small percentage of particles predicted to cross the
mucus barrier.24 The remaining particles that are effectively trapped
and exhibiting primarily FBM are likely due to steric and adhesive
interactions with the mucus network that NA activity alone is not able
to overcome.15 Interestingly, there were no significant differences in
the anomalous diffusion exponent (a), diffusion coefficient (Deff), and
percentage of particles in each classification for IAV and NPs (supple-
mentary material Fig. 3). This would further indicate that steric inter-
actions have a stronger role than adhesive interactions in restricting
the IAV passage through the mucus barrier. Importantly, our results
demonstrate how the diffusion of respiratory viruses in mucus can be
analyzed using these methods, allowing for further understanding of
infectious disease pathobiology.

In summary, we utilized machine learning and mathematical
models to further interpret multiple particle tracking of NP diffusion
through the mucus barrier. Comparable to previous reports, we found
most NPs in mucus exhibit sub-diffusive motion with the majority
exhibiting FBM and these particles are unlikely to reach the airway
surface in a physiological timespan. Our results suggest NPs exhibiting
BM are the primary population expected to penetrate the mucus bar-
rier prior to clearance. However, hopping CTRW NPs can navigate
through the mucus barrier albeit over prolonged time frames. Our
results suggest that the fate of a 100nm nanoparticle in the mucus bar-
rier will strongly depend on the percentage of solids and network pore
size, which subsequently impacts the diffusion time through the
mucus layer. This study establishes a workflow to rigorously evaluate
the mucus-penetrating capabilities of NPs used in drug delivery appli-
cations. We have also shown these analyses can be used in studies of
viral trafficking through the mucus barrier to complement standard
assays used in infectious disease research.

IV. METHODS
A. Nanoparticle preparation

As previously reported, carboxylate modified fluorescent polysty-
rene nanoparticles (NP; Life Technologies) with a diameter of 100nm
were coated with 5-kDa methoxy polyethylene glycol (PEG)-amine
(Creative PEGWorks) via a carboxyl-amine linkage.18 The particle size
distribution and surface charge were confirmed via dynamic light scat-
tering using the NanoBrook Omni (Brookhaven Instruments). We
confirmed the presence of a dense PEG coating on NPs based on the
measured zeta potential of 0.046 0.71mV.

B. Human mucus collection

Human mucus was collected under an IRB-approved protocol
at the University of Maryland Medical Center (UMMC; Protocol
No. HP-00080047). Samples were collected by the endotracheal tube

(ET) method, as previously described.18 ETs were collected from 30
donors after intubation as a part of general anesthesia at UMMC.
The data presented here are from six male and nine female subjects
with a mean age of 576 13 years. (Note: demographic data are not
available for 15 patients.) All the available demographics informa-
tion for samples used in this work is included in supplementary
material Table 1 and supplementary material Fig. 4. To collect
mucus from the ET, the last approximately 10 cm of the tubes were
cut, including the balloon cuff, and placed in a 50ml centrifuge tube.
The ET tube was suspended in the tube with a syringe needle and
was then spun at 220 g for 30 s, yielding 100–300ll of mucus.
Mucus with visible blood contamination was not included in the
analysis. Samples were stored in 4 �C immediately after collection
and imaged within 24 h of collection.

C. Percent solids analysis

To determine the percent solids, 100–150ll of the human mucus
sample was placed on the pre-weighed weigh paper, and the total mass
was measured. The sample was then dried on a hotplate for at least 2 h
or until there was no weight change. The dried sample was weighed,
and the percent solids was calculated as the difference between the wet
and dried sample weight. Due to collected volume, percent solids were
measured for ten of the 30 human mucus samples.

D. Fluorescence video microscopy

Samples were prepared for imaging by placing a vacuum grease
coated O-ring on microscope cover glass. The sample was then applied
to the center of the well and sealed with a coverslip. For each sample,
1ll of PEG-coated NPs were added to 20ll human mucus (approxi-
mately 2 � 106 particles/sample) in the center of the slide well and
stirred with a pipette tip prior to imaging. Samples were then equili-
brated for 30min at room temperature prior to imaging. Slides were
imaged using a Zeiss LSM 800 inverted microscope with a 63� water-
immersion objective. Multiple 10 s videos were recorded at 33.3 frames
per second for each sample. Similar methods were used for measuring
influenza A virus diffusion in human mucus and are described in
detail in our previously published work.15

E. Multiple particle tracking (MPT) analysis

Acquired fluorescence microscopy videos were processed using a
previously developed MATLAB (The MathWorks, Natick, MA) based
analysis code to isolate and track imaged particles.10,25,26 For each
video, the mean squared displacement (MSD) was calculated as
MSD sð Þ
� �

¼ x2þy2
� �� �

for each particle. Due to the nature of MPT,
NPs were tracked for a maximum of 10 s due to their motion out of
the focal plane. To minimize the dynamic and static error in our mea-
surements,26 a lag time of 1 s was used as a representative value for
comparison between conditions. The 100nm nanoparticles have a
median static error MSD of 4.39 � 10�5lm2/s at 1 s. The estimated
confinement of the NP was calculated as a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD1 s
p

, where MSD1 s is
the measured MSD at s ¼ 1 s and a is the NP radius. The same meth-
ods were used in the analysis of influenza A virus diffusion in human
mucus as discussed in our previously published work.15,27
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F. Machine learning analysis

A previously developed convolutional neural network model
referred to as MotionNet (MoNet) was used to determine the probabil-
ity of a single trajectory of length 300 frames will fall into the diffusion
category of Brownian motion (BM), fractional Brownian motion
(FBM), or continuous time random walk (CTRW).13 Once classified by
the type of diffusion, MoNet predicts anomalous diffusion exponents
(a) for FBM and CTRW particles.13 The effective diffusion coefficient
(Deff) was then calculated for each particle as MSD sð Þ

� �
¼ 4Dasa,

where a is the anomalous diffusion exponent predicted by MoNet and s
is the lag time.28 As some particles move out of frame during imaging,
trajectories acquired from the MPT analysis were filtered in MATLAB
(The MathWorks, Natick, MA) to isolate trajectories that were tracked
for 300 frames. On average, 34 NP trajectories were kept for MoNet
analysis per sample tested. In rare cases, a minimum of 5 NP trajectories
were kept.

G. Particle survival analysis

A previously developed mathematical model is used for predict-
ing the first traversal times for nanoparticles exhibiting diffusive
(Brownian) motion and fractional sub-diffusive motion (i.e., CTRW
and FBM).14 The survival function for diffusive motion (SD) is given
as

SD tð Þ ¼ 4
p

X1
n¼0

exp � 2nþ1ð Þp
2h

� �2

Dta

 !
�1ð Þn

2nþ1

" #
; (1)

whereD is the diffusion coefficient and h is the distance to the absorb-
ing boundary. The survival function for sub-diffusive motion (SSD) is
given as

SSD tð Þ ¼ 4
p

X1
n¼0

Ea �
2nþ1ð Þp
2h

� �2

Dat
a

 !
�1ð Þn

2nþ1

" #
; (2)

where Ea zð Þ ¼
P1

k¼0
zk

Cð1þakÞ is the Mittag–Leffler function.14 The

cumulative distribution function (F), given as FðtÞ ¼ 1� SðtÞ, gives
the fraction of particles that cross the absorbing boundary.14 A physio-
logical thickness (h) of 10lm was used for all calculations. The anom-
alous diffusion exponents (a) and effective diffusion coefficient (Deff)
from the MoNet analysis were used to calculate the survival functions
for each type of particle using their respective equations. The percent-
age of particles that would be able to cross the mucus barrier was cal-
culated from the F and the normalized percentage of particles for each
type of motion using the following equation:

% particles to crossmucus barrier ¼ F � Normalized%Particles:

(3)

H. Statistical analysis

Data were statistically analyzed using GraphPad Prism 9
(GraphPad Software, San Diego, CA).

SUPPLEMENTARY MATERIAL

See the supplementary material for the additional data, including
correlation between percent solids and NP diffusion (supplementary

material Figs. 1 and 2), comparison of NPs and IAV diffusion (supple-
mentary material Fig. 3), patient demographics for clinical samples
used in our study (supplementary material Table 1), and correlation
between age or sex and NP diffusion (supplementary material Fig. 4).
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