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The global COVID-19 pandemic has severely impacted human health and socioeconomic
development, posing an enormous public health challenge. Extensive research has been
conducted into the relationship between environmental factors and the transmission of
COVID-19. However, numerous factors influence the development of pandemic outbreaks,
and the presence of confounding effects on the mechanism of action complicates the
assessment of the role of environmental factors in the spread of COVID-19. Direct esti-
mation of the role of environmental factors without removing the confounding effects will
be biased. To overcome this critical problem, we developed a Double Machine Learning
(DML) causal model to estimate the debiased causal effects of the influencing factors in the
COVID-19 outbreaks in Chinese cities. Comparative experiments revealed that the tradi-
tional multiple linear regression model overestimated the impact of environmental factors.
Environmental factors are not the dominant cause of widespread outbreaks in China in
2022. In addition, by further analyzing the causal effects of environmental factors, it was
verified that there is significant heterogeneity in the role of environmental factors. The
causal effect of environmental factors on COVID-19 changes with the regional environ-
ment. It is therefore recommended that when exploring the mechanisms by which envi-
ronmental factors influence the spread of epidemics, confounding factors must be handled
carefully in order to obtain clean quantitative results. This study offers a more precise
representation of the impact of environmental factors on the spread of the COVID-19
pandemic, as well as a framework for more accurately quantifying the factors influ-
encing the outbreak.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the first case of the coronavirus disease 2019 (COVID-19) was reported in 2019, the outbreak has spread rapidly
across countries. As of October 4, 2023, the World Health Organization reported 771, 151, 224 confirmed cases of COVID-19
unications Co., Ltd.

by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hushuju@lzu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2024.06.005&domain=pdf
www.sciencedirect.com/science/journal/24680427
www.keaipublishing.com/idm
https://doi.org/10.1016/j.idm.2024.06.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.idm.2024.06.005
https://doi.org/10.1016/j.idm.2024.06.005


Z. Hao, S. Hu, J. Huang et al. Infectious Disease Modelling 9 (2024) 1163e1174
worldwide, resulting in 6,960,783 deaths (WHO, 2023). The substantial harm caused by the outbreak has raised awareness
regarding the criticality of timely alert, prevention and control of epidemics (Huang et al., 2020, 2021). Currently, the severity
and fatality of COVID-19 has significantly decreased (Marziano et al., 2023). However, the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 pandemic is constantly evolving, and the number of infections
continues to rise, presenting challenges in the prevention, treatment, and diagnosis (Jacobs et al., 2023; Malik et al., 2022;
Markov et al., 2023). With the rise of globalization, the potential risk for future infectious disease outbreaks has also risen
significantly. It is crucial to have a comprehensive understanding of COVID-19 transmissionmechanisms for our future control
of novel infectious diseases.

The primary mode of transmission of the COVID-19 has been identified as inhalation of respiratory droplets from infected
individuals and aerosols containing the virus, as well as direct contact with contaminated surfaces (Wang et al., 2021;Weaver
et al., 2022). Given that both the survival and transmission of SARS-CoV-2 in aerosols are intricately linked to the environment
(Weaver et al., 2022), it is imperative to attain a thorough and precise understanding of the causal association between
COVID-19 and environmental factors. Recently, researchers have made many efforts to clarify the role of the environment in
the spread of COVID-19 that mainly focus on the meteorological conditions (such as temperature, humidity, wind speed, and
ultraviolet radiation) and air pollution elements (including PM2.5, PM10, nitrogen dioxide, and sulfur dioxide) (Ali & Islam,
2020; Liu et al., 2021; Paraskevis et al., 2021; Xu et al., 2021). They commonly used correlation analysis, regression methods
and machine learning methods to quantify the impact of environmental factors on COVID-19 outbreaks. In the correlation
analysis, Pearson correlation (Yang et al., 2021), Spearman rank correlation and Kendall correlation (Bashir et al., 2020; Zhang
et al., 2020) were used to calculate the correlation coefficients between environmental factors and COVID-19. Regression
models such as multivariate stepwise regression (Yang et al., 2021), multiple linear logistic regression (Wang, Dong, et al.,
2021), Loess regression (Poirier et al., 2020), and multivariate Poisson regression (Jiang et al., 2020) were used to quantify
the contributions of environmental factors. For the machine learning models, Random Forest (RF) were used to determine
that PM2.5 was the main factor affecting the transmission of COVID-19 in the United States (Milicevic et al., 2021). Gradient
Boosting Decision Trees (GBDT) and Ridge regression methods were used to analyze the impact of altitude, air pollutants and
NPIs on the transmission process (Han et al., 2022). Shallow Perceptron Neural Network (SSLPNN) and Gaussian Process
Regression models were used to analyze the relationship between COVID-19 cases and environmental factors in five regions
of Asia (Ahmad et al., 2020). Thus, these current studies have focused primarily on establishing correlations and have not
analyzed the causal relationship between environmental factors and the COVID-19 pandemic. In addition, despite extensive
quantitative study, there were no consistent conclusions. The contributions of environmental factors on the transmission of
COVID-19 exhibits significant variation from one region to another (Ford et al., 2022; Qi et al., 2020; Yang et al., 2021). For
instance, some studies demonstrate a negative correlation between temperature and COVID-19 (Wang, Dong, et al., 2021;
Poirier et al., 2020; Yin et al., 2022), whereas others reach the opposite conclusion (Xie & Zhu, 2020; Bashir et al., 2020; Sun
et al., 2022) or even propose that temperature is not linked to COVID-19 (Yao et al., 2020). Among air pollutants, PM2.5 and
PM10 have been observed to exhibit a positive associationwith COVID-19 in certain studies (Cao et al., 2021; Zhu et al., 2020).
However, contrasting results have emerged, revealing a negative correlation between PM10 and COVID-19 outbreaks in one
investigation (Jiang et al., 2020) and insignificance in another (Li et al., 2020). The diversity of environmental effects prompted
an acknowledgment of the intricate interplay between the environment and the transmission of COVID-19. Therefore, it is
imperative to establish statistical models to more finely quantify causality and comprehensively explore changes in envi-
ronmental effects. Because of the myriad and interconnected factors influencing COVID-19, accurately quantifying the in-
fluence coefficients is challenged by the presence of confounding factors. Direct estimation of the target variable's
contribution through regression models or machine learning methods can be subject to regularization bias if confounders are
present (Chernozhukov et al., 2018). Also, overfitting of the model can lead to serious bias in the quantifying estimation.
Recently the Double Machine Learning (DML) models for causal inference have been proposed to eliminate the bias intro-
duced by the commonly used regression models or machine learning methods. It achieves debiasing by two key operations:
(1) using orthogonalization to remove the role of confounding factors, thus overcoming regularization bias; (2) using cross-
fitting to overcome bias caused by overfitting (Chernozhukov et al., 2018). The DMLmodeling framework is flexible enough to
allow the use of a variety of machine learningmethods as function estimators, facilitating the implementation of the fitting of
nonlinear relationships. Currently, DML model methods are commonly used for estimating causal effects in socio-economic
problems, such as estimating the direct versus indirect effects of health insurance on health status (Colangelo & Lee, 2020;
Farbmacher et al., 2022). In this study, we constructed a DML model to calculate unbiased estimates of the causal effects of
environmental factors on the spread of COVID-19 by using data on COVID-19 outbreaks in 2022 in various administrative
regions of China. Then, the changing patterns of environmental effects were quantitatively analyzed. Our aim is to gain a
better understanding of the causal relationship between environmental factors and the spread of COVID-19.

The organization of the subsequent sections of the paper is as follows. Section 2 describes the study area and data, and
illustrates the model theory used in this paper. Section 3 is the results section. A preliminary analysis of the data, initially
presented in Section 3.1, indicates the potential for confounding effects between environmental factors and the spread of
COVID-19. Section 3.2 presents an debiased estimation of the causal effect of environmental factors on the spread of COVID-19
using a double machine learning model. It also compares the results of multiple linear regression with those of the double
machine learning causal model. Section 3.3 further discusses the heterogeneity of environmental causal effects and analyzes
their trends. Finally, the discussion and conclusion are in Section 4.
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2. Materials & methods

2.1. Study area and data

We collected the number of daily new asymptomatic COVID-19 cases in 4 municipalities and 333 prefecture-level
administrative districts in mainland China from 1 January to November 30, 2022 (notably, China issued a notice on
December 7, 2022 to stop full-scale nucleic acid testing and announced on December 13, 2022 to stop reporting the number of
daily infections). In addition, to ensure a sample size of data for each outbreak, we screened all outbreak sequences lasting
more than 45 days in 2022, resulting in time-series data for a total of 261 outbreaks.

In evaluating the progression of an outbreak, commonly utilized indicators include the number of effective reproductions
and the number of new cases. Given that China conducted nucleic acid testing on all residents during the outbreak, the
number of daily new cases can be an acceptable and more direct proxy indicator of transmissibility. According to data
published by the National Health Commission, China categorizes COVID-19 infections into asymptomatic and confirmed cases
(newly confirmed cases include individuals who have progressed from asymptomatic to confirmed cases). China's asymp-
tomatic and confirmed cases both showed two peaks in the first half (AprileMay) and second half (NovembereDecember) of
2022, with asymptomatic cases generally outnumbering confirmed cases (Fig. 1 (a)), accompanied by regionally widespread
outbreaks (Fig. 1(b and c)). The number of cases was predominantly asymptomatic, and the correlation coefficient between
new confirmed cases and new asymptomatic cases was 0.888. The data on new asymptomatic cases provided the majority of
the information regarding the development of the outbreak. Consequently, the number of new asymptomatic cases was
employed as the dependent variable in the proposed model, representing the spread of the epidemic, denoted as Y.
Furthermore, the data was smoothed over a 14-day period in order to reduce the impact of random errors.

Daily meteorological factors include 2 m air temperature (TEMP), 2 m dewpoint temperature (D), 10 m wind speed (W),
and downward ultraviolet radiation at the surface (UV), where the 10 mwind speed is calculated by taking the square root of
the sum of the squared 10 m u-component and v-component of horizontal wind. The meteorological data were obtained by
averaging over the region using ERA5 reanalysis data with a spatial resolution of 0.25

� � 0.25
�
(Hersbach et al., 2023). ERA5 is

the fifth-generation atmospheric reanalysis of global climate data from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Daily air pollution factors include concentrations of PM10, PM2.5, sulfur dioxide (SO2), nitrogen dioxide
(NO2), carbon monoxide (CO), and ozone (O3) obtained from the China National Environmental Monitoring Center (China
Environmental Monitoring Center). Data on population mobility factors are obtained from the Baidu Migration Index
(BaiduMigration), which includes the daily in-migration size index (MI), out-migration size index (MO), work travel intensity
index (WI), and dining & leisure travel intensity index (DI) for each region. Finally, the various control policies implemented
by governments in response to outbreaks are also influential factors that cannot be ignored. The Oxford Covid-19 Government
Fig. 1. Descriptive analysis of COVID-19 data. (a): Daily number of new cases in the COVID-19 epidemic in China in 2022. The blue line indicates new confirmed
cases, whereas the red line denotes new asymptomatic cases. The Spearman correlation coefficient between the new confirmed cases and new asymptomatic
cases is 0.888. (b) Distribution of new asymptomatic cases in mainland China on April 15, 2022. (c): Distribution of new asymptomatic cases in mainland China on
November 15, 2022.
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Response Tracker (OxCGRT) collects information on the response measures taken by governments and calculates a stringency
index (Hale et al., 2021). The stringency indices (SI) are calculated for containment and closure policies and health system
policies. At the same time, policies were differentiated by vaccine, and the index was calculated separately for vaccinated and
unvaccinated people, and then the average of the two was calculated to obtain the stringency index. However, the stringency
index dataset is daily data for provincial administrative districts. We assume that local governments in the same province
follow the same outbreak control policies. In general, the data used in this study and the basic information of the data are
summarized in Table 1.

2.2. Double machine learning

We define the dependent variable as Y and the influence factors as X ¼ ðX1; X2;…; XPÞ. When calculating the effect
(denoted by q) of a variable T (often called the treatment variable) in X on Y, there may exist some variables that affect Y while
also having an effect on T . Such variables are called confounding factors (Xc). We can describe this problem using the partial
linear regression (PLR) model (Robinson, 1988), as shown in Equations (1) and (2). The effect of confounding factors on Y is
denoted as gðXcÞ, and the effect of confounding factors on T is mðXcÞ.

Y ¼ qT þ g
�
Xc�þ U; E

�
U
��Xc; T

� ¼ 0; (1)

T ¼ m
�
Xc�þ V ; E

�
V
��Xc� ¼ 0; (2)

where U and V are the residual terms, E½U��Xc; T � is the conditional expectation of U given Xc and T , E½V��Xc� is the conditional
expectation of V given Xc.

The traditional approach is to model T together with Xc for Y without considering the relationship between the con-
founding factors and the treatment variable. For example, the estimation of bqT þ bgðXÞ is obtained by directly fitting Equation
(1), using multiple linear regression or other machine learningmethods. If the number of samples is n, then the estimate bq for
q is:

bq ¼
 
1
n

X
i2n

T2i

!�1
1
n

X
i2n

Ti
�
Yi � bg�Xc

i

��
; (3)
Assuming that the true q is q0, the estimated bias is:

ffiffiffi
n

p ðbq � q0Þ ¼
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i2n
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��
: (4)
The source of the bias is the overfitting of the model and the regularization bias introduced by the estimation bgðXc
i Þ

(Chernozhukov et al., 2018). Since T is related to Xc, 1ffiffiffi
n

p P
i2N

TiðgðXiÞ � bgðXc
i ÞÞ is nonzero. Thus, the estimator bq typically has a

convergence rate of less than 1=
ffiffiffi
n

p
.

Table 1
Overview of data used in the study.

Data name Unit Timescale

Epidemic data New asymptomatic cases persons Daily
Meteorological data 2 m air temperature ◦ C Daily

2 m dewpoint temperature ◦ C
10 m horizontal wind speed m/s
downward ultraviolet radiation at the surface KJ/m2

Air pollution data PM10 mg/m3 Daily
PM2.5 mg/m3

SO2 mg/m3

NO2 mg/m3

CO mg/m3

O3 mg/m3

Population mobility in-migration size index / Daily
out-migration size index /
work travel intensity index /
dining & leisure travel intensity index /

Government control policy stringency index / Daily
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The Double Machine Learning (DML) algorithm (Chernozhukov et al., 2018) overcome regularization bias by orthogo-
nalization. By using a machine learning method to fit Equation (2), the obtained residual V ¼ T �mðXcÞ is orthogonal to Xc,
and the effect of Xc on T is eliminated from T . At the same time, the effect of Xc on Y is also removed from Y . Finally, a
regression model of the residual of T and the residual of Y is established:

Y � g
�
Xc� ¼ qV þ U: (5)
In the DML model, m̂ðXcÞ and ĝðXcÞ are fitted by machine learning model respectively. At this point, the estimate for q is:

q
͝
¼
 
1
n

X
i2n

V̂ iTi

!�1
1
n

X
i2n

V̂ i
�
Yi � ĝ

�
Xc
i

��
; (6)
Since V and Xc are orthogonal, it is easy to get that 1ffiffiffi
n

p P
i2n

bV iðgðXiÞ � bgðXc
i ÞÞ tends to zero, thereby avoiding the regulari-

zation bias in the estimation error.
Additionally, the cross-fitting operation using in DML model can effectively avoid the bias caused by over-fitting

(Chernozhukov et al., 2018). Specifically, the total sample is divided into two sub datasets. First, one sub dataset is selected
as the training set for fitting gðXcÞ and mðXcÞ, The other sub dataset is used as the test set to compute q after obtaining the
residual of T and the residual of Y based on the trained model. Subsequently, the two sub datasets are exchanged, and the
aforementioned steps are repeated in order to obtain a new estimation of q. The average of the two estimates (bqmean) is
calculated as the final estimate of q.

2.3. Modeling configurations for quantifying environmental effects on COVID-19

The DML model framework we established to calculate the causal effects of environmental factors on COVID-19 is shown
in Fig. 2 (a). In the model framework, Random Forest model (Breiman, 2001) was employed to fit functions gðXcÞ and mðXcÞ
with three-fold cross validation. In addition to environmental factors, population movements can lead to the spread of ep-
idemics and increase the risk of large-scale outbreaks (Jia et al., 2020; Li et al., 2023; Zheng et al., 2020). Therefore, the
variables input into the model that affect epidemic transmission include environmental factors and population movement
factors. Moreover, we have introduced the first-order lag of daily newasymptomatic cases and time index as input variables to
reflect the trends of the epidemic and environmental factors. The output variable was the daily count of new asymptomatic
cases. In order to estimate the causal effect of environmental factors on the transmission of COVID-19, environmental factors
were successively taken as treatment variables (T) in the model, and the remaining influence factors were confounding
factors (Xc). For example, when estimating the causal effect of temperature, temperature will be used as a treatment variable
(T), and influence factors other than temperature will be used as confounding factors (Xc). By replacing treatment variables
and confounding factors, the model is trained to estimate the causal effects of all environmental factors. The code imple-
mentation of the above model is based on the DoubleML python package. (Bach et al., 2022).
Fig. 2. Framework of calculated unbiased causal coefficients of environmental factors on COVID-19. (a): The DML model framework diagram. (b): Direct esti-
mation of the role of the treatment variable will produce biased estimates due to the confounding effects. (c): Unbiased estimates of the role of the treatment
variable are obtained by removing the effects of confounders.
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3. Results

3.1. Confounding effect between environmental factors and COVID-19

During the outbreak in each city, we computed the partial correlation coefficients between each influencing factor
(including environmental factors, population mobility factors and stringency index) and the number of daily new asymp-
tomatic cases of COVID-19. The average of all statistically significant results (p� 0.05) is illustrated in Fig. 3 (a). Meteorological
factors, air pollution, population movement and stringency index are all correlated to some degree with the development of
epidemics. Additionally, there is a strong correlation between the number of new asymptomatic infections reported on the
current day and the number reported on the previous day (Yt�1). Furthermore, Fig. 3 (b) displays the mean values of sta-
tistically significant correlation coefficients (p� 0.05) between influencing factors during the outbreaks in all cities. There is a
significant correlation between the influencing factors. This indicates that there are confounding factors in calculating the
effects of each factor.

The intricate interplay of various factors in COVID-19 transmission poses challenges for the precise evaluation of their
contributions. There is a potential for bias when attempting to quantify the contribution of influencing factors. It is crucial to
emphasize the use of a debiasedmodel to obtain an unbiased estimate of the causal effect of environmental factors on COVID-
19.

3.2. A debiased estimate of the environmental contribution to COVID-19

To assess causality, it is imperative to create a causality diagram and comprehensively consider the influences of the
epidemic. Utilizing the correlations identified, we established the causal graph depicted in Fig. 3 (c). Subsequently, we
constructed a double machine learning causal inference model based on this graph to verify the causal relationship between
environmental factors and COVID-19.

We utilized multiple linear regression (MLR) to estimate the impact of the environment on COVID-19 and compared it
with the causal effects obtained from the DML causal inference model. In order to ensure fairness, the input and output of the
MLR model are consistent with the DML model. First, we compare the root-mean-square errors of the MLR model and the
DML model on the test set. The results show that the DML model has a smaller error and it is reasonable to assume that the
DML model estimates environmental effects more accurately (Fig. S1). Fig. 4 shows the distribution of the impact of envi-
ronmental factors on many outbreaks estimated by the DML and MLR models. Only the results that passed the statistical
significance test (p � 0.05) in both models are shown. From Fig. 4, we get a clear comparison of the estimation results for the
contribution of environmental factors between the DML and MLR models. The estimates from both models indicate that
Fig. 3. There are confounding factors in the relationship between environmental factors and COVID-19. (a): Average partial correlation coefficient between
influencing factors and COVID-19. (b): Mean spearman correlation coefficients among influencing factors during the COVID-19 outbreak in China. (c): Causal
graph of influencing factors and COVID-19.
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Fig. 4. Distribution of estimates of environmental factor contributions in MLR and DML models that passed statistical significance tests. *** stands for p-value
�0.05, and the numbers in parentheses represent the amount of MLR and DML model estimates that pass the statistical test at the significance level of a ¼ 0.05,
respectively.
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environmental factors play varying roles in outbreaks across different regions and exhibit a roughly bimodal distribution.
However, the estimates obtained fromMLR exhibit greater dispersion. When confounding effects are present, the bias in the
MLR estimates further exacerbates the heterogeneity of environmental contributions.

Furthermore, we use slope plots to compare the estimates of the two models in the same region. Fig. 5 displays the results
for each environmental factor separately. Blue is employed to signify instances where MLR estimates surpass DML estimates,
while red is utilized when MLR estimates are lower than DML estimates. From the overall view of the figure, the predomi-
nance of blue tends to highlight areas where environmental factors play a positive role, whereas red is more prevalent in
regions where environmental factors exhibit a negative impact. Therefore, the MLR is somewhat overestimated for both
positive and negative contributions to environmental factors.
Fig. 5. A slope graph comparing the discrepancies in estimated contributions of environmental factors to COVID-19 between MLR and DML models for the same
region. The subplots respectively display the differences in results between the two models for different environmental factors. In the graphs, blue indicates
instances where MLR model results surpass those of the DML model, while red signifies cases where MLR results are lower than those of the DML model.
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The results of the statistical hypothesis tests further illustrate the differences between the MLR and DML model results
(Table 2). First, we used one-tailed F-tests to compare the variance of the results from the two models. The results for all
environmental factors rejected the null hypothesis at the a¼ 0.05 significance level that the variance of theMLRmodel results
is greater than the variance of the DML model results. As a result, the estimates from the MLR model are more discrete,
confirming that the MLR model increases heterogeneity in the role of environmental factors. We also tested whether the
means of the results of the two models were significantly different. In the presence of positive and negative numbers, the
mean test may not show differences in the means due to offsetting problems. To better understand and test the differences
between the results of the two models, we classified the positive and negative effects of environmental factors based on the
estimates of the DML model. Based on the results of the Shapiro-Wilk test (Table S1), the data did not satisfy normal dis-
tribution, so the nonparametric test Wilcoxon signed-rank test was chosen to test whether the results of MLR were signif-
icantly greater than those of DML. At the significance level of a¼ 0.05, all environmental factors passed the significance test in
either positive or negative effects except for CO, indicating the overestimation of the role of the environment by the MLR
model. The results for CO did not pass the significance test, indicating that there was no significant difference between the
two models in estimating the role of CO on COVID-19, which may be due to the weaker effect of confounders on CO. In
addition, the sample sizes for all statistical tests are shown in Table S2.
3.3. Heterogeneity in the causal effects of environmental factors on COVID-19

The estimation results in Section 3.2 have shown that the contribution of environmental factors to COVID-19 transmission
varies by region. In this section, we will further analyze the causes of this heterogeneity and the changing rules of the role of
environmental factors. Fig. 6 shows the spearman correlation coefficient between the mean values of influencing factors and
environmental causal effects at the time of urban outbreaks. The causal effect of temperature on COVID-19 (qT ) showed a
significant correlationwith local mean temperature, mean dewpoint temperature, andmean O3 concentrations. Likewise, the
causal effect of W (qW ) showed a significant correlation with the local mean CO concentration. In the case of PM10, its causal
effects (qPM10

) were notably correlatedwith local meanWI. The causal effect of SO2 (qSO2
) showed a significant correlationwith

the local mean wind speed. Furthermore, the causal effect of CO (qCO) exhibited a significant correlation with the local mean
PM10 concentration and mean PM2.5 concentration. Correlation analyses reveal environmental disparities as contributors to
causal effects heterogeneity.

To analyze the changing trend of environmental factors' causal effect on COVID-19, regression analysis was performed on
the statistically significant correlations mentioned above. Fig. 7 illustrates the results of the regression coefficients passing the
significance test (p-value �0.05). Under different temperature and humidity conditions, significant differences in the rela-
tionship between temperature and COVID-19 transmission were observed. The causal effect of temperature on COVID-19
showed a tendency to increase with rising temperature and humidity. On average, the causal effect of temperature on
COVID-19 increases by about 0.04 and 0.03 per degree increase in mean temperature and mean dew point temperature,
respectively (Fig. 7(a and b)). In regions where temperatures fall below 10 �C, the correlation between temperature and
COVID-19 was primarily negative. Within the temperature range of 10e20 �C, a mixed pattern emerges, with both negative
and positive effects observed, suggesting the involvement of additional influencing factors. Areas with temperatures above
20 �C turned out to show mainly positive causality. In summary, characterizing the impact of temperature and humidity on
COVID-19 as strictly positive or negative proves insufficient. Instead, its effects exhibit diversity, contingent upon the specific
environmental conditions. Temperature has a significant impact on the transmission of COVID-19 in both hot, humid climates
and cold, dry climates. Changes in temperature and humidity, whether they increase or decrease, do not guarantee
containment of the outbreak.
Table 2
Statistical tests of the results of MLR and DML models.

Environmental factor F-test Wilcoxon signed-rank test
(þ)

Wilcoxon signed-rank test
(�)

statistic p statistic p statistic p

T 6.62 0.00 5029.00 0.01 4695.00 0.59
D 8.15 0.00 4101.00 0.14 3677.00 0.00
W 2.95 0.00 5469.00 0.00 3761.00 0.06
UV 3.27 0.00 5855.00 0.01 2665.00 0.00
PM10 3.86 0.00 5834.00 0.03 2856.00 0.02
PM2.5 6.16 0.00 5274.00 0.01 3377.00 0.02
SO2 2.35 0.00 5413.00 0.00 3335.00 0.01
NO2 4.39 0.00 6552.00 0.07 2023.00 0.00
CO 4.73 0.00 3448.00 0.57 4540.00 0.11
O3 2.68 0.00 5605.00 0.01 2489.00 0.00

F-test H0: sMLR � sDML; H1: sMLR > sDML

Wilcoxon signed-rank test H0: jmMLRj � jmDMLj; H1: jmMLRj > jmDMLj
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Fig. 6. Spearman correlation coefficient between environmental causal effects and regional environmental conditions.
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The role of air pollution varies across different environments and is influenced by interactions between air pollutants.
With the elevation of PM10 and PM2.5 concentration levels, the causal effect coefficients of CO on COVID-19 increase at average
rates of 0.01. (Fig. 7(d and e)). In summary, an elevation in airborne pollutant concentrations increases the contribution of
pollutants to the spread of an outbreak. The environment in areas with more severe air pollution is more favorable to the
spread of epidemics. Moreover, there is an interplay betweenmeteorological conditions and air pollution. In this study, it was
Fig. 7. Trends in the causal effects of environmental factors on COVID-19. (aec): Changing trend of T's causal effect on COVID-19 at different regional mean
temperatures, mean dew point temperature, and average O3 concentration respectively; (dee): Changing trend of CO's causal effect on COVID-19 at different
regional average PM10 concentration and average PM2.5 concentration respectively; (f): Changing trend of SO2's causal effect on COVID-19 at different regional
average wind speed.
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shown that an increase in wind speed was beneficial in reducing the effect of SO2 on the development of the outbreak (Fig. 7
(f)). As wind speed increases, the causal effect of SO2 on COVID-19 decreases by 0.21 on average.

4. Discussion & conclusion

4.1. Complex nonlinear relationship between environment and COVID-19 transmission

It is unsuitable to solely attribute environmental factors as having a negative or positive correlation with COVID-19
transmission. The connection between the two is complex and non-linear. In different regional environments, the mecha-
nisms by which environmental factors affect COVID-19 transmission will change. During the spread of the pandemic, there is
an interaction between meteorological factors and air pollution. Similarly, Zhang et al. (2020) also highlighted the correlation
between ambient temperature and air pollution on epidemic transmission. The combination of different factors complicates
the transmission mechanism of COVID-19. Epidemics are possible in various environments. In fact, although COVID-19 tends
to have more frequent outbreaks in winter, there is no evidence to suggest that the pandemic disappears with the rise in
temperature during the summer. On the contrary, this study suggests that in regions with higher average temperatures, the
increase in temperature favors the development of the pandemic. Other research suggests that high temperatures and heat
waves increase the risk of COVID-19 transmission (Lian et al., 2023). Multiple evidences suggest that the spread of COVID-19 is
a highly non-linear process. The role of environmental factors in COVID-19 changes dynamically. This also demonstrates the
need for outbreak prevention and control. It is not feasible to rely on changes in the environment to contain the outbreak.

In addition, the role of environmental factors passed significance testing in a small proportion of the 261 outbreaks that we
analyzed. This suggests that environmental factors were not the dominant cause of thewidespread outbreak in China in 2022.
Moreover, it is crucial to acknowledge that variations in the contributions of factors do not necessarily alignwith disparities in
regional environments concerning COVID-19 transmission. The correlation between regional environments and the causal
effects of environmental factors is also constrained. The intricatemechanisms driving the transmission of COVID-19 cannot be
solely ascribed to environmental variations. Indeed, the influencing factors in the spread of COVID-19 are highly intricate.
Regional social economic development level significantly affected the severity of COVID-19 (McGowan & Bambra, 2022). The
interplay of these pivotal factors also shapes the role of the environment in the dissemination of the pandemic. It is
imperative to distinguish the mechanisms of pandemic transmission in diverse scenarios. When forecasting the progression
of the pandemic, due consideration must be given to disparities in environmental and socio-economic factors.

4.2. Limitations and future works

Our study currently has several limitations. The use of daily cases as a metric for the transmissibility of COVID-19 presents
certain limitations. While this measure provides a direct and immediate representation of the number of daily cases, it does
not account for the complex dynamics of transmission within a population. A more specialized metric often employed to
estimate viral transmissibility is the effective reproduction number, which represents the average number of secondary cases
produced by a primary case. The effective reproduction number should be used in place of daily cases as an indicator of the
spread of the epidemic in future analyses. This would allow for amore robust interpretation of the virus's transmissibility over
time and across different population dynamics.

Outbreaks can be influenced by a variety of factors, including regional vaccination status, demographics, socioeconomic
conditions, and cultural practices (McGowan & Bambra, 2022). Additional factors need to be considered to more accurately
quantify transmission mechanisms. The heterogeneity of the role of environmental factors also needs to be further explored
by including more factors. In the future, the introduction of regionally differentiated roles of environmental factors in
outbreak simulation and forecasting models will help to more accurately characterize outbreak transmission mechanisms,
identify high-risk areas and populations, reduce the likelihood of major outbreaks, and minimize public health and economic
impacts. In addition, our study is a time series analysis that does not fully account for spatial correlations. In the future,
spatial-temporal models should be developed to analyze the role of environmental factors.

4.3. Conclusion

Globalization processes and climate change increase the risk of future pandemics. There is a growing need to study how
the environment affects the spread of epidemics. Our study rigorously analyzes the causal relationship between environ-
mental factors and COVID-19 transmission in 261 outbreaks across diverse Chinese cities in 2022, utilizing a robust double
machine learning causal inference model. Through a comparative analysis with the outcomes of the traditional multiple
linear regression model and an exploration of the heterogeneity in the causal effect of environmental factors, the following
primary conclusions were drawn: (1) Environmental factors exhibit a confounding influence on the transmission of COVID-
19. (2) In the presence of confounding effect, it is biased to directly employ the multiple linear regression model to estimate
the effect of environmental factors. This bias results in an overestimation of the role of environmental factors to some extent.
(3) The impact of environmental factors on COVID-19 transmission is heterogeneous, exhibiting variations across different
regions. Both hot and humid, as well as cold and dry environments, can contribute to the risk of COVID-19 transmission. The
higher the pollutant concentration, the more pronounced the impact on the spread of the epidemic. Additionally,
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meteorological factors and air pollution factors interact in the spread of the epidemic. (4) Ultimately, we posit that the
relationship between the environment and COVID-19 is intricate and nonlinear. Successful prevention and prediction of
future epidemics necessitate the consideration of regional environmental differences.
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