
Introduction 

Monitoring anesthesia 

Despite the benefit of the administration of general anesthetics in patients undergo-
ing surgery, their high risks have been recognized, with numerous potential adverse 
effects [1]. 

Multi-modal and balanced anesthesia methods refer to all agents and techniques that 
interact with different components of anesthetics, from hypnosis and analgesia to muscu-
lar relaxation, while maintaining homeostasis and preventing undesirable autonomic re-
flexes [1]. For procedures involving anesthesia to be safe, it is crucial that objective meth-
ods exist that estimate the state of each anesthesia component along the different phases 
of the surgical context to provide the practitioner with adequate information for deciding 
the appropriate actions to take to achieve the desired state for a given patient. 

Hypnosis, analgesia, and muscular relaxation depict distinct aspects of a patient’s state, 
although none are fully independent. Although anesthetic drugs specifically target an an-
esthetic component, they might also influence other components either alone or through 
interaction with other agents (Fig. 1) [1–3]. For example, the hypnotic effect of propofol 
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Safe anesthesia is achieved using objective methods that estimate the patient’s state during 
different phases of surgery. A patient’s state under anesthesia is characterized by three ma-
jor aspects, which are linked to the main effects produced by each of the families of anes-
thetic agents administered: hypnosis, analgesia, and muscular relaxation. While quantifi-
cation techniques designed to assess muscular relaxation under neuromuscular blocking 
agents have a relatively long history with a high degree of standardization and understand-
ing (e.g., the train-of-four), the knowledge and techniques used to the depth of hypnosis 
assessment suffer from a lesser degree in both standardization and interpretation due to 
brain complexity. The problem of standardization and interpretation in the analgesia and 
nociception assessment increases since it involves more systems, the central nervous sys-
tem, and the autonomic nervous system. This helps to explain why there are multiple a 
priori valid approaches to develop nociception monitoring from different interpretations 
and physiological bases of noxious stimuli processing. Thus, in this review, the current 
monitoring technologies clinically available for estimating a patient’s nociception under 
general anesthesia are described. 
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is potentiated by μ-agonist opioids, lowering the propofol ef-
fect-site concentration needed to achieve loss of consciousness 
and a loss of response to commands and pain [4,5]. Monitoring 
technologies for hypnosis and nociception should reflect such 
synergy to help practitioners balance anesthesia. 

Fig. 1 shows the close and commonly synergistic relationship 
between hypnosis and analgesia as a translucent intersection, 
while the relationship between muscular relaxation and hypnosis 
and analgesia is pretty different. While hypnotic and analgesic 
agents promote some muscle relaxation, muscular activity per se 
has no significant effect on hypnosis or analgesia. In addition to 
the practical benefits of neuromuscular blocking agents (NMBAs) 
during surgical procedures, the drawbacks of muscular relaxation 
reside in the suppression of the patient’s movement response, hin-
dering a full assessment of the hypnotic and analgesic effects. This 
effect of muscular relaxation masking the assessment of other 
components is shown in Fig. 1, with superimposed opaque inter-
sections over the other components. 

Neuromuscular monitoring 

The study of muscular relaxation induced by NMBAs has a 
comparatively long history, with many quantification techniques 
and a relatively high standard of agreement regarding their use, 
extensions, and limitations. Neuromuscular monitoring (NMT) is 

crucial every time NMBAs are used, especially to estimate when 
the neuromuscular blockade is sufficiently reversed [6]. The prin-
ciple of NMT relies on peripheral nerve stimulation-response 
quantification. Stimulation patterns and measurements can vary 
from single-twitch to train-of-four, tetanic and post-tetanic 
counts, and double-burst stimulation. Despite the variety of mo-
dalities, all approaches rely on the same principle. 

Hypnosis monitoring 

Hypnosis monitoring has been increasingly used since the mid-
1990s. Hypnosis assessment technologies rely on electroencepha-
lography (EEG) analysis; however, they lack a gold-standard defi-
nition. Most of these technologies rely on correlating distinct EEG 
patterns to the concentrations of different agents and qualitatively 
evaluating clinical signs using sedation scales, such as the observ-
er’s assessment of alertness/sedation scale (OASS). These technol-
ogies are more complex than NMT owing to the increased com-
plexity of such estimations. Several EEG features and algorithms 
have been used to define depth of hypnosis indices [7,8], and de-
spite the variety of estimation methods, their concordance is high 
[9]. Indeed, these indices have been used to enhance an optimiza-
tion of anesthesia drug consumption [10–12], prevent awareness 
with recall events due to underdoses [13–15] and excessive con-
centrations (overdoses), and improving patients’ outcomes [16–
21]. 

The need for nociception assessment 

Assessing the level of analgesia in the perioperative context es-
sentially refers to an analysis of physiological neural encoding and 
processing of noxious stimuli. The goal of monitoring nociception 
(from Latin noci, meaning harm or injury) is to objectively quan-
tify the responses induced by surgical stress to help to maintain a 
nociceptive-anti-nociceptive balance [22,23]. 

From the arsenal of anesthetic agents available for general anes-
thesia (GA) and in the intensive care unit, opioids play an essen-
tial role in the management of nociception. Opioids have several 
benefits, including a reduction in preoperative pain and anxiety, 
decreased somatic and autonomic responses to airway manipula-
tions, improved hemodynamic stability, lower dose requirements 
for inhaled agents, and immediate postoperative analgesia [1]. 
However, opioids are also associated with many well-known ad-
verse effects. Excessive administration of opioids increases the 
frequency of side effects, such as nausea, vomiting, respiratory de-
pression, opioid-induced hyperalgesia, and the potential for opi-
oid addiction [24–27].  

Hypnosis Analgesia

Muscular
Relaxation

Fig. 1. General anesthesia components relationship scheme. The close 
relationship between hypnosis and analgesia, which is commonly 
synergetic, is symbolized by a translucent intersection. However, the 
undesired effect of muscular relaxation masking and hindering the 
assessment of hypnosis and analgesia is symbolized with an opaque 
color covering a complete observation (assessment) of the other two 
components.
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Anatomy and physiology of nociception in a 
nutshell 

The complexity of nociception processing comes from the mul-
tiple complex systems involved in the processing of noxious stim-
uli, including both the autonomic nervous system (ANS) and the 
central nervous system (CNS), see Fig. 2. Nociception involves 
four major processes: transduction, transmission, modulation, 
and perception. 

The complexity of nociception begins with the nature of the 
stimuli, where differences in nociception processing depend on 
the type of sensory modality involved (Fig. 2), meaning whether 
stimuli are mechanical (pressure, pitch), thermal (heat), or chemi-
cal, and their specific pain receptors or nociceptors. In addition, 
processing depends on the location of the stimuli, from the cuta-
neous nerves to the visceral or deep musculoskeletal tissues. 

These differences in sensory modalities and locations at the trans-
duction level influence nociceptive processing and perception. 
Focusing on the ascending pain pathway, the nociceptive message 
is coded in the pattern and frequency of action potentials trig-
gered by different chemicals released by injured cells (e.g., prosta-
glandins) and transmitted to the spinal cord through the axon of 
the primary afferent nociceptor (first-order cell). This neuron has 
its cell body in the dorsal root ganglion, with one axon branching 
out to the periphery and another into the spinal cord, ending near 
second-order nerve cells in the dorsal horn of the gray matter 
(substantia gelatinosa) that project over the anterolateral quadrant 
of the spinal cord to the brain stem and thalamus. Primary affer-
ent nociceptors release transmitter substances to the spinal termi-
nals (substance P), stimulating second-order pain transmission 
cells. Despite this, there is a variable relationship between noci-
ceptor input and perceived pain intensity. In general, the intensity 
of the stimuli is proportional to the frequency of the nociception 
discharges along the ascending pathway. Once nociceptive signal-
ing reaches the thalamus, it is projected to widespread areas of the 
forebrain through third-order neurons, from the somatosensory 
cortex and limbic system to the frontal cortex. 

Nociceptive signal transmission is regulated by the activity 
transmitted through the descending pathway through the mid-
brain, crossing the medulla and ending at the dorsal horn, at a se-
rotonergic-noradrenergic neuron that inhibits the release of sub-
stance P between the first-order and second-order neurons of the 
ascending path, and stimulating a nearby opioid-interneuron that 
additionally releases an endogenous opioid (enkephalin), which 
helps inhibit the pre- and post-synaptic exchange of substance P. 

Opioids act on both the brain and the spinal cord, stimulating 
the activity of the descending inhibitory pathway from the mid-
brain to the dorsal horn. For instance, remifentanil, a µ-receptor 
agonist [28], modulates nociceptive transmission and processing 
where this receptor is distributed, which may be in the brain at 
the cerebral cortex (upper part of layer V–VI) or throughout the 
spinal cord (primarily confined to laminae I–II, dorsal horn) and 
the peripheral nervous system [29]. 

This brief summary of the nociception system disregards a 
much deeper description of the mechanisms involved in nocicep-
tion processing, such as differences in sensory cell types and char-
acteristics, other relevant neurotransmitters, and interactions 
among various other factors [30–32]; however, this summary is 
meant as a brief explanation of the physiological basis for the a 
priori adequacy of the different existing nociception monitoring 
technology approaches. 

Nociceptive information is communicated to the ANS and CNS 
via the spinal cord, brainstem, and thalamus. It is important to 
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Fig. 2. Simplified illustration of the general pathway of nociception. 
Anterolateral ascending spinothalamic nociceptive transmission path 
(black line) and descending modulatory path (blue line). Locations 
of action of the nociception processes (transduction, transmission, 
modulation, and perception) and most noteworthy related substances. 
NSAID: non-steroidal anti-inflammatory drug, NMDA: N-Methyl-D-
aspartate receptor.
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note that the different monitoring technologies are not explicitly 
related to direct measurements at certain points of the pain path-
way, but rather to the responses to noxious stimuli at the level of 
the ANS and CNS, such as heart rate, blood pressure, skin con-
ductance, and EEG. 

Nociception monitoring 

Traditional cardiovascular parameters and clinical signs under 
some circumstances provide valid clinical criteria for inadequate 
anesthesia, such as systolic blood pressure 15 mmHg above base-
line and heart rate >  90 beats/min as well as other autonomic 
signs (e.g., sweating, flushing, or lacrimation) and somatic re-
sponses (e.g., body movements, swallowing, coughing, grimacing, 
or eye movements) [33]. However, these parameters and signs 
generally have low sensitivity and specificity for nociception be-
cause they can also be affected by anesthetics (e.g., propofol affects 
blood pressure, ephedrine affects heart rate) and other factors re-
lated to the surgical procedure (e.g., absence of heartbeat under 
cardiopulmonary bypass). Therefore, nociception monitoring 
technologies are needed that complement the traditional clinical 
criteria.  

Just as with hypnosis, there is no gold standard to measure no-
ciception given the many interacting complex systems and mech-
anisms involved [30,33,34] along with inherent subject variability. 
However, some crude but objective approaches for estimating no-
ciception may be sufficiently valid to help practitioners in clinical 
decision-making. 

In the following sections, we will describe the main features of 
the monitoring systems that are available targeting nociceptive 
state inference according to the physiological system targeted 
(CNS, ANS, spinal reflex) and their related biosignals (EEG, elec-
trocardiography [ECG], electromyography [EMG], plethysmog-
raphy, pupillometry, and skin conductance). The following tech-
nologies will be described: 

CNS-based monitoring 
- Conox monitoring: qNOX 
- Entropy monitoring: response entropy 

ANS-based monitoring 
- Pupillometry 
- Analgesia nociception index monitor 
- Surgical pleth index 
- Nociception level index 
- Skin conductance 

Spinal reflex-based monitoring 
- Nociceptive flexor reflex (NFR) 

CNS-based monitoring 

The important role of nociception assessment from brain activ-
ity measurements has been shown by Lichtner et al. [35], who re-
ported that in patients administered remifentanil nociceptive-re-
lated activations, observed under fMRI, persist despite a lack of 
clinical responses. Furthermore, those dose-dependent bold-fMRI 
signals evoked by noxious stimuli have been described in multiple 
brain regions, especially in frontal areas. 

Using current anesthesia depth monitoring technologies, EEG 
signal information can be used to evaluate the patient’s hypnotic 
state under GA. Additionally, multiple studies have shown distinct 
EEG components modulated by noxious stimuli-related informa-
tion that can be used to detect situations of stress and help in the 
management of intraoperative analgesia administration, such as 
beta and delta arousals and alpha dropouts, among other changes 
[36–39]. 

However, EEG analysis and interpretation, either for monitor-
ing hypnosis or nociception, may be hampered by the presence of 
EMG signals. Depending on the operative context, the presence 
of EMG on EEG may produce a potential bias of EEG-derived in-
dices; however, modern EEG processing algorithms offer im-
proved suppression of EMG signals compared to those imple-
mented in earlier monitors. With EEG monitoring, it is important 
to interpret the EEG indices along with EMG signals, as EMG sig-
nals can also be an early indicator of arousal or nociception.  

Entropy monitoring: response entropy index 
The spectral entropy monitor (GE Healthcare, USA) is a two-in-

dex EEG-based monitor. One index focuses on describing the 
state of hypnosis (state entropy, [SE]) and the other evaluates the 
patient’s response to noxious stimuli (response entropy, [RE]). Es-
sentially, the spectral entropy is computed over the frequency 
range of 0.8 to 32 Hz to define the SE (EEG-dominant part) and 
from 0.8 to 47 Hz to define the RE, which includes the EEG-dom-
inant and EMG-dominant parts of the spectrum [40]. The entro-
py measurements are then scaled into two different unitless 
scores, from 0 (very deep anesthesia) to 91 (awake state) for SE 
and from 0 to 100 for RE. 

Under GA with propofol and remifentanil, high RE values (>  
55) before stimulation increase the risk of a motor response. How-
ever, lower values do not prevent a response when the opioid con-
centration is insufficient, despite adequate hypnosis [41]. 

Entropy-guided anesthesia during propofol-remifentanil GA 
has resulted in fewer unwanted patient responses compared to 
standard practice along with a reduction in opioid consumption 
[42]; however, no differences have been seen regarding recovery, 

115https://doi.org/10.4097/kja.22002

Korean J Anesthesiol 2022;75(2):112-123



hemodynamic parameters, or postoperative outcomes. 
The SE-RE difference appears to be a potential proxy for facial 

EMG activity, and thus might be useful for assessing nociception 
during surgery [43]. Its use for controlling the remifentanil dose 
has been suggested [44]. 

Conox monitoring: qNOX index 
Similar to the spectral entropy monitor, the Conox monitor 

(Fresenius Kabi AG, Germany) integrates two EEG-based indices. 
The qCON index is an indication of the patient’s level of con-
sciousness, and the qNOX index can be used to gauge the proba-
bility that a patient will respond to noxious stimuli. Similar to the 
qCON index, which links different EEG spectral components to 
distinct aspects of hypnosis (loss of consciousness event, hypnotic 
concentrations, level of alertness/sedation scales) using a quadrat-
ic model, the qNOX index integrates the spectral components 
into an equivalent model that best predicts whether a patient will 
respond to noxious stimuli [45]. The likelihood of movement re-
sponse to external stimuli is described on a scale ranging from 0 
to 100. The recommended qNOX index values for GA are be-
tween 40 and 60, where a value >  60 corresponds to a high prob-
ability of response to external noxious stimuli and a value <  40 
corresponds to a low likelihood of response. If the qCON and 
qNOX values equal 0, this indicates an isoelectric EEG signal, and 
consequently, a burst suppression ratio of 100%. 

In one study of 60 patients, significant increments in the qNOX 
values pre-and post-noxious stimuli (LMA insertion, tracheal in-
tubation, and laryngoscopy) were found; however, the remifent-
anil or propofol effect-site concentrations were not correlated 
with whether the patient moved in response [45]. 

The qCON and qNOX indices behave differently for detecting 
loss of consciousness and loss of response to nociceptive stimula-
tion. In a study of 140 patients scheduled for propofol-remifent-
anil GA, the qCON index was found to be better for predicting 
loss of consciousness, such as loss of verbal command and eyelash 
reflex, than the qNOX index, while the qNOX index had a better 
predictive value for response to noxious stimuli [46]. Further-
more, the qNOX index increased faster at the end of surgery, lead-
ing to the hypothesis that the response to stimuli is recovered fast-
er than the consciousness recovering. Thermoregulatory process-
es are essential for the activation of analgesic mechanisms, given 
the physiologically strong negative association between nerve 
conduction velocity and temperature, in addition to having signif-
icant repercussions on the pharmacological dynamics of analgesic 
drugs (decreased clearance rates with a subsequent increase in ef-
fect-site concentrations). Based on the hypothesis that deep hypo-
thermia produces considerable effects on a patient’s analgesia and 

hypnosis levels, in one study, 39 patients who underwent elective 
on-pump coronary artery bypass graft surgery under hypother-
mia were monitored using the bispectral index (BIS) and Conox 
monitors. While the hypnotic indices (BIS, qCON) showed signif-
icant but weak correlations with respect to the temperature, the 
qNOX index showed the strongest correlation [47] not only for 
population behavior, but more importantly, for the prediction of 
each individual patient using a linear mixed-effect model for tem-
perature with the patient as a random factor (BIS: R2 = 0.06, P <  
0.05; qCON: R2 = 0.29, P <  0.001; qNOX: R2 = 0.74, P <  0.001). 

ANS-based monitoring 

Pupillometry 
The pupillometric assessment of analgesia and nociception re-

lies on portable measurements of pupil diameter response systems 
that are based on the idea that pupil constriction and dilation is 
controlled by a sympathovagal balance, since the pupillary mus-
cles are innervated by both the sympathetic and vagal nerves [48]. 
Of the different infrared pupillometers used for assessing nocicep-
tion, such as the ANeurOptics PLR-100 (NeurOptics, USA), the 
Algiscan system (IDMed, France) is unique in that it has an inte-
grated electrical stimulation unit, which allows for easy operation 
under four different modes. In the first operation mode, changes 
in pupil size are evaluated in response to noxious stimuli (such as 
incision or electrocautery) over a 60 s time frame. The second 
mode is used to measure the changes in diameter after exposure 
to a 1-s flash of light (320 lux). The third and fourth modes, 
named the tetanus and pupillary pain index (PPI) modes, corre-
spond to the elicited pupil changes after distinct controlled elec-
trical stimulations are applied to the ulnar nerve. Each mode is 
different in terms of the stimulation frequency pulse, duration 
time, and type of amplitude stimulus (constant or variable; rate 
change 10 mA/s to a maximum of 60 mA). The PPI mode is de-
fined as a dimensional index ranging from 0 to 10, where lower 
values represent lower pupil reactivity and thus deeper analgesia, 
and higher values (PPI >  7) indicate insufficient analgesia. 

Pupil diameter reactivity has been shown to correlate with 
remifentanil effect-site concentrations [49], intraoperative noci-
ception response predictions [50–53], and postoperative pain as-
sessments [54–56]. Pupillometry has been shown to demonstrate 
a faster response to stimuli than heart rate and arterial pressure 
and allows for the prediction of the analgesic state before stimu-
lation [49,57]. In one study, pupillary dilation after standardized 
tetanic stimulation was influenced by propofol concentrations in 
patients with constant effect-site infusion of 1 ng/ml of remifent-
anil. This suggests that pupil reactivity (in this case, the stimulus 
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elicited) appears to also be influenced by the hypnotic level [58]. 
Further research is required to evaluate the effects of hypnotics 
on pupillometry and other potential confounding factors. The 
main drawbacks are the discontinuous monitoring and need for 
careful corneal care, opening the eyelid in each of the multiple 
perioperative measurements required to follow patient changes. 
Measurements might also be affected by neostigmine, pupillary 
diseases (Horner and Holmes-Adie syndromes), and blindness. 
Additionally, care must be taken regarding ambient light condi-
tions. 

Analgesia nociception index monitoring 
The analgesia nociception index (ANI) monitor (MDoloris, 

France) evaluates the parasympathetic response reflected in the 
ECG during GA. This dimensionless index based on heart rate 
variability measures the influence of the parasympathetic system 
on cardiac rhythm during respiration calculated using high-fre-
quency band-pass filtered R-R series (between 0.15 and 0.4 Hz). 
It ranges from 0 (maximal nociception) to 100 (maximal analge-
sia) [59,60]. The ANI mean normal values fluctuate between 50 
and 70, where an ANI <  30 for longer than 5 min indicates anal-
gesia underdosing and an ANI >  70 indicates analgesia overdos-
ing. 

The ANI has been investigated in both conscious and anesthe-
tized subjects. Boselli et al. [61] reported that dynamic variations 
in the ANI in patients under desflurane-remifentanil GA, rather 
than static ANI values, were significantly predictive of hemody-
namic reactivity. The ANI, pupillometry, and surgical pleth index 
(SPI) were superior at detecting painful stimulation compared 
with traditional hemodynamic parameters, and the performance 
was attenuated by increasing remifentanil dosages. However, 
baseline values showed significantly lower prediction probabilities 
for nociceptive responses [62]. 

An observational study of children aged 2 to 12 years showed 
changes in the ANI 5 min before and after the surgical incision, 
where hemodynamic parameters were found to be of low or no 
predictive value for detecting noxious stimuli [63]. Further re-
search using the ANI is needed to evaluate its relationship to opi-
oid concentrations, as well as its applications outside of GA, such 
as regional blocks or conscious sedation. Caution must be taken 
when using the ANI monitor or other ANS-based monitors; since 
agents acting on the ANS, such as ephedrine and atropine, may 
affect the index score [64]. The ANI is thus not reliable for ap-
proximately 10 min after ephedrine administration and 20 min 
after atropine administration. This raises concerns about other 
agents and drug combinations that affect the ANS, such as be-
ta-blockers. Further study is therefore necessary. 

While the ANI indicates noxious stimulations during GA anes-
thesia, its interpretability might be limited given the large associ-
ated interindividual variability and low reproducibility [22,65]. Fi-
nally, the ANI index may also not be useful during intubation 
when the patient is apneic. 

Plethismography-based monitoring 
The SPI (GE Healthcare, Finland) relies on plethysmography 

pulse-wave changes provoked by noxious stimuli: a sympathetic 
response to peripheral vasoconstriction and cardiac autonomic 
tone. The SPI is computed as the normalized heartbeat interval 
(HBInorm) and plethysmographic pulse wave amplitude 
(PPGAnorm): SPI =  100 – (0.7 ×  PPGAnorm + 0.3 ×  HBInorm) [66]. 
This unitless score ranges from 0 to 100, with lower values indi-
cating deeper analgesia. An SPI >  50 is considered inadequate 
analgesia. 

The SPI responds to remifentanil concentration changes and is 
higher at lower remifentanil concentrations. Additionally, the SPI 
reacts to surgical nociceptive stimuli and analgesic drug concen-
tration changes during propofol-remifentanil anesthesia, where 
the SPI increases at skin incision and remains high during surgery 
than before surgery [66]. SPI-guided anesthesia has been reported 
to result in lower opioid [67] and propofol [16] consumption with 
more stable hemodynamics, a lower incidence of unwanted 
events, and shorter arousal times. 

The physiological basis for the SPI is generally not valid because 
the SPI is not interpretable for postoperative pain assessment in 
conscious subjects [68]. Furthermore, this biosignal might be sig-
nificantly affected by agents that act on hemodynamics as well as 
inotropic and chronotropic agents, among other factors. Surpris-
ingly, SPI also does not appear to be valid in children, where 
SPI-guided analgesia leads to less fentanyl consumption but more 
postoperative agitation and higher analgesia requirements com-
pared to conventional practice [69]. This may be due to both 
blood vessel distensibility and the higher heart rates at baseline in 
children versus adults, or it might suggest that opioid levels used 
in standard practice in children are closer to the minimum ac-
ceptable concentration threshold than the levels used for adults. 
This situation suggests a need to redefine the index for children. 
While the margin for reduction in the consumption of some 
agents may be larger in adults, this is not only related to nocicep-
tion, but also to the influence of anesthetic agents on hemody-
namic variables. In this sense, neither skin conductance nor SPI 
monitoring reliably predicts changes in plasma stress hormone 
levels (adrenaline, noradrenaline, adrenocorticotrophic hormone, 
and cortisol) throughout the intraoperative period [70].  
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Nociception level index 
The PMD100 monitor (Medasense Biometrics, Israel) includes 

the nociception level (NOL) index. The NOL index is a score that 
integrates different parameters from multiple biosignals, report-
ed as a function of heart rate variability (at the 0.15 to 0.4 Hz 
band power), plethysmograph wave amplitude, and skin conduc-
tance [71,72]. All biosignals are collected with a finger probe 
placed on the index finger of the right hand containing pho-
toplethysmographic and galvanic skin sensors, a skin tempera-
ture sensor, and a three-axis accelerometer. The NOL is a unitless 
index, updated every 5 s, that ranges from 0 to 100, where lower 
values indicate lower sympathetic activation, deeper analgesia 
(recommended values are between 10 and 25 for maintenance). 
Under GA, the NOL index has been reported to have a higher in-
traoperative sensitivity and specificity than heart rate and mean 
arterial pressure (MAP) in predicting responses to noxious stim-
uli, such as intubation, incision, and tetanic stimulation [72,73]. 
NOL-guided analgesia during major abdominal surgery has been 
reported to result in 30% less remifentanil consumption [74]. 
Peristimulus changes in the NOL have also been reported to cor-
relate with the remifentanil dosage [75]. In abdominal surgery 
with fentanyl/sevoflurane, despite the non-significant differences 
in fentanyl and morphine consumption after surgery, an im-
provement in the postoperative pain scores has been seen in pa-
tients receiving NOL-guided fentanyl administration compared 
to patients receiving the standard heart rate and MAP-guided 
fentanyl administration [76]. However, in this study, no clear dif-
ferences were observed between the NOL values during 
NOL-guided administration and standard care [76], as essentially 
all were within or below the recommended maintenance values 
of 10–25. This suggests that the NOL index scale definition is not 
very well-adjusted for NOL-guided administration because the 
recommended value range (10–25) is relatively narrow and large-
ly not centered within the whole dynamic range (0–100). Thus, 
the NOL index should be rescaled to offer greater sensitivity and 
dynamics. 

The role of temperature and accelerometry as side parameters 
or modulators of the NOL index in the PMD100 monitor is also 
not clear. Furthermore, research on the NOL index under other 
important settings, including regional anesthesia, combined re-
gional anesthesia and local analgesia, and sedation, is needed. 

Skin conductance 
The skin conductance algesimeter (Med-Storm, Norway) sys-

tem monitors the skin galvanic response as a proxy for sympa-
thetic nervous system activity, where increments in sympathetic 
activity result in filling of the palmar and plantar sweat glands. 

Skin conductance measurements rely on sympathetic terminals 
encircling sweat glands that are innervated by postganglionic 
sympathetic neurons, which are connected to preganglionic neu-
rons projected from the sweat nucleus of the hypothalamus [77]. 
The skin conductance algesimeter measures micro-fluctuations in 
skin conductance in peaks per second (PPS) from a delivered mi-
cro-current in the palmar and plantar areas. The skin conduc-
tance increases transiently before the sweat evaporates, decreases 
again with sweat, and the consequent fluctuation is observed. Skin 
conductance is commonly measured in the hands for adults and 
in the feet for neonates. According to the manufacturers, the PPS 
parameter should be interpreted using the visual analogue scale 
(VAS) as follows: PPS within 0–0.07, no pain; PPI within 0.13–
0.21, no pain or VAS less than 40; PPS to 0.26, patient is active 
and VAS around 40–50; PPS to 0.33, patient probably in pain with 
VAS around 60–80; and PPS within 0.40–0.7, patient probably in 
pain with VAS within 80–100. 

Perioperative correlations to nociception stimuli have been re-
ported [78,79], while skin conductance, measured as PPS, has 
shown moderate sensitivity and specificity at identified time 
points, with moderate to severe pain defined based on hormone 
plasma levels [70]. 

Skin conductance, however, does not reliably predict changes in 
stress hormone plasma levels during the intra-operative period 
[70]. Clinically relevant benefits of using skin conductance are 
unclear, which might rely on the nature of the biosignals, potential 
confounding effects, or the selected characterization used to de-
scribe this biosignal (i.e., PPS). According to the manufacturer, 
from a physiological perspective, the advantages of skin conduc-
tance monitoring are as follows: it is unaffected by temperature 
(22–42°C), general hypoxia, low or high blood volume, be-
ta-blockers, or epinephrine, among other factors [68,78]. Howev-
er, further research is needed to confirm these claims. 

Spinal reflex-based monitoring 

Nociceptive flexor reflex monitoring 
The NFR, also known as the RIII reflex, system (Dolosys 

GmbH, Germany) describes the threshold electrical intensity re-
quired to elicit a spinal polysynaptic withdrawal reflex quantified 
by changes in electromyographic activity as a proxy of the analge-
sia level [80]. The electrical stimulus is applied to the sural nerve, 
and its effect is measured using biceps femoris muscle EMG. The 
amount of current required increases with analgesia [81–83]. The 
RIII reflex has also been used in studies of central sensitization 
and chronic pain [84]. Under propofol/remifentanil GA, the RIII 
threshold increases with remifentanil [82], with a higher predic-
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tive power of movement response to noxious stimulus (such as la-
ryngeal mask airway insertion and skin incision) than other indi-
ces, such as the BIS, noxious stimulation response index, or com-
posite variability index [83]. 

The NFR depends on sex, age, weight (obesity), and distinct 
physiologic factors [80]. Its limitations include the degree of neu-
romuscular blockade, skin impedance, peripheral nerve alter-
ations, and muscular diseases. 

Discussion 

Intraoperative prediction of pain in the post-anesthesia 
care unit 

Recently, several studies have aimed to evaluate the perfor-
mance of different nociception monitoring index values at a single 
time during the intraoperative period (mainly during arousal be-
fore extubation) to predict postoperative pain upon arrival to the 
post-anesthesia care unit (PACU), using pain scores such as a 
0-10 numerical rating scale (NRS) around 5–10 min after extuba-
tion. These research studies were not included in the individual 
descriptions of each nociception index of this review due to the 
contradictory results and the ground arguments against such a re-
search approach. 

For example, Boselli et al. [60], in their study on inhaled GA 
with remifentanil, reported excellent predictions of pain within 10 
min of arrival in PACU from a single ANI measurement before 
extubation, with 86% sensitivity and 92% specificity to discrimi-
nate between patients with an NRS ≤  3 and those with an NRS >  
3. However, very different results were reported under sevoflu-
rane-fentanyl anesthesia, when comparable single pre-extubation 
ANI measurements did not reflect different states of acute post-
operative pain using the same NRS scale at 5 min intervals 
post-intubation in the PACU [85]. Similarly, pre-extubation SPI 
values (SPI >  30) were reported to predict postoperative NRS 
scores with a sensitivity and specificity of 50% and 89.7%, respec-
tively [86]. However, in another study, despite the best SPI values 
for sensitivity/specificity to predict moderate-to-severe pain in the 
PACU (SPI values around 30), its predictive accuracy was poorer 
overall [23]. 

Furthermore, the severity of postoperative pain significantly 
influences skin conductance. Using cutoff values, the PPS may 
prove to be a useful tool for pain assessment in the postoperative 
period [87,88]. However, it is difficult to link such predictions 
when skin conductance does not reliably predict changes, for in-
stance, in stress hormone plasma levels, throughout the intraop-
erative period [70]. There is a contradiction between index-in-

sensitive behavior for short-term predictions versus longer-term 
predictions. 

The possibility of single-value postoperative pain predictions, 
with a longer prediction horizon, has been recently reported [89], 
where only low NOL index values after skin incision significantly 
excluded moderate-severe pain in the PACU, with a negative pre-
dictive value of 83%, while other intraoperative NOL values, in-
cluding at the end of the surgery, showed no significant predic-
tion. This result conceptually invalidates all post-incision NOL 
estimations, with low sensitivity to detect a potential subjacent 
problem from an incision event that emerges later in the PACU. 
This result contradicts the forecasting principle, where the more 
in advance the forecasting, the more uncertainty. 

Independent of the research type (surgery, anesthesia, nocicep-
tion index, etc.), the expectation to predict pain assessments in 
the PACU from a single perioperative value seems unrealistic. 
Some of the main arguments are as follows: 

Monitoring reflects only time-local conditions 
Any monitoring system aims to continuously estimate the state 

of the system (patient) and track its changes. In fact, while main-
taining the estimation power, the faster the better. If the system 
state varies, the monitor must reflect such variations, replacing 
previous single estimations. The validity of single estimations lasts 
as long as the system remains unchanged and the transitions the 
need for newer updates. Although the patient state transition 
from the intraoperative period to the PACU is short in time, it is 
very large in magnitude, invalidating pre-PACU single short-term 
estimations to predict PACU state. 

Lack of trends 
Based on the previous argument, any statistical forecasting 

method requires a minimum number of consecutive measure-
ments (at least a few historical samples) to pick up some sort of 
trend for short-term prediction. For longer-term predictions and 
more complex systems and transitions, the historical data needs 
to be larger [90]. In general, the longer the prediction horizon, the 
larger the required information. 

Lack of concomitant factor analysis 
The patient’s pain perception in the PACU might depend on 

multiple factors, including patient demographic and historical 
data and surgery type and duration. Factors not included in the 
statistical analysis of the mentioned papers, as well as a lack of 
control groups and statistical post-hoc techniques for better noise 
level assessments may affect pain perception. 
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Conclusions 

The latest development of better monitoring technologies for 
different aspects of the patient’s state under anesthesia has led to 
novel methods that focus on monitoring nociception. Nocicep-
tion monitors can be based on ANS or CNS parameters; however, 
CNS-based methods focus on the cortex and subcortex of the 
brain, which is the target organ for analgesics. Therefore, in the 
future, CNS monitoring is likely to be the most prevalent method 

for monitoring analgesia and nociception during GA. 
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