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Abstract

High-order epistasis—where the effect of a mutation is determined by interactions with two

or more other mutations—makes small, but detectable, contributions to genotype-fitness

maps. While epistasis between pairs of mutations is known to be an important determinant

of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain

poorly understood. To determine the effect of high-order epistasis on evolutionary trajecto-

ries, we computationally removed high-order epistasis from experimental genotype-fitness

maps containing all binary combinations of five mutations. We then compared trajectories

through maps both with and without high-order epistasis. We found that high-order epistasis

strongly shapes the accessibility and probability of evolutionary trajectories. A closer analy-

sis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary

trajectories. We further find that high-order epistasis makes it impossible to predict evolu-

tionary trajectories from the individual and paired effects of mutations. We therefore con-

clude that high-order epistasis profoundly shapes evolutionary trajectories through

genotype-fitness maps.

Author summary

A key goal for evolutionary biologists is understanding why one evolutionary trajectory is

taken rather than others. This requires understanding how individual mutations, as well

as interactions between them, determine the accessibility of evolutionary pathways. We

used a robust statistical analysis to reveal interactions between up to five mutations in

published datasets, meaning that the effect of a mutation can depend on the presence or

absence of four other mutations. Simulations reveal that these interactions strongly shape

evolutionary trajectories. These interactions lead to profound unpredictability in evolu-

tion, as one cannot use the effect of a mutation in the ancestor to predict its effect later in

the trajectory.
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Introduction

Epistasis creates historical contingency, as it means that the effect of a mutation depends on

previous substitutions [1–6]. Interactions between pairs of mutations can cause mutations to

accumulate in a specific order [1, 4], stochastically open and close pathways [3, 6], and make

evolution irreversible [7, 8].

The effects of high-order epistasis—interactions between three or more mutations—on evo-

lution are less well understood than the effects of pairwise epistasis. Statistically-significant

high-order epistasis has been observed in multiple genotype-phenotype maps [6, 9–16], even

when steps are taken to minimize its contribution to epistasis models [15]. Its magnitude is

generally lower than the individual and pairwise epistatic effects of mutations [15]. Several

studies have suggested that it can alter evolutionary outcomes [6, 10, 16], but its overall impor-

tance for evolution is not well understood. Does high-order epistasis alter evolutionary out-

comes? Or are trajectories primarily shaped by the additive and pairwise epistatic effects of

mutations?

We set out to assess the effect of high-order epistasis on evolutionary trajectories through

experimentally measured genotype-fitness maps. We decomposed these maps into contribu-

tions from nonlinear scale, additive effects, and epistasis at different orders ranging from sec-

ond to fifth. We then calculated “truncated” maps with different orders of epistasis deleted. By

comparing the fitness values and probabilities of individual evolutionary trajectories through

the truncated maps, we can reveal the extent to which high-order epistasis determines evolu-

tionary outcomes.

Results

High-order epistasis is common in all maps

Our first goal was to determine the contributions of each order of epistasis to fitness in six

experimentally measured genotype-fitness maps (Table 1). Each map consisted of all possible

combinations of 5 mutations (25 = 32 genotypes) in a haploid genome. The mutations in data-

sets I and IV arose during adaptive, experimental evolution of E. coli, and occur throughout

the genome [19, 28]. The mutations in datasets II and VI each occur in single genes that confer

drug resistance in E. coli and HIV, respectively [1, 29]. The mutations in datasets III and V

were introduced randomly into the A. niger genome [30]. Previous workers characterized

components of fitness for each genotype under defined experimental conditions. For two of

the datasets (I, and IV), the authors measured relative fitness using competition assays. In two

of the datasets (III and V), the authors measured growth rate of each strain. In dataset II, the

authors measured minimum inhibitory concentration in the presence of an antibiotic, and

from this estimated relative fitness [1]. In dataset VI, the authors measured HIV infectivity in

Table 1. Experimental genotype-phenotype maps used in this study.

ID genotype organism reference

I scattered genomic mutations E. coli [19]

II β-lactamase enzyme point mutations E. coli [1]

III chromosomes combinations A. niger [30]

IV scattered genomic mutations E. coli [28]

V chromosomes combinations A. niger [30]

VI envelope glycoprotein point mutations HIV-1 [29]

https://doi.org/10.1371/journal.pcbi.1005541.t001
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an ex vivo assay, then treated this activity as a proxy for fitness [29]. All genotypes and pheno-

types for each dataset are shown in S1 JSON.

We previously analyzed four of these datasets, finding small magnitude, but statistically-sig-

nificant, high-order epistasis in each map [15]. We used this same approach to characterize

epistasis in the remaining two maps (S1 Fig, Materials & methods). We sought to account for

confounding effects that could lead to spurious epistasis, which would, in turn, lead to spurious

effects on evolutionary trajectories. The most important confounding effect is the scale of the

map. Models of high-order epistasis sum the effects of mutations and then account for devia-

tion from this expectation by epistasis [12, 17]. But there is no a priori reason to assume muta-

tional effects should add: they may multiply or combine on some other nonlinear scale [5, 12,

15, 31]. To account for this, we empirically determined a nonlinear scale for each map using a

power-transform, and then used this to linearize each map [15].

We then decomposed the linearized maps into epistatic coefficients using Walsh polynomi-

als [10, 12, 17]. This approach uses the geometric center of the genotype-fitness map as refer-

ence state and reveals global correlations in the effects of mutations across the map. Each

order of epistasis accounts for variation that is not explained by the sum of all lower-order con-

tributions. For example, third-order coefficients account for any “leftover” variation in the fit-

ness of triple mutants after the first-order (additive) and second-order (pairwise) effects of

those mutations are taken into account.

We determined the contribution of each order of epistasis to the total variation in fitness

for each dataset by sequentially setting fifth-, fourth-, third-, and second-order epistatic coeffi-

cients to zero. We recalculated the fitness of each genotype using each “truncated” model. This

is directly analogous to decomposing a sound wave into a sum of frequencies using a Fourier

transform [12]. After decomposition, the original sound wave can be approximated by a sum

of principal frequencies, followed by a reverse Fourier transform. By selectively including fre-

quencies, one can identify those that contribute most to the final sound wave. Our analysis fol-

lows the same logic, approximating fitness (the sound wave) using a collection of epistatic

coefficients (sound frequencies).

We quantified the contribution of each epistatic order by measuring the change in fitness

when the ith order of epistasis was included in the model. As a metric, we used � ¼ r2
i � r2

i� 1
,

where r2
x is the squared Pearson’s coefficient between the measured fitness of each

genotype and its fitness calculated for a model truncated to the xth order. ϕ ranges from -1 to

1. Fig 1A shows this calculation for dataset I. As epistatic orders are added, ρ2 between the

truncated model and measured fitness values improves. This allows determination of ϕ
for each order: first-order coefficients (additive effects) account for 94.0% of variation in

fitness; second-order (pairwise epistasis) for 3.8%; third for 1.2%, fourth for 0.9%, and fifth

for 0.1%.

We then applied this analysis to all six datasets. Fig 1B summarizes these results. The total

contribution of epistasis to variation in fitness ranged from 6.0% (dataset I) to 32.2% (dataset

VI). Other datasets exhibited intermediate levels of epistasis, comparable in magnitude to

high-order epistasis observed in similar datasets [10, 15, 16]. In all datasets, the first-order

(additive) effects of mutations made the largest contribution to variation in fitness. Outside of

this, there was no simple pattern in the relative contributions of the different orders. In dataset

I, II and IV, the contribution of epistasis to variation decayed with increasing order. In dataset

V, epistasis does not decay. In dataset VI, the addition third-order epistasis (without fourth-

order epistasis) actually does a worse job of predicting fitness than second-order alone. The

quantitative and qualitative differences in the contribution of epistasis across datasets allow us

to study how altering epistasis alters evolutionary trajectories.

High-order epistasis shapes evolutionary trajectories
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Epistasis alters evolutionary trajectories

Our next question was how each order of epistasis altered evolutionary trajectories. We first

back-transformed our truncated, linearized maps onto the original scale. This creates a

genotype-fitness map without specific epistatic interactions, but on the original, possibly non-

linear, scale of the map. We calculated the relative probabilities of all L! forward trajectories

through these maps, starting from the ancestral state and ending at the derived state [1, 19, 30].

Because the maps describe fitnesses of asexual organisms with large population sizes, we mod-

eled trajectories as a series of sequential fixation events captured by a Gillespie model for hap-

loid organisms with large population size (Materials & methods) [1, 18, 19]. In this scheme,

the probability of a trajectory is the product of the probabilities of its individual fixation events,

normalized across all trajectories.

We visualized these trajectories by overlaying them on the genotype-fitness map weighted

by their relative probabilities. Higher probability mutations have thicker lines connecting

them. Fig 2 shows this analysis for dataset I. We started with a purely additive map (top left).

All trajectories are accessible with similar probabilities because, in this map, all mutations are

individually favorable. We then added successive orders of epistasis and recalculated trajecto-

ries through each new map. The addition of second-order epistasis altered the availabilities of

trajectories. The changes are most readily evident in the lower row in Fig 2, which shows the

change in the probability of each edge and node in the map. The left side of the map is red

(indicating loss of probability), while the right side of the map is blue (indicating gain of proba-

bility). Addition of each new order, moving left to right across Fig 2, alters the probability of

trajectories through the map.

To quantify differences in the sets of trajectories with increasing epistasis, we calculated the

change in the probabilities of all 120 forward trajectories through maps with different amounts of

epistasis included (θ). A θ of 0.0 indicates that the set of trajectories through the spaces are identi-

cal, while a θ of 1.0 means the sets of trajectories do not overlap at all (Materials & methods).

Intermediate values indicate that some fraction of the trajectory probability density is shared

Fig 1. Contributions of epistasis to variation in fitness. Panel A: Correlation between observed (linearized) fitness and fitness calculated for truncated

epistasis models for dataset I. Each point on the plot is a single genotype-fitness pair; the dashed line is a 1:1 line. Colors correspond to the truncation

order: to first (red), second (orange), third (green), fourth (blue), and fifth (purple). ρ2 and ϕ for each order are shown on the plot, colored by order. Panel B

summarizes the contributions of each order of epistasis to the variation in fitness for all six datasets. Dataset is indicated with roman numeral. Colors follow

panel A.

https://doi.org/10.1371/journal.pcbi.1005541.g001
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between the maps. In dataset I, trajectories through the additive and second-order epistatic maps

have θ = 0.390. Put another way, the addition of pairwise epistasis to the additive map shifts

39.0% of the trajectory probability density. Addition of each new order of epistasis has a smaller

effect on trajectory probability: θ2!3 = 0.340, θ3!4 = 0.292, and θ4!5 = 0.122.

To determine confidence intervals on our estimates of ϕ and θ, we sampled from the fitness

measurement uncertainty for each genotype, generating a collection of pseudoreplicate

genotype-fitness maps (S2A Fig). We then decomposed each pseudoreplicate map into epi-

static coefficients (including refitting the scale) and remeasured ϕ and θ for each epistatic

order. Fig 3A shows this calculation for dataset I. From these distributions, we can determine

95% confidence intervals for ϕ and θ (shown as gray, bracketed values in Fig 2).

We next asked whether the observed epistasis and its effect on trajectories could be the

result of uncertainty in the fitness values. An epistasis model accounts for random noise as left-

over variation, and thus as apparent epistasis [15]. We posed the following question: if the epis-

tasis at a given order resulted only from noise, what effect would it have on ϕ and θ? To ask

this question, we constructed “null” maps with truncated epistasis, but noisy fitness values

(S2B Fig). We took our truncated maps at each order and then assigned each fitness the same

variance that was measured for the original, un-truncated fitness values. We sampled from this

uncertainty to generate pseudoreplicates, extracted apparent epistasis—in this case, arising

from noise—and then calculated ϕ and θ for the pseudoreplicate. This allows us to construct

distributions of ϕ and θ for epistasis arising purely from experimental noise.

We show this calculation for dataset I in Fig 3B. Unlike the experimental distributions,

which spread out in ϕ, the distributions arising from random noise cluster at low values of ϕ.

The ϕ/θ distributions of second-, third-, and fourth-order epistasis minimally overlap in

Fig 3A versus 3B. This indicates that the signal for epistasis in the datasets is greater than

expected from noise in the measured fitness values. In contrast, the ϕ/θ distribution for fifth-

order epistasis overlaps between Fig 3A and 3B: the effect of fifth-order epistasis cannot be

Fig 2. Epistasis alters evolutionary trajectories through genotype-fitness maps. Figure show the effects of increasing orders of epistasis on

evolutionary trajectories for dataset I. Top Row: Genotype-fitness maps with increasing amounts of epistasis included, increasing from none (far left) to

fifth-order (far right). Networks show all 25 genotypes, arranged from ancestral (top) to derived (bottom), colored by relative fitness from low (purple) to

high (yellow). Edges show the probability of a given mutation in a given background from low (thin) to high (heavy). Mutations with no probability have no

edge. The numbers above the arrows are ϕ, with 95% confidence intervals in brackets. Bottom row: Change in trajectory probability as each order of

epistasis is added. Edges reveal loss of probability (red) or gain of probability (blue). The weight of the edge is directly proportional to the change in

probability. Mutations whose probability do not change have no edge. For each node, the thickness of the ring reveals the change in probability that this

genotype is visited. For genotypes whose probability goes down, the red area indicates the loss in probability. For genotypes whose probability goes up,

the blue area indicates the increase in probability. The numbers below each network are θ, with 95% confidence intervals in brackets. The p-value

measures whether the observed value of θwould be expected from fitting experimental noise (Fig 3).

https://doi.org/10.1371/journal.pcbi.1005541.g002
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distinguished from noise. Because we are interested in the effect of epistasis on trajectories (θ),

we determined a p-value for each θ. We took the mode of θ at each order from Fig 3A, and

determined its percentile on the corresponding null distribution in Fig 3B. For second-, third-,

and fourth-order epistasis, this yields a p-value< 0.05. In contrast, the p-value for fifth order

was 0.12.

With these quantification tools in hand, we next studied the relationship between epistasis

and evolutionary trajectories for the increasing levels of epistasis exhibited by the remaining

five datasets. S3–S8 Figs summarize our analyses for all six datasets.

It is helpful to compare dataset I (Fig 2) and dataset V (Fig 4). While epistasis accounts for

6.0% of variation in fitness for dataset I, it accounts for 32% of the variation in fitness for data-

set V. The large amount of epistasis in dataset V means that epistasis at all orders has a massive

effect on evolutionary trajectories through this space. The addition of fourth-order epistasis is

Fig 3. Changes in trajectories are not the result of experimental uncertainty. Data in panel A and B are for

dataset I. Panel A shows the distribution of ϕ and θ for 10,000 pseudoreplicates generated by sampling

uncertainty in each the fitness of each genotype (S2A Fig). Colors denote order of epistasis, as in Fig 1. Panel B

shows the epistasis extracted from datasets without epistasis, but experimental uncertainty (S2B Fig).

https://doi.org/10.1371/journal.pcbi.1005541.g003

Fig 4. Epistasis alters trajectories in dataset V. Altered trajectories in dataset V with increasing epistasis. Colors, panel layouts, and statistics are as in

Fig 2.

https://doi.org/10.1371/journal.pcbi.1005541.g004
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particularly striking. With only third-order epistasis and down, there are multiple paths

through the space. With the addition of fourth-order epistasis, all paths but two become inac-

cessible. The addition of fifth-order epistasis opens the space up again, but to a different set of

trajectories than what existed in the third-order space.

We next asked whether magnitude of epistasis or the order of epistasis was a stronger pre-

dictor of its effect on evolutionary trajectories. We plotted ϕ versus θ for each order for each

dataset on a single plot (Fig 5A). This reveals a correlation between the magnitude of the epis-

tasis and its effect on trajectories. In contrast, we see no correlation between the order of epis-

tasis and its effect on evolutionary trajectories (Fig 5B). When epistasis contributes more than

�5% of the variation in fitness, regardless of order, the divergence in trajectory probabilities

with and without the epistasis is 40% or greater. The magnitude of epistasis—not its order—

predicts its effect.

High-order epistasis limits evolutionary predictability

Our next question was more practical: how important is epistasis for predicting evolutionary

trajectories in these datasets? We imagined an experiment in which we measured the effects of

all mutations in the ancestral genotype. We then asked if we could take these individually mea-

sured mutational effects and predict evolutionary trajectories.

To ask this question, we re-analyzed the epistasis present in all six datasets, this time using

the ancestral genotype as the reference state. In this formulation, the first-order coefficients are

the effect of each mutation by itself in the ancestral background, the second-order coefficients

are the difference in the effects of mutations introduced in pairs versus separately, and third-

order coefficients are the difference in the fitness of genotypes combining three mutations ver-

sus two mutations that cannot be explained by the first- and second-order coefficients. (This

has been called the “biochemical” or “local” model of high-order epistasis [12].) We describe

this further in the Materials & method section.

To characterize the effect of epistasis on our ability to predict evolutionary trajectories of

increasing length, we calculated the probability of all possible forward trajectories of a defined

number of steps starting from the ancestral genotype, and then repeated this probability calcu-

lation using maps truncated to various orders of epistasis. The difference in the actual and

Fig 5. The magnitude of epistasis, not its order, predicts its effects on trajectories. Panel A shows θ
graphed against ϕ for all datasets. Panel B shows θ graphed against the order of epistasis for all datasets.

Points are colored by the order of epistasis: second (orange), third (green), fourth (blue), and fifth (purple).

Error bars are 95% confidence intervals. Gray points are orders that could not be distinguished from

experimental uncertainty (p < 0.05).

https://doi.org/10.1371/journal.pcbi.1005541.g005
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truncated map trajectory probability distributions measures our predictive power for evolu-

tionary trajectories. We show these results in Fig 6 for all six datasets. In each panel, we plot

inclusion of increasing orders of epistasis left-to-right (starting from additive and going to

fifth-order) and increasing trajectory length bottom-to-top (starting from one-step and going

to five-step). The overlap between the trajectory distribution for the truncated and real map

for each epistasis/trajectory-length is shown as a color ranging from white (perfect prediction)

to red (poor prediction).

We found that all orders of epistasis were important for predicting evolutionary trajectories.

Dataset IV (panel D) illustrates behavior seen across all datasets, so we will use it as a specific

example. In this dataset, additive coefficients are inadequate to capture even two-step trajecto-

ries: the trajectory probability distribution for two-step mutations only overlaps by 53.0% for

the truncated and real maps. The prediction gets worse for longer trajectories, dropping to

39.4% for three steps, 30.5% for four steps, and 0.0% for five steps. The overlap for the final

step is 0.0% because the additive model does not predict that the five-mutation genotype will

Fig 6. Epistasis complicates predicting trajectories from the ancestral genotype. Panels show trajectory prediction accuracy (color) for different

amounts of pistasis included in the model (x-axis) and for different length trajectories away from the ancestral genotype (y-axis). Accuracy is measured as

the difference in the probability distributions for trajectories through the truncated and original maps, ranging from 0.0% (red, poor accuracy) to 100%

(white, perfect accuracy). Panels A-F correspond to datasets I-VI.

https://doi.org/10.1371/journal.pcbi.1005541.g006
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be more fit than the four-mutation genotype. Trajectories in the additive map therefore do not

proceed to this final genotype.

Adding pairwise epistasis to the model allows perfect “prediction” of the two-step trajecto-

ries, as we have perfect knowledge of the fitness values of all possible single and double

mutants. But the three-step and four-step trajectories are predicted worse with pairwise epista-

sis included than with the additive map. The three-step overlap is 25.9%, while the four-step

and five-step trajectory overlap is 0.0. The four-mutation and five-mutation genotypes are pre-

dicted to have low fitness. Adding third-order epistasis—now imagining that we characterized

all possible single, double, and triple mutants in the ancestral genotype—allows us to “predict”

trajectories up to three steps long; however, it fails for four- and five-step trajectories. The

overlap is 25.1% and 45.2% respectively. Even the addition of fourth-order epistasis is insuffi-

cient to capture the five-step trajectories: the overlap for five-step trajectories is 0.0%.

Dataset IV is a particularly clean example, but all six datasets exhibit similar behavior

(Fig 6). Neglecting epistasis leads to poor predictions of trajectories starting from the ancestral

genotype. The lower-order the truncation, the worse the prediction as more mutations accu-

mulate. Third- and fourth-order epistasis had an appreciable effect on all datasets. Fifth-order

epistasis had an effect in four of the six datasets. Like the analysis using the global model

above, high-order epistasis relative to the ancestral genotype potently alters evolutionary

trajectories.

Discussion

Our analysis reveals that high-order epistasis can strongly shape evolutionary trajectories.

Removal of three-, four-, and five-way interactions between mutations significantly alters the

probabilities of trajectories through genotype-fitness maps (Figs 2 and 4). This result is robust

to uncertainty in the measured fitness values (Fig 3) and appears to be a general pattern in

many maps (Fig 5). Finally, neglecting high-order epistasis leads to poor predictions of evolu-

tionary trajectories through these maps (Fig 6).

In the majority of datasets, low-order models provide useful estimates of fitness. For data-

sets I-IV, ignoring three-way and higher-interactions yields fitness values within 15% of the

actual map (Fig 1B). Dataset I would be particularly close, yielding fitness values within 2.5%

of the actual map. This is consistent with other analyses of high-order epistasis in other data-

sets, which suggest that additive and pairwise epistatic effects can often provide sufficient

information to predict multi-mutation fitness values to within 5-10% [6, 9–15].

While low-order models can often describe fitness with some degree of precision, low-

order models are inadequate to describe evolutionary trajectories in any of the datasets. Even

in dataset I, third- and fourth-order interactions potently shape evolutionary trajectories. The

probability distributions of trajectories with and without fourth-order epistasis differ by

29.2%. And, as the magnitude of epistasis increases, its effect on trajectories grows (Fig 5A). In

some instances, addition of high-order interactions completely shifts the set of trajectories

available (Fig 4).

The effect of high-order epistasis on evolutionary trajectories is profound. We can build

this intuition by imagining predicting evolutionary trajectories. If we start with knowledge of

the individual effects of mutations in the ancestral background we can predict the first move

perfectly, but not the second move. Pairwise epistasis means the effect of the second mutation

is modulated by the presence of the first. We might try to overcome this difficulty by measur-

ing the effect of each mutation and each pair of mutations, thereby accounting for pairwise

epistasis. But our results reveal this is still insufficient to predict trajectories past the second

step. There are three-way interactions that alter the effect of the third mutation, even after

High-order epistasis shapes evolutionary trajectories
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accounting for the first- and second-order effects of mutations. This continues all the way to

fifth-order in these five-site datasets.

This has two implications. First, this adds to the growing recognition of extensive contin-

gency in evolution [3, 4, 8, 32]. The effect of an event today is contingent on a whole collection

of previous events. Remarkably, we found that this contingency is mediated by epistasis at all

orders, including up to five-way interactions between mutations. Second, this work implies

that measuring the individual effects of many mutations in a single genetic background,

despite revealing a local fitness landscape [6, 33, 34], will be of limited utility for understanding

evolution past the first few moves.

We expect the effect of high-order epistasis on trajectories will be amplified in larger maps

that have more mutations. In a larger map, more mutations compete for fixation—each modu-

lated by high-order interactions with previous substitutions—leading to even greater contin-

gency on specific substitutions that occurred in the past. Further, the small maps we studied

artificially limit the effects of high-order epistasis, as larger maps could, potentially, have even

higher-order interactions. But even if no epistasis above fifth-order is present, trajectories will

have more steps in a larger map; therefore, a fifth-order interaction could alter the relative

probabilities of many more future moves in a larger space.

One open question is the effect of recombination on this radical contingency. We studied

trajectories in which mutations fixed sequentially. This means our results are directly applica-

ble to asexual organisms and loci in tight linkage, such as mutations to individual genes. Once

recombination comes into play, other dynamics become possible. While recombination can

completely overcome pairwise epistasis [35], it is unclear whether this result will apply to

higher-order interactions.

High-order epistasis appears to be a ubiquitous feature of experimental genotype-fitness

(and genotype-phenotype) maps [6, 9–15]. The origins of this epistasis remain unknown. Fur-

ther, epistasis may go to much higher-order than yet observed, leading to extremely long-term

memory in evolution. The observation of cryptic epistasis between genetic backgrounds that

appear similar, but in which mutations have radically different effects, may point to high-order

epistasis between mutations in diverging backgrounds [33, 36]. Whatever the origins or order

may be, our work reveals that combinations of early substitutions continue to have an effect as

future mutations accumulate: the past continues to press upon the present.

Materials and methods

Removal of high-order epistasis

We used the following protocol to remove specific orders of epistasis from genotype-fitness

maps. The steps correspond directly to the pipeline shown in S1 Fig, which is described in

detail in Sailer et al. [15].

1. We identified an appropriate, possibly nonlinear, scale for the map by fitting a power trans-

formation to the genotype-fitness map:

~Fexperimental ¼
ð~̂Fadd þ AÞ

l
� 1

lðGMÞl� 1
þ B; ð1Þ

where~Fexperimental is the vector of the observed fitness values, ~̂Fadd is the fitness of each geno-

type assuming each mutation has the same, average effect in all backgrounds, A and B are

translation constants, GM is the geometric mean of ð~̂Fadd þ AÞ, and λ is a scaling parameter.
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~̂Fadd is given by:

Fadd;i ¼
Xj�L

j¼1

DFj
D E

xi;j ð2Þ

where hΔFji is the average effect of mutation j across all backgrounds, xi,j is an index that

encodes whether or not mutation j is present in genotype i, and L is the number of sites. We

first regressed F̂ add, and then regressed the power transform.

2. We linearized each map by transforming each element in ~Fexperimental with the nonlinear

scale and coefficients determined in step 1. For each element in ~Fexperimental, we performed:

Flinear ¼ fl̂ðGMÞ
l� 1
ðFexperimental � B̂Þ þ 1g

1=l̂
� Â: ð3Þ

3. We decomposed the variation in fitness into epistatic coefficients using a linear decomposi-

tion of the form:

~b ¼ X� 1~Flinear; ð4Þ

where~b is a collection of epistatic coefficients (ranging from 0th to Lth order) and X is a

design matrix that indicates which coefficients contribute to fitness in which genotype. For

most of the work described, we used a Hadamard matrix for X, which uses the geometric

center of the genotype-fitness map as a reference state. [10, 12, 15, 17]. To construct this

matrix, we encoded each mutation within each genotype as -1 (wildtype) or +1 (mutant)

[12, 15]. For the final section, we use a “local” matrix for X, which measures the effect of

each mutation relative to a defined reference phenotype. To construct this matrix, we

encoded each mutation within each genotype as 0 (wildtype) or 1 (mutant). These to forms

of X can be readily inter-converted [12].

4. We truncated epistasis from the linearized map by setting the epistatic coefficients from

orders of interest to 0, creating~btrunc.

5. We recalculated the linearized fitness values, with truncated epistasis by:

~Flinear;trunc ¼ X~btrunc: ð5Þ

6. We transformed the ~Flinear;trunc onto the original, nonlinear scale using Eq 1, with

~Flinear;trunc in place of ~Fadd .

7. We used the final ~Ftrunc values to construct a genotype-fitness map in which orders of epis-

tasis were selectively removed, leaving the global, nonlinear scale intact.

We quantified the contribution of epistasis to each map (ϕ) by determining the difference

in the variation explained by the ith and (i − 1)th orders. � ¼ r2
i � r2

i� 1
, where r2

x is the squared

Pearson coefficient between linear fitness values in a model truncated to order x
(~Flinear;trunc� to� x) and linear fitness values determined from the original map (~Flinear).
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Evolutionary trajectories

We calculated the probability of a given evolutionary trajectory as series of independent,

sequential fixation events. We assumed that the time to fixation for each mutation was much

less than the time between mutations (the so-called strong selection/weak mutation regime)

[1, 18, 19]. The relative probability of an evolutionary trajectory i is the product of its required

fixation events relative to all possible trajectories:

pi ¼
Q

x2Si
px!xþ1

P
j2T

Q
x2Sj

px!xþ1

; ð6Þ

where πx!x+1 is the fixation probability for genotype x + 1 in the x background, Si is the set of

steps that compose trajectory i, and T is the set of all forward trajectories. The model assumes

the mutation rate is the same for all sites, and that population size and mutation rates are fixed

over the evolutionary trajectory [1, 19–22]. We calculated πx!x+1 for each step using the Gilles-

pie model [23]

px!xþ1 ¼
1 � e� sx!xþ1

1 � e� Nsx!xþ1
¼

1 � e� ð1� wxþ1=wxÞ

1 � e� Nð1� wxþ1=wxÞ
; ð7Þ

where N is population size, s is the selection coefficient and wx and wx+1 are the relative fit-

nesses of the x and x + 1 genotypes visited over the trajectory.

To determine the difference between sets of trajectories in maps with and without high-

order epistasis, we measured the magnitude of the difference in probability for all L! forward

trajectories through each space. We did so by:

y ¼

Pi¼L!

i¼1
jpexperimentali � ptrunci j

2
; ð8Þ

where pexperimentali is the probability of the ith trajectory within the experimental map and ptrunci is

the probability of that same trajectory in a truncated map, with high-order epistasis removed.

Software

We implemented the epistasis and trajectory models using Python 3 extended with the numpy
and scipy packages [24]. We used the python package scikit-learn to perform linear regression

with truncated forms of these models [25]. Plots were generated usingmatplotlib and jupyter
notebooks [26, 27]. Our full software package is available in the epistasis package via github

(https://harmslab.github.com/epistasis).

Supporting information

S1 JSON. Text file containing individual replicate fitness measurements for each genotype

in the six experimental datasets.

(JSON)

S1 Fig. Flow chart for removing epistasis in a genotype-fitness map. This chart describes the

pipeline we used to truncate epistasis from genotype-fitness maps. The data shown are for

dataset II. Networks (left) show all 25 genotypes, arranged from ancestral (top) to derived (bot-

tom), colored by relative fitness from 1.0 (purple) to 1.30 (yellow). The correlation plots (mid-

dle) show the fitness of each genotype plotted against the fitness of that genotype assuming

each mutation has a linear, additive effect on fitness (Fadd). Y-axes correspond to: the experi-

mentally measured fitness (Fexperimental, panel 2); the experimentally measured fitness
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linearized using the red scale in panel 2 (Flinear, panel 3); fitness values with third-, fourth- and

fifth-order epistasis removed, on the linear scale from panel 3 (Flinear,trunc, panel 5); and fitness

values with truncated epistasis on the red nonlinear scale from panel 2 (Ftrunc, panel 6). The

right-most panels show the fraction of variation explained by first- (red), second- (orange),

third- (green), and fourth-order (purple) epistatic coefficients. The area occupied by each

color indicates its contribution to the fitness on the linear scale.

(TIF)

S2 Fig. Schematic of our resampling protocol. Two-mutation maps are shown throughout,

colored by fitness from low (purple) to high (yellow). We sampled from two maps: the original

map with uncertainty (A, red) and a “null” map in which epistasis was removed, but experimen-

tal uncertainty maintained (B, blue). We used the same sampling protocol on each (“Start”).

We generated pseudoreplicates (s1, s2, . . . sn) from uncertainty (Gaussian curves above the color

spectrum in A and B). We then truncated the pseudoreplicate to ith and (i − 1)th order epistasis

and calculated ϕ and θ for each pseudoreplicate: {(ϕ1, θ1), (ϕ2, θ2), . . . (ϕn, θn)}. We can then

plot and compare these distributions on ϕ/θ axes.

(TIF)

S3 Fig. Epistasis alters trajectories in dataset I. A) Colors, panel layouts, and statistics are as

in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts

are as in Fig 3.

(TIF)

S4 Fig. Epistasis alters trajectories in dataset III. A) Colors, panel layouts, and statistics are

as in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel lay-

outs are as in Fig 3.

(TIF)

S5 Fig. Epistasis alters trajectories in dataset III. A) Colors, panel layouts, and statistics are

as in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel lay-

outs are as in Fig 3.

(TIF)

S6 Fig. Epistasis alters trajectories in dataset IV. A) Colors, panel layouts, and statistics are

as in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel lay-

outs are as in Fig 3.

(TIF)

S7 Fig. Epistasis alters trajectories in dataset V. A) Colors, panel layouts, and statistics are as

in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts

are as in Fig 3.

(TIF)

S8 Fig. Epistasis alters trajectories in dataset VI. A) Colors, panel layouts, and statistics are

as in Fig 2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel lay-

outs are as in Fig 3.

(TIF)
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