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Abstract

Hypophosphatasia is a rare heritable metabolic disorder caused by deficient Tissue Non-specific 

Alkaline Phosphatase (TNAP) enzyme activity. A principal function of TNAP is to hydrolyze 

the tissue mineralization inhibitor pyrophosphate. ENPP1 (Ectonucleotide Pyrophosphatase/

Phosphodiesterase 1) is a primary enzymatic generator of pyrophosphate and prior results 

showed that elimination of ENPP1 rescued bone hypomineralization of skull, vertebral and 

long bones to different extents in TNAP null mice. Current TNAP enzyme replacement therapy 

alleviates skeletal, motor and cognitive defects but does not eliminate craniosynostosis in pediatric 

hypophosphatasia patients. To further understand mechanisms underlying craniosynostosis 

development in hypophosphatasia, here we sought to determine if craniofacial abnormalities 

including craniosynostosis and skull shape defects would be alleviated in TNAP null mice by 

genetic ablation of ENPP1. Results show that homozygous deletion of ENPP1 significantly 

diminishes the incidence of craniosynostosis and that skull shape abnormalities are rescued 

by hemi- or homozygous deletion of ENPP1 in TNAP null mice. Skull and long bone 
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hypomineralization were also alleviated in TNAP−/−/ENPP1−/− compared to TNAP−/−/ENPP1+/+ 

mice, though loss of ENPP1 in combination with TNAP had different effects than loss of only 

TNAP on long bone trabeculae. Investigation of a relatively large cohort of mice revealed that the 

skeletal phenotypes of TNAP null mice were markedly variable. Because FGF23 circulating levels 

are known to be increased in ENPP1 null mice and because FGF23 influences bone, we measured 

serum intact FGF23 levels in the TNAP null mice and found that a subset of TNAP−/−/ENPP1+/+ 

mice exhibited markedly high serum FGF23. Serum FGF23 levels also correlated to mouse body 

measurements, the incidence of craniosynostosis, skull shape abnormalities and skull bone density 

and volume fraction. Together, our results demonstrate that balanced expression of TNAP and 

ENPP1 enzymes are essential for microstructure and mineralization of both skull and long bones, 

and for preventing craniosynostosis. The results also show that FGF23 rises in the TNAP−/− model 

of murine lethal hypophosphatasia. Future studies are required to determine if the rise in FGF23 is 

a cause, consequence, or marker of disease phenotype severity.
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INTRODUCTION

Tissue Non-specific Alkaline Phosphatase (TNAP, Alpl) is a membrane-tethered 

dephosphorylating enzyme. In humans and mice, TNAP is expressed in bone, growth 

plate cartilage, teeth, brain, kidney and liver (1–3). While the function(s) of TNAP in 

liver, kidney and brain are still being established (4–7), numerous prior studies have 

established that TNAP is an essential promoter of tissue mineralization when co-expressed 

with type I collagen in mineralized tissues (8–11). The primary known function of TNAP 

in tissue mineralization is to promote calcium phosphate hydroxyapatite crystal growth in 

pre-mineralized cartilaginous matrix (osteoid) by decreasing levels of the mineralization 

inhibitor, inorganic pyrophosphate, and by dephosphorylating osteopontin (12–15).

Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1, Enpp1) was first identified 

as an ectoenzyme that generates inorganic pyrophosphate via the hydrolysis of nucleotides 

and nucleotide sugars (16, 17). Data from both mouse and human studies supports the fact 

that ENPP1 is essential for control of both hard and soft tissue mineralization. As stated 

above, pyrophosphate itself inhibits tissue mineralization (18, 19). This is well evidenced 

by the fact that homozygous ENPP1 deficiency in humans leads to a severe form of 

vascular calcification (GACI; Generalized Arterial Calcification of Infancy) and that loss of 

function mutations in ENPP1 leads to spine stiffening (OPLL, Ossification of the Posterior 

Longitudinal Ligament), both of which are recapitulated in mouse models (20–23). Through 

as yet unknown mechanisms, ENPP1 deficiency also causes osteomalacia and osteoporosis 

in both humans and mice (24–28).

Deficient expression and/or activity of TNAP enzyme in humans causes a rare, heritable 

disorder called hypophosphatasia (HPP). Hypophosphatasia in humans has a broad range of 

severity that corresponds with timing of onset. Symptoms range from lethal and/or severe 
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with perinatal or infantile onset (29), to modest and milder forms with childhood and adult 

onset (30, 31). Through a series of preclinical studies conducted on the Alpl−/− mouse 

model of infantile hypophosphatasia (TNAP−/− mice), a mineral-targeted recombinant form 

of TNAP was developed (32, 33). This recombinant enzyme was initially tested in patients 

with life threatening disease and was shown to improve respiratory function, skeletal 

mineralization and survival in patients with severe perinatal and infantile hypophosphatasia 

(34, 35). More recent results confirm safety and longer-term efficacy of this enzyme 

replacement therapy. In a 7 year follow up to the original trial, skeletal healing was sustained 

with additional improvements over time in treatment for respiratory function, weight, height, 

fine motor, gross motor and cognitive skills (36). While this drug is clearly life rescuing 

and life changing for severely affected hypophosphatasia patients, symptoms such as muscle 

weakness and craniosynostosis (the premature fusion of growing cranial bones) are not 

alleviated with treatment (37).

It is not known why or how craniosynostosis develops in hypophosphatasia, nor why this 

aspect of the disorder is not diminished upon recombinant enzyme treatment initiated even 

shortly after birth in humans. We previously showed that craniosynostosis in the form of 

coronal suture fusion and associated skull shape abnormalities develop in the TNAP−/− 

mouse model of infantile hypophosphatasia (38). Based upon prior studies showing rescue 

of skeletal mineralization upon genetic ablation of the inorganic pyrophosphate generating 

enzyme ENPP1 (13), here we sought to determine if the craniofacial skeletal abnormalities 

of TNAP−/− mice are alleviated upon genetic ablation of ENPP1. Because the phenotype of 

TNAP−/− was so variable and because FGF23 was previously shown to be high in ENPP1 

null mice, here we also investigated circulating levels of intact FGF23 in the single and 

double mutant mice. Results demonstrate that normalization of pyrophosphate levels in 

TNAP−/− mice rescues craniofacial and long bone abnormalities, and that severity of the 

TNAP−/− phenotype correlates with high serum FGF23 levels in these mice.

MATERIALS AND METHODS

Animals

Wild type (TNAP+/+/ENPP1+/+), TNAP heterozygote (TNAP+/−/ENPP1+/+) and ENPP1 

heterozygote (TNAP+/+/ENPP1+/−) mice were maintained on a mixed 129/SVJ and 

C57BL/6 genetic background. TNAP+/−/ENPP1+/+ and TNAP+/+/ENPP1+/− mice were bred 

to generate wild type, single and double mutant mice. All mice were provided free access 

to modified laboratory rodent diet containing 325 pyridoxine because TNAP is needed for 

vitamin B6 metabolism (39). Gross skeletal phenotyping was performed by staining with 

alizarin red and alcian blue. Genotyping was performed by PCR using DNA samples from 

tail digests, as previously described (40, 41). Because TNAP−/− mice die at ~3 weeks 

postnatal, to minimize loss of animals due to premature death, mice were euthanized for 

phenotyping at day 17. All animal procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) of the University of Michigan. Sample numbers for all 

analyses are provided in Supplementary Figure 1.
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Skull Measurements

Because skull bones of TNAP null mice are present but severely under-mineralized, 

visualization of some skeletal landmarks on micro-computed tomographic images is not 

possible. Therefore, previously established skull measurements were taken using digital 

calipers on whole dissected skulls of day 17 mice (38, 42). To account for differences 

in skull size between the mouse genotypes, skull measurements were normalized by a 

total skull length measurement (distance from nasale to opisthion). For size normalized 

measurements, skull length was measured from nasale to paro, skull width was measured 

between right and left intersections of the squamosal body to the zygomatic process of 

the squamous portion of the temporal bone, skull height was measured from pari to the 

inferior portion of the spheno-occipital synchondrosis, inner canthal distance was measured 

between right and left intersections of the frontal process of maxilla with frontal and 

lacrimal bones, nasal bone was measured from nasale to nasion, frontal bone length was 

measured from nasion to bregma and parietal bone length was measured from bregma to 

pari. Skull landmarks can be visualized in Supplementary Figure 2. Linear distances were 

measured three times by one operator and an average per mouse was used for statistical 

comparison between genotypes. Linear measurements were performed without access to 

genotypes (blinded).

Micro Computed Tomography

Whole skulls from day 17 mice were scanned by micro computed tomography (micro-CT) 

using a Scanco μCT 100 micro-computed tomography system and associated software. Scan 

settings were 18 μm voxel, 70 kVp, 114 μA, 0.5 mm AL filter, and integration time of 500 

ms. A threshold of 1,400 was used based upon calculation of the median auto-threshhold for 

all wild type skulls. Because juvenile mouse calvarial bones do not yet have well developed 

cortical and trabecular bone, whole bone analysis (no separation of cortical from trabecular 

bone) of a previously established frontal bone region of interest (1 mm in length, 1 mm in 

width, depth equivalent to thickness of bone and position starting at a 0.75 mm distance 

from sagittal and coronal sutures) was performed (38).

Tibial bones from day 17 mice were scanned at an 18 μm isotropic voxel resolution using 

the eXplore Locus SP micro-computed tomography imaging system (GE Healthcare Pre-

Clinical Imaging, London, ON, Canada) and using Microview version 2.2 software and 

previously established algorithms (38, 43). Trabecular measurements were made in a region 

of interest defined as 10% of total bone length from the end of the proximal growth plate. 

Cortical measurements were made in a region of interest defined as 10% of total bone length 

from the mid-diaphysis.

Coronal Suture Fusion Assessment

Synostosis of the coronal suture was identified and assessed on whole dissected fixed skulls 

of day 17 mice that were alizarin red and alcian blue stained under a dissecting microscope 

by one experienced individual. Fusion of the suture was confirmed by viewing orthogonal 

sections across the entire length of the coronal suture, as previously described (38, 42). 

Craniosynostosis was scored as 0 (normal suture anatomy), 1 (diminished width of suture/

greater overlap of frontal and parietal bones) or 2 (suture fusion). Significance between 
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genotypes was established using the Fisher’s exact test. Craniosynostosis assessments were 

performed without access to genotypes (blinded).

Primary Cell Isolation and Analysis

Primary osteoprogenitor cells were isolated from 15 day-old mouse cranial bones by serial 

collagenase digestion. Dissected bones were rinsed, digested with 2 mg/ml collagenase P 

and 2.5 mg/ml trypsin followed by cell isolation via centrifugation. This digestion process 

was performed three times and cells from only the 3rd digest were used for experimentation 

as cells of this digest were previously shown to be homogenous (44, 45). Cells were 

pooled from same genotype littermates for experimentation (n = 2–4 mice per genotype per 

cell collection). For proliferation assays, 2 × 104 cells/well were plated in 24 well plates 

then cultured for indicated number of days in standard media (custom formulated αMEM 

without ascorbate plus 10% fetal bovine serum and penicillin/streptomycin). Cells were 

counted in quadruplicate using a hemocytometer and an average cell count per well was 

used for comparison between groups. Cell metabolic activity was measured by MTT assay 

(reduction of (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma) after 

5 days of culture in standard media. Ectonucleotide pyrophosphatase/phosphodiesterase 

enzyme activity was measured by cell culture with the colorimetric substrate, p-nitrophenyl 

thymidine 5′ monophosphate as previously described (40). Alkaline phosphatase enzyme 

activity was measured by cell culture with the colorimetric substrate NBT/BCIP (Sigma), 

as previously described (38). Inorganic pyrophosphate was measured in cells after 5 days 

of culture in differentiation media (aMEM containing 50 μg/ml ascorbate plus 10% fetal 

bovine serum and penicillin/streptomycin) followed by gentle rinse then 18 h of culture 

in phosphate free DMEM using a commercially available bioluminescent assay (Lonza). 

Inorganic phosphate was measured in cells after 5 days of culture in differentiation 

media (aMEM containing 50 μg/ml ascorbate plus 10% fetal bovine serum and penicillin/

streptomycin) followed by gentle rinse then 18 h of culture in phosphate free DMEM using a 

commercially available colorimetric kit (Abcam).

Serum FGF23 Assay and Correlation With Phenotypes

FGF23 levels were measured using a commercially available ELISA (Immunotopics, 

Quidel) for intact FGF23, using EDTA treated plasma from day 5 or 17 old mice.

Correlation of serum intact FGF23 levels with craniosynostosis was performed by 

calculating the Spearman’s correlation coefficient (r) and associated p-value. Correlation 

of body measurements, skull measurements and skull micro-CT parameters were performed 

by calculating Pearson correlation coefficient (r) with associated coefficient of determination 

(R2) and p-value.

Statistical Analyses

Primary outcomes were quantitative measurements of skull shape, incidence of 

craniosynostosis and bone micro-CT parameters. Secondary outcomes were primary 

cell assays of proliferation, cell metabolism, ENPP1 and TNAP enzyme activities, and 

media inorganic pyrophosphate and phosphate levels; in addition to FGF23 serum levels 

and correlation between FGF23 levels and primary outcome phenotype measurements. 
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Descriptive statistics (mean, standard deviation) for each parameter were calculated for all 

measurements. Comparisons between groups were made using student’s t-tests for normal 

data and the Mann-Whitney test for non-normal data. Statistical significance was established 

as p < 0.05. Sample numbers for experiments are provided in Supplementary Figure 1.

RESULTS

Body Phenotypes

Visualization of alizarin red/alcian blue stained skulls revealed an apparent decrease in 

overall skull size with a shape change of increased skull width plus hypomineralization 

that was variable in the TNAP null mice (Figure 1). Quantification of phenotypes revealed 

that all single and double mutant mice were significantly diminished in body weight 

when compared to wild type mice, with TNAP null mice (TNAP−/−/ENPP1+/+) weighing 

significantly less with shorter body and skull lengths than all other genotypes (Figures 2A–

C). ENPP1 null mice (TNAP+/+/ENPP1−/−) were not significantly different in body length 

or skull size as compared to wild type mice. TNAP/ENPP1 double null mice (TNAP−/−/

ENPP1−/−) were significantly diminished in skull size but not body length when compared 

to wild type mice. Body length and skull size were also significantly lower in TNAP null 

(TNAP−/−/ENPP1+/+) as compared to TNAP/ENPP1 double null (TNAP−/−/ENPP1−/−), and 

TNAP null/ENPP1 heterozygous mice (TNAP−/−/ENPP1+/−).

Skull Phenotypes

Because overall mouse and skull sizes were different between genotypes (Figures 2B,C), 

skull linear measurements were normalized by the initial skull length measurement to 

account for differences in skull size, so as to reveal changes in skull shape not influenced 

by size. ENPP1 null mice were not different than wild type mice for any skull shape 

measurement when normalized for skull size (Figures 2D–J). Skull width, skull height 

and inner canthal distance were all significantly greater in TNAP−/−/ENPP1+/+ mice 

as compared to wild type mice, with these TNAP null mice measurements also being 

significantly greater than those seen in TNAP−/−/ENPP1+/− and TNAP−/−/ENPP1−/− mice 

(Figures 2D,E,G). Nasal bone length was significantly smaller in TNAP−/−/ENPP1+/+ mice 

as compared to wild type mice, with TNAP null nasal bone length also being significantly 

smaller than that seen in TNAP−/−/ENPP1+/− and TNAP−/−/ENPP1−/− mice (Figure 2H). 

Skull length (nasale to paro), when normalized for skull size, was not different between any 

of the genotypes (Figure 2F). Frontal bone lengths were greater in TNAP null than wild 

type mice, and greater than that seen in TNAP−/−/ENPP1+/− but not TNAP−/−/ENPP1−/− 

mice (Figure 2I). Parietal bone lengths were greater in TNAP null than wild type mice, and 

similar to that seen in TNAP−/−/ENPP1+/− and TNAP−/−/ENPP1−/− mice (Figure 2J).

Cranial Bone Micro-CT Parameters

Isosurface images and 2D sagittal slice images from micro-CT files reveal obvious bone 

hypomineralization of cranial and facial bones in the TNAP null mice, to the extent that 

parts of these bones do not appear on micro-CTscans of these mice (Figure 3). Fusion of 

the coronal suture is seen only in TNAP−/−/ENPP1+/+ mice (Figures 3G,H). Quantification 

of micro-CT parameters showed that the frontal cranial bones of TNAP−/−/ENPP1+/+ mice 
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had significantly diminished bone mineral density (BMD) and bone volume fraction (BVF) 

but not bone mineral content when compared to wild type frontal bones, and when compared 

to the frontal bones of TNAP−/−/ENPP1−/− mice (Figures 4A–C). Frontal bones of TNAP+/+/

ENPP1−/− mice showed no significant differences when compared to those of wild type 

mice. High variability in cranial BMC, BMD, and BVF is evident in cranial bones of the 

TNAP null mice, as compared to the other genotypes.

Craniosynostosis

Fusion of the coronal suture was evident in almost 40% of TNAP−/−/ENPP1+/+ mice, ~30% 

of TNAP−/−/ENPP1+/− mice, and <10% of TNAP−/−/ENPP1−/− mice at day 17 (Figure 4D). 

The incidence of craniosynostosis was significantly higher in TNAP−/−/ENPP1+/+ mice than 

in TNAP−/−/ENPP1−/− mice, but not when compared to TNAP−/−/ENPP1+/− mice.

Long Bone Micro-CT Parameters

Visualization of alizarin red/alcian blue stained tibias with fibulas revealed 

hypomineralization to various extents in the TNAP null mice (Figure 5). Quantification 

of micro-CT parameters (Figure 6) showed that tibial trabecular thickness (Tb.Th.) and 

trabecular BMD (Tb.BMD) were significantly diminished in TNAP−/−/ENPP1+/+ compared 

to wild type mice, and was not rescued (increased) by ablation of ENPP1 in the TNAP 

null background. Trabecular number (Tb.N.) was increased in TNAP−/−/ENPP1+/+, and 

decreased in TNAP−/−/ENPP1+/− and in TNAP−/−/ENPP1−/− mice when compared to wild 

type mice. Trabecular spacing (Tb.S.) was increased in TNAP−/−/ENPP1+/− and in TNAP−/−/

ENPP1−/− mice when compared to TNAP null or wild type mice. Trabecular bone volume 

fraction (Tb.BVF) was diminished only in TNAP−/−/ENPP1+/− and in TNAP−/−/ENPP1−/− 

mice. Cortical mean thickness, cortical area, cortical tissue mineral density (TMD), cortical 

bone mineral density (BMD) and cortical BVF were all significantly diminished in 

TNAP−/−/ENPP1+/+ and TNAP−/−/ENPP1+/− mice when compared to wild type mice and 

TNAP−/−/ENPP1−/− mice.

Primary Cell Assays

Because we previously found diminished proliferation and increased cellular metabolic 

activity in primary cells of TNAP null mice (38, 41, 46), we next sought to determine 

if ablation of ENPP1 in these cells would rescue or worsen these abnormalities. Results 

show that cells isolated from both TNAP−/−/ENPP1+/+ and TNAP−/−/ENPP1−/− mice 

exhibit significantly less proliferation when compared to cells from wild type and TNAP+/+/

ENPP1−/− mice (Figure 7A). Cell metabolic activity as measured by MTT assay was 

increased in TNAP−/−/ENPP1+/+ cells when compared to all other genotypes (Figure 7B). 

Cell metabolic activity was also higher in TNAP−/−/ENPP1−/− and TNAP+/+/ENPP1−/− 

when compared to wild type cells, albeit to a lower extent than that seen in the TNAP−/−/

ENPP1+/+ cells.

Cells isolated from all TNAP null genotypes showed minimal TNAP enzyme activity 

(Figures 7D,G). Cells isolated from ENPP1 single null mice exhibited higher TNAP enzyme 

activity levels than wild type mice. Cells isolated from all ENPP1 null genotypes showed 
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minimal ENPP1 enzyme activity (Figure 7C). Cells isolated from TNAP single null mice 

exhibited higher ENPP1 enzyme activity levels than wild type mice.

Measurements of inorganic pyrophosphate (PPi) in the media of cultured cells revealed 

very high PPi levels in the media of TNAP−/−/ENPP1+/+ cells, which was diminished in 

TNAP−/−/ENPP1−/− cells, but not to the extent of that seen in TNAP+/+/ENPP1−/− or wild 

type cells (Figure 7E). Measurements of inorganic phosphate (Pi) in the media of culture 

cells revealed mild significantly diminished Pi levels in the media of TNAP−/−/ENPP1−/− 

and TNAP+/+/ENPP1−/− cells (Figure 7F). No Pi differences were seen in the media of 

TNAP−/−/ENPP1+/+ cells.

Serum FGF23 Levels

Because mice and humans with ENPP1 deficiency exhibit high circulating FGF23 (26, 27) 

and because FGF23 can suppress TNAP expression (47, 48), we sought to determine if 

ablation of TNAP in the ENPP1 null background would alter circulating levels of FGF23. 

While we did find high intact serum FGF23 levels in TNAP+/+/ENPP1−/− compared to wild 

type mice, we found even higher levels in a subset of the TNAP−/−/ENPP1+/+ mice at day 

17 postnatal (Figure 8A). We also tested serum FGF23 levels in younger mice, because 

day 17 TNAP null mice already have a severe hypophosphatasia phenotype. While more 

variable than that seen at day 17 due to the inability to perform food withdrawal, intact 

serum FGF23 levels were also significantly higher in TNAP−/−/ENPP1+/+ than in wild type 

mice at postnatal day 5 (Figure 8B).

Correlation of Serum FGF23 Levels and Phenotypes

We next looked for potential correlations between serum FGF levels and phenotypes seen 

in the TNAP null mice. Correlation of high FGF23 serum levels with skull (Figure 9J) and 

long bone (Figure 9K) phenotypes appeared to be consistent. Statistical analyses (Figures 

9A–I) revealed strong negative Pearson correlations with moderately strong correlations 

of determination between serum FGF23 levels and body weight (r = −0.82, R2 = 0.67), 

and between serum FGF23 and body length (r = −0.73, R2 = 0.53). Moderately negative 

correlations with moderate to low coefficients of determination were found between serum 

FGF23 levels and cranial bone BMC (r = −0.70, R2 = 0.50), BMD (r = 0.52, R2 = 0.27) 

and BVF (r = −0.52, R2 = 0.27). In contrast, craniosynostosis in the form of coronal suture 

fusion had a moderately positive Spearman correlation with serum FGF23 levels (r = 0.47). 

Notably, only those TNAP null mice with high FGF23 levels had coronal suture fusion 

(suture score of 2). In addition, strong positive Pearson correlations with strong correlations 

of determination were found for serum FGF23 levels and size normalized cranial height (r = 

0.91, R2 = 0.82), cranial width (r = 0.87, R2 = 0.76) and inner canthal distance (r = 0.92, R2 

= 0.84).

DISCUSSION

TNAP (Tissue Non-specific Alkaline Phosphatase) enzyme deficiency leads to the metabolic 

disorder hypophosphatasia in mice and humans with a primary phenotype of bone 

hypomineralization (9, 29–31). The phenotype of severe hypophosphatasia in mouse pups 
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and human infants can also include craniosynostosis, the premature fusion of cranial 

bones leading to diminished skull growth, high intracranial pressure and an abnormal 

skull shape (29, 38, 49). Treatment of infants and children with severe hypophosphatasia 

using a recombinant, mineral-targeted form of TNAP has been highly successful for 

improving survival, and for rescuing bone mineralization plus motor and cognitive 

deficiencies. Unfortunately, the recombinant enzyme therapy has been less efficacious 

for preventing craniosynostosis (36). In this study we primarily sought to determine if 

ablation of the pyrophosphate generating enzyme, ENPP1, in TNAP null mice would 

rescue craniosynostosis and associated craniofacial skeletal abnormalities because deletion 

of ENPP1 in TNAP null mice was previously shown to rescue skeletal mineralization 

(13) and to further understand mechanisms that mediate the craniofacial abnormalities in 

hypophosphatasia.

We found that body weight and body length are increased by ablation of ENPP1 in 

TNAP null mice, but not to the levels seen in wild type mice. This data indicates that 

TNAP deficiency may have impacts on body size and weight that are both dependent and 

independent from the TNAP-ENPP1 enzyme axis. It is worth noting that the 7-year follow 

up study on TNAP enzyme replacement in severely affected patients revealed that, despite 

enzyme replacement, the hypophosphatasia patients remained well below normal for both 

height and weight (36). TNAP enzyme replacement targets to mineralized tissues. It remains 

unknown if a TNAP function in non-mineralized tissues is responsible for the diminished 

body size seen in TNAP deficient mice and patients but recent studies indicate that TNAP 

does play a role in cell and body metabolism including brown fat thermogenesis (4, 41, 50).

Cranial height and width skull shape abnormalities of TNAP null mice were normalized 

to a large degree and to similar extents upon either hemi- or homozygous deletion of 

ENPP1. In contrast, the incidence of craniosynostosis was significantly diminished only 

upon homozygous deletion of ENPP1 in TNAP null mice. Cranial bone mineral density 

and volume fraction were also only normalized only upon homozygous and not hemizygous 

deletion of ENPP1 in TNAP null mice. This data is consistent to the previously published 

data showing rescue of skull mineralization upon genetic ablation of ENPP1 in TNAP null 

mice, although quantification using multiple mice was not performed at that time (13). 

Together our data indicates that partial normalization of the TNAP-ENPP1 enzyme balance 

allowing for some expression of ENPP1 (and ENPP1 generated pyrophosphate) is adequate 

for normalizing craniofacial skeletal shape defects, and that the abnormalities in skull shape 

are not dependent upon either coronal suture fusion or cranial bone mineralization. Finally, 

frontal and parietal bone lengths that were increased in the TNAP null mice were also 

increased in TNAP−/−/ENPP1−/− mice, indicating that ENPP1 and/or ENPP1 generated PPi 

does not mediate the increased cranial bone lengths seen in these mice. Craniosynostosis has 

been proposed to occur downstream of changes in frontal and/or parietal bone growth (51). 

Because deletion of ENPP1 does rescue coronal suture fusion but does not alter lengths of 

frontal and parietal bones in TNAP null mice, this indicates that increased growth of cranial 

bones does not likely mediate coronal suture fusion seen in the TNAP−/− mice.

We also quantified trabecular and cortical bone abnormalities in long bones of the single and 

double mutant mice. ENPP1 null mice were previously reported to exhibit diminished femur 
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trabecular bone volume, thickness and number by 6 weeks of age and cortical bone density, 

thickness and area by 22 weeks of age (27). We did not see changes in tibial trabecular 

or cortical bone in ENPP1 null mice which can be explained by the fact that we assessed 

the mice at day 17. While the differences could correspond to difference between femurs 

and tibias, it seems more likely that the bone abnormalities in ENPP1 null mice occur and 

exacerbate over time.

As stated above, genetic homozygous deletion of ENPP1 in TNAP null mice was initially 

reported to rescue skull, vertebral and digit hypomineralization of the TNAP−/− mice (13). 

Subsequently, it was reported that TNAP−/−/ENPP1−/− mice exhibited a stronger increase 

in mineralization of calvaria and vertebra than in digits and tibias by alizarin red staining, 

and micro-CT of tibias showed no difference between TNAP−/−/ENPP1+/+ and TNAP−/−/

ENPP1−/− (52). Here, upon sampling of a large number of mice, we show that deletion 

of ENPP1 in TNAP null mice does impact tibial bones of the mice, although it is not 

a clear “rescue”. TNAP−/−/ENPP1+/+ mice exhibit diminished trabecular thickness and 

mineral density with increased trabecular number and no difference in bone volume fraction 

compared to wild type mice. In contrast TNAP−/−/ENPP1−/− mice showed decreased 

trabecular thickness, number and bone volume fraction plus increased trabecular spacing 

compared to wild type mice. Overall, deletion of ENPP1 in TNAP null mice alters but does 

not normalize the tibial trabecular bone abnormalities in these mice. In contrast to the tibial 

trabecular bone data, all measured cortical bone parameters were diminished in TNAP−/− as 

compared to wild type mice and all of these abnormalities were normalized upon complete 

deletion of ENPP1.

Primary cell studies were performed to confirm that lack of TNAP and/or ENPP1 activity 

led to expected differences in inorganic phosphate and pyrophosphate production by 

the cells, and to see if previously established cellular defects in proliferation and cell 

metabolism of TNAP null cells were rescued upon ENPP1 ablation. Both TNAP and ENPP1 

activity were significantly diminished in corresponding TNAP and/or ENPP1 null cells, 

confirming loss of enzyme activity upon gene deletion. As anticipated, pyrophosphate 

media levels were high in TNAP−/−/ENPP1+/+ cells and low in TNAP+/+/ENPP1−/− cells 

when compared to that of wild type cells. Phosphate levels in media were diminished 

to a small but significant degree in all cells that lacked ENPP1 when other genotypes, 

indicating that ENPP1 is essential for generation of both phosphate and pyrophosphate 

when in the presence of TNAP or other pyrophosphatases. Phosphate levels in media were 

not diminished in TNAP null compared to wild type cells, though this may have been 

due to variation in the data. Consistent with our previously published results (38, 41, 46), 

we also found that cellular proliferation was decreased and cell metabolism was increased 

in TNAP−/−/ENPP1+/+ cells. Cell proliferation was not increased in TNAP−/−/ENPP1−/− 

compared to TNAP−/−/ENPP1+/+ cells. This data indicates that TNAP promotes cell 

proliferation via a mechanism that is independent of ENPP1 and associated pyrophosphate. 

Deletion of ENPP1 only partially rescued the high cell metabolism seen in TNAP−/−/

ENPP1+/+ cells, indicating that TNAP deficiency increases cell metabolic activity in part 

via ENPP1 or that TNAP and ENPP1 have independent influences on cell metabolic activity.
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Overall, study of these mice revealed considerable individual variation in phenotype 

expression in the TNAP null mice. As stated above, Because FGF23 levels are high in 

ENPP1 null mice (27), because FGF23 was previously shown to suppress TNAP expression 

(47, 48), and because FGF23 regulates skeletal mineralization (53–55), we measured 

circulating levels of intact FGF23 in the mice. As anticipated based upon previously 

published data (27), serum FGF23 levels were significantly higher in TNAP+/+/ENPP1−/− 

than in wild type mice. Serum FGF23 levels were highly variable in the TNAP−/−/ENPP1+/+ 

mice, with a subset of the mice at day 17 showing markedly high serum FGF23. Hemi- 

or homozygous deletion of ENPP1 lowered serum FGF23 levels in TNAP null mice 

(data not shown), indicating that high inorganic pyrophosphate levels may mediate the 

rise in FGF23. Because TNAP−/− mice exhibit a phenotype of severe hypophosphatasia 

by day 17, these levels could have been caused in some manner by the phenotype itself. 

Therefore, we next assayed FGF23 levels in day 5 mouse serum. While results of all mouse 

genotypes were more variable, likely due to the inability to withdraw food prior to assay 

in these young mice, we again found significantly increased circulating levels of intact 

FGF23. In addition, we found strong to moderately strong negative correlation between 

serum FGF23 levels and body size, and between serum FGF23 levels and cranial bone 

micro-CT parameters. We also found strong positive correlation between serum FGF23 

levels and craniosynostosis plus skull shape abnormalities. In other words, high levels of 

FGF23 correlated with poor skull bone, decreased body size, incidence of craniosynostosis 

and skull shape defects. While high FGF23 levels are not evident in non-lethal pediatric 

hypophosphatasia patients (56) and in fact low levels of the phosphatonin FGF7 were 

reported in this population, the TNAP−/− mouse model of infantile hypophosphatasia 

exhibits a very severe and lethal hypophosphatasia phenotype. While entirely unanticipated, 

our data does demonstrate variably high serum intact FGF23 levels in this murine model of 

severe infantile hypophosphatasia and that high serum FGF23 correlates with severity of the 

phenotype. Questions remain in regards to if the FGF23 is a cause, consequence or simply 

a marker of phenotype severity in the TNAP−/− mice, and if FGF23 may also be relevant to 

lethal perinatal and/or infantile human hypophosphatasia.
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FIGURE 1 |. 
Skull phenotype is rescued by ablation of ENPP1 In TNAP deficient mice. Representative 

alizarin red and alcian blue stained skulls of each genotype are shown. Note the variable 

hypomineralization seen in TNAP null (TNAP−/−/ENPP1+/+) mice.
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FIGURE 2 |. 
TNAP and ENPP1 ablation effects on body and craniofacial measurements. Total body 

weight (A), body length (B), and skull length (C) for single mutant, double mutant and 

wild type postnatal day 17 mice are shown. Skull measurements normalized to skull length 

to account for differences in skull/mouse size for single mutant, double mutant and wild 

type postnatal day 17 mice are shown (D–J). TNAP−/−/ENPP1+/+ mice are significantly 

diminished in body weight, body length and skull size, and exhibit skull shape abnormalities 

when compared to TNAP+/+/ENPP1+/+ mice. TNAP−/−/ENPP1−/− mice show significantly 

greater body weight, body length, skull length with improvements in skull shape, when 

compared to TNAP−/−/ENPP1+/+ mice. *p < 0.05 vs. TNAP+/+/ENPP1+/+ mice, ***p < 

0.005 vs. TNAP+/+/ENPP1+/+ mice, #p < 0.05 vs. TNAP−/−/ENPP1+/+ mice, ###p < 0.005 vs. 

TNAP−/−/ENPP1+/+ mice.
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FIGURE 3 |. 
Micro CT Isosurface Images of TNAP and/or ENPP1 mutant mouse skulls. Isosurface and 

2D sagittal slice images including magnified image of coronal suture from micro-CT files 

of TNAP+/+/ENPP1+/+ mice (A–D), TNAP−/−/ENPP1+/+ mice (E–H), TNAP−/−/ENPP1+/− 

mice (I–L), TNAP−/−/ENPP1−/− mice (M–P) and TNAP+/+/ENPP1−/− mice (Q–T) are 

shown. Blue arrow indicates site of coronal suture fusion seen on isosurface image of 

TNAP−/−/ENPP1+/+ mouse. Yellow arrows indicate site of coronal suture with/without 

coronal suture fusion in 2D slice images of the mice. Fusion of the coronal suture is only 

seen in TNAP−/−/ENPP1+/+ mice (G,H). Also note severe hypomineralization of cranial 

and facial bones in the severely affected TNAP null mouse. Double null mice appear more 

similar to wild type mice than the TNAP null mice.
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FIGURE 4 |. 
TNAP and ENPP1 ablation effects on cranial bone mineralization and coronal suture 

synostosis. Bone mineral content (BMC), bone mineral density (BMD) and bone volume 

fraction (BVF) of the frontal cranial bone is shown (A–C). TNAP−/−/ENPP1+/+ mice 

exhibit significantly diminished BMD and BVF when compared to TNAP+/+/ENPP1+/+ 

mice. TNAP−/−/ENPP1−/− mice show significantly greater BMD and BVF than TNAP−/−/

ENPP1+/+ mice, and are similar to values seen in TNAP+/+/ENPP1+/+ mice. (D) Coronal 

suture status was scored as 0 (normal suture anatomy), 1 (diminished width of suture/greater 

overlap of frontal and parietal bones) or 2 (suture fusion). TNAP−/−/ENPP1+/+, TNAP−/−/

ENPP1+/−, and TNAP−/−/ENPP1−/− mice all exhibit some incidence of coronal suture fusion 

while no coronal suture fusion is seen in TNAP+/+/ENPP1+/+ mice. TNAP−/−/ENPP1−/− 

mice exhibit a significantly diminished incidence of coronal suture fusion when compared 

to TNAP−/−/ENPP1+/+ mice. ***p < 0.005 vs. TNAP+/+/ENPP1+/+ mice, #p < 0.05 vs. 

TNAP−/−/ENPP1+/+ mice, ###p < 0.005 vs. TNAP−/−/ENPP1+/+ mice.
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FIGURE 5 |. 
Long bone phenotype is rescued by ablation of ENPP in TNAP deficient mice. 

Tibias stained with alizarin red and alcian blue of 17-day mice are shown. Severe 

hypomineralization is variably seen in the TNAP null mice. Double null mice appear more 

similar to wild type mice than TNAP null mice.
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FIGURE 6 |. 
TNAP and ENPP1 ablation effects on long bone. Trabecular thickness (Tb.Th.), number 

(Tb.N.), spacing (Tb.S.), bone mineral density (BMD) and bone volume fraction (BVF) 

are shown (A–E). Cortical mean thickness, area, tissue mineral density (TMD), BMD and 

BVF are shown (F–J). TNAP−/−/ENPP1+/+ mice are diminished in trabecular thickness 

and mineral density with increased trabecular number and no difference in bone volume 

fraction as compared to TNAP+/+/ENPP1+/+ mice. TNAP−/−/ENPP1−/− mice are diminished 

in trabecular thickness, number and bone volume fraction and have increased trabecular 

spacing compared to TNAP+/+/ENPP1+/+ mice. No differences are seen between TNAP+/+/

ENPP1−/− mice and TNAP+/+/ENPP1+/+ mice. *p < 0.05 vs. TNAP+/+/ENPP1+/+ mice, ***p 
< 0.005 vs. TNAP+/+/ENPP1+/+ mice, #p < 0.05 vs. TNAP−/−/ENPP1+/+ mice, ###p < 0.005 

vs. TNAP−/−/ENPP1+/+ mice.
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FIGURE 7 |. 
Primary cranial cell proliferation, cell metabolic activity, phosphate and pyrophosphate 

production. Cell were plated then counted at indicated time points to quantify cell 

proliferation (A). Colorimetric MTT assay was performed on cultured cells to quantify 

cell metabolic activity (B). A colorimetric NTPPPH assay was performed on cultured 

cells to quantify ENPP1 enzyme activity (C). A colorimetric alkaline phosphatase assay 

was performed on cultured cells to quantify TNAP enzyme activity (D). Visualization 

of alkaline phosphatase stain (G). Colorimetric assays for inorganic pyrophosphate 

(PPi) (E) and phosphate (Pi) (F) were performed on media from cultured cells. Both 

TNAP−/−/ENPP1+/+ and TNAP−/−/ENPP1−/− cells show diminished proliferation compared 

to TNAP+/+/ENPP1+/+ and TNAP+/+/ENPP1−/− cells. Mitochondrial enzyme activity is 

increased in TNAP+/+/ENPP1−/− and TNAP−/−/ENPP1−/− cells, and even more so in 

TNAP−/−/ENPP1+/+ cells. ENPP1 enzyme activity is significantly diminished in all cell 

genotypes in which ENPP1 has been ablated. AP enzyme activity is significantly diminished 

in all cell genotypes in which TNAP has been ablated. Inorganic pyrophosphate levels 

are significantly increased in the media of cultured TNAP−/−/ENPP1+/+ cells. Inorganic 

phosphate levels are slightly diminished in the media of cells in which ENPP1 has been 

ablated. *p < 0.05 vs. TNAP+/+/ENPP1+/+ cells, #p < 0.05 vs. TNAP−/−/ENPP1+/+ cells.
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FIGURE 8 |. 
Serum FGF23 levels in TNAP and ENPP1 deficient mice. Serum was isolated from 

postnatal day 17 (A) and postnatal day 5 (B) mice and assayed for intact FGF23 by ELISA. 

Food was withdrawn for 18 h prior to day 17 serum isolation. No food was withdrawn for 

day 5 serum isolation. Results show increased FGF23 in the serum of TNAP+/+/ENPP1−/− 

mice compared to TNAP+/+/ENPP1+/+ mice, but even greater levels are seen in the serum 

of TNAP−/−/ENPP1+/+ mice at day 17. At day 5, FGF23 levels are more variable in serum 

but TNAP−/−/ENPP1+/+ mice still show significantly greater FGF23 than serum from the 

serum of TNAP+/+/ENPP1+/+ mice. *p < 0.05 vs. TNAP+/+ ENPP1+/+ mice, ***p < 0.005 

vs. TNAP+/+/ENPP1+/+ mice, ###p < 0.005 vs. TNAP−/−/ENPP1+/+ mice.
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FIGURE 9 |. 
Correlation of FGF23 serum levels with body and skull phenotypes. Body weight (A), 
body length (B), skull shape measurements (D–F) and cranial bone micro-CT measurements 

(G–I) were compared to serum FGF23 levels in TNAP−/−ENPP1+/+ mice using Pearson 

correlation coefficient (r) with coefficients of determination that indicate validity of the 

Pearson correlation model (R2). Coronal suture status score (C) (as described for Figure 

4) was compared to serum FGF23 levels in TNAP−/−/ENPP1+/+ mice using Spearman 

correlation coefficient (r). High serum FGF23 levels correlate significantly with decreased 

body weight, decreased body length, decreased cranial bone mineralization, increased 

coronal suture fusion, increased cranial height, increased cranial width and decreased inner 

canthal distance in TNAP−/−/ENPP1+/+ mice. Representative alcian blue/alizarin red stained 

skulls are shown (J). TNAP null skulls with normal circulating FGF23 levels look similar 

to TNAP+/+/ENPP1+/+ skulls though smaller in size. TNAP null skulls with high circulating 

FGF23 levels appear shorter in length, thicker in width and have obvious mineralization 

abnormalities. Representative alcian blue/alizarin red stained tibias are shown (K). Tibias 

from TNAP null mice with normal circulating FGF23 levels look similar to TNAP+/+/

ENPP1+/+ tibias. Tibias from TNAP null mice with high circulating FGF23 levels are 

shorter, thicker, hypomineralized and show ectopic cartilage formation.
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