
PNAS Nexus, 2025, 4, pgae561 

https://doi.org/10.1093/pnasnexus/pgae561
Advance access publication 17 December 2024 

Research Report

Integrating dynamical modeling and phylogeographic 
inference to characterize global influenza circulation
Francesco Parinoa,1, Emanuele Gustani-Buss b,1, Trevor Bedford c,d, Marc A. Suchard e,f, Nídia S. Trovão g, Andrew Rambaut h, 
Vittoria Colizza a,i,2, Chiara Poletto j,*2 and Philippe Lemey b,*,2

aSorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
bDepartment of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven 3000, Belgium
cVaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
dHoward Hughes Medical Institute, Seattle, WA 98109, USA
eDepartments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
fDepartment of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
gFogarty International Center, National Institutes of Health, Bethesda, MD, USA
hInstitute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
iDepartment of Biology, Georgetown University, Washington, DC, USA
jDepartment of Molecular Medicine, University of Padova, Padova 35121, Italy
*To whom correspondence should be addressed: Email: chiara.poletto@unipd.it (C.P.); Email: philippe.lemey@kuleuven.be (P.L.)
1F.P. and E.G.-B. contributed equally to this work.
2V.C., C.P., and P.L. contributed equally to this work.
Edited By Sandro Galea

Abstract
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global 
factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating 
the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating 
different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), 
integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that 
accounts for time-varying migration rates. Seasonal migration fluxes across countries simulated with GLEAM are tested as 
phylogeographic predictors to provide model validation and calibration based on genetic data. Seasonal fluxes obtained with a specific 
transmissibility peak time and recurrent travel outperformed the raw air-transportation predictor, previously considered as optimal 
indicator of global influenza migration. Influenza A subtypes supported autumn–winter reproductive number as high as 2.25 and an 
average immunity duration of 2 years. Similar dynamics were preferred by influenza B lineages, with a lower autumn–winter 
reproductive number. Comparing simulated epidemic profiles against FluNet data offered comparatively limited resolution power. 
The multiscale approach enables model selection yielding a novel computational framework for describing global influenza dynamics 
at different scales—local transmission and national epidemics vs. international coupling through mobility and imported cases. Our 
findings have important implications to improve preparedness against seasonal influenza epidemics. The approach can be 
generalized to other epidemic contexts, such as emerging disease outbreaks to improve the flexibility and predictive power of modeling.
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Significance Statement

Despite extensive surveillance efforts to track seasonal influenza epidemics, it still remains unclear how factors acting at different 
scales (e.g. local epidemics at the community level vs. international coupling through travel) drive the global circulation of the disease. 
This is partly due to the limitations of current approaches leveraging either genetic or epidemiological data, which, in isolation, are 
unable to successfully reconcile multiple scales. Here, we introduce an integrative approach based on a multiscale epidemiological 
model calibrated on worldwide genetic data through phylogeographic inference. Building up from the city level, our approach simu-
lates migration fluxes between epidemics occurring in different countries and identifies model parameterizations that offer better 
predictions for global influenza circulation than previously attainable.
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Introduction
Seasonal influenza viruses cause recurrent epidemics charac-
terized by annual periodicity in temperate countries and by di-
verse, less regular patterns in the tropics (1). Extensive 
epidemiological research highlighted the critical role of local so-
ciodemographic and environmental aspects (e.g. weather condi-
tions, school calendar, and increased indoor activity) in the 
onset and unfolding of influenza waves (2–10). At the same 
time, international human travel ensures rapid worldwide 
circulation of influenza (11–13). Phylogeographic studies have 
reconstructed the global migration patterns of seasonal influ-
enza in extensive detail, revealing limited local persistence of 
the virus in most regions and highlighting the importance of 
continual reseeding in determining viral genetic structure, se-
verity, and timing of the epidemics (12, 14–16). The concurrent 
impact of local and global drivers has also been apparent 
through analyses of the decline of influenza incidence observed 
during the coronavirus disease 2019 (COVID-19) pandemic. Both 
reduction in international travel and social restrictions (due, e.g. 
to remote working and school closure) were, indeed, found to be 
associated with the influenza drop (17–19). From a modeling per-
spective, however, reconciling the two spatial levels represents 
a major challenge, as the interplay between the local progres-
sion of an epidemic in a particular country and the coupling be-
tween different epidemics mediated by human mobility remains 
poorly understood.

The unevenly distributed human host population across coun-
tries and seasonal areas and the complex network of human trav-
el acting over both short- and long-range distances (i.e. from 
city-to-city commuting to international air travel) are key to this 
challenge (20, 21). In addition, while influenza surveillance is im-
proving worldwide (18), the coverage is still biased, restricting our 
ability to resolve the spatial dynamics. The quality of epidemio-
logical data is generally higher in temperate areas, but these are 
the areas that are characterized by a high degree of synchroniza-
tion of national influenza epidemics in the same hemisphere, thus 
making spatial effects less identifiable. As a consequence, math-
ematical models for influenza dynamics at different scales remain 
difficult to parameterize. Genetic data, however, carry the signa-
ture of large-scale circulation dynamics and may, therefore, re-
present a valuable complementary source to characterize 
seasonal influenza epidemics, especially when combined with 
epidemiological data. The recent severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic has illustrated the 
importance of combining epidemiological and mobility data, gen-
omic sequences, and metadata to provide insights into viral emer-
gence and spread (22–27). Phylogeographic inference in particular 
has been widely applied to elucidate SARS-CoV-2 genomic epi-
demiology, including origins, introductions, routes of dispersal, 
and drivers associated with variant dissemination, contributing 
to the effectiveness of systematic genomic surveillance (24–27). 
However, the development of integrated tools is still relatively 
limited and opportunities remain to fulfill the full potential of 
phylodynamic approaches. Different from previous phylogeo-
graphic reconstructions, we here propose a novel approach that 
combines a high-resolution dynamical model for the diffusion of 
influenza worldwide, informed by extensive demographic, and 
mobility data, and a generalized linear model of phylogeographic 
diffusion that allows for inhomogeneous migration rates over 
time. We use the epidemic model to simulate migration fluxes 
across countries and evaluate their ability to explain phylogeo-
graphic patterns.

Results and discussion
Combining mechanistic epidemic modeling and 
phylogeographic inference
We combine dynamical modeling and phylogeographic inference 
by considering the simulated fluxes of infectious cases generated 
by a data-driven computational model for infectious disease 
spread at the global scale as predictors for phylogeographic mi-
gration rates. For this purpose, we build on GLEAM, the GLobal 
Epidemic, and Mobility model (28), that integrates high-resolution 
demographic and mobility data at different spatial scales—air 
traffic database comprising nearly all commercial air-travels 
and short-range mobility obtained from national commuting 
data (28). The global population is distributed among 3362 patches 
corresponding to large urban areas and traveling of individuals is 
modeled explicitly based on passenger data. GLEAM has been 
used to model the short-term outbreak dynamics in the case of 
the H1N1 influenza pandemic (11, 13), Ebola (29, 30), MERS (31, 
32), Zika (33), and COVID-19 (34–37), following prior modeling 
work considering the global scale (38–40).

To adapt GLEAM to seasonal circulation of influenza, we intro-
duce a more realistic scheme for modeling mobility of individuals 
that preserves their geographic residence (see Material and 
Methods for more details). This approach is usually adopted for mod-
eling recurrent travel, such as commuting (28, 41, 42), while a simpler 
Markovian mobility, model assuming memory-less traveling trajec-
tories, is generally preferred for air travel. Although less realistic, the 
latter is more parsimonious and has only a limited approximation 
bias for fast spreading diseases and short-term epidemic dynamics 
(42). In our analysis of the multiannual influenza propagation, we 
compare both the Markovian and the recurrent travel approach.

In the metapopulation scheme, GLEAM transmission dynamics 
occur within patches ruled by a compartmental model specific to 
seasonal influenza (2, 3, 11, 43, 44) (Material and Methods and 
Section 1 of the Supplementary Material) and accounting for: (i) 
a temporary immunity to the virus of average duration D, with 
values explored between 1 and 8 years; (ii) a geographically de-
pendent seasonal transmission in temperate areas (11, 44, 45) 
varying sinusoidally in time between a minimum and a maximum 
basic reproductive number, Rmin (explored values: 0.5 and 0.75) 
and Rmax ∈ [1.25,2.5], respectively, with November 15, December 
15, and January 15 tested as dates of maximum transmission in 
the northern hemisphere and minimum transmission in the 
southern hemisphere; (iii) a constant transmission with a basic re-
productive number equal to Rmax in the tropics. Discrete stochas-
tic simulations at the individual level provide numerical 
trajectories for the global seasonal dynamics with a time reso-
lution of 1 day. Results display autumn–winter waves inter-
spersed by subcritical spring–summer transmission in the 
temperate hemispheres, and an irregular continuous circulation 
in the tropics. The output is summarized as fluxes during the 
April–September and October–March epochs between the coun-
tries considered by the phylogeographic approach.

To evaluate different parameterizations of our dynamical mod-
el, we test the resulting fluxes in a phylogeographic approach. To 
this purpose, we adopt a generalized linear model (GLM) extension 
of discrete phylogeographic diffusion (12) that accommodates 
time-inhomogeneous migration dynamics. The GLM-diffusion ap-
proach allows modeling the intensity of location exchange be-
tween discrete states along a phylogeny as a function of a 
number of potential predictors (12). Using epoch modeling (46), 
we allow for different location exchange processes, and hence dif-
ferent predictors, across different time intervals in the 
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evolutionary history. Specifically, we consider the difference in 
model-based fluxes during alternating April–September and 
October–March epochs. We employ phylogenetic reconstructions 
based on sequence data sets that were previously analyzed to re-
construct more than a decade of global seasonal migration dy-
namics of influenza A H3N2, H1N1 (prior to the H1N1/09 
pandemic), B Victoria (VIC), and Yamagata (YAM) between 2000 
and 2012 (16). We model the phylogeographic process between 
the countries of sampling for these different influenza subtypes 
and lineages. We use BEAST (47) to estimate parameters of the 
time-inhomogeneous GLM-diffusion approach through Bayesian 
inference while averaging over a set of time-measured trees.

Model selection and parameter estimation
We evaluated different sets of migration fluxes, including simple 
passenger fluxes based on air travel data, simulated migration 
fluxes from the Markovian and the recurrent travel version of 
GLEAM, either as homogeneously aggregated fluxes over time (an-
nual fluxes) or as two-epoch level fluxes (seasonal fluxes). 
Small-scale simulations according to a number of different fluxes 
indicate that the GLM diffusion model performs well in yielding 
support for true flux predictors (Fig. S2).

To avoid including an excessive amount of migration flux pre-
dictors in a single GLM diffusion model analysis, our systematic 
evaluation relied on a stepwise approach. We first tested 
Markovian against recurrent travel fluxes for different epidemio-
logical parameters (Rmin, Rmax and D) while conditioning on sea-
sonal fluxes with a peak time in January in the northern 
hemisphere. Next, we tested seasonal against annual fluxes con-
ditioning on recurrent travel fluxes and a peak time in January. 
Finally, we tested the January peak time against peak times in 
December and November conditioning on seasonally aggregated 
recurrent travel fluxes. In each of these analyses, we include sim-
ple air passenger fluxes as a baseline predictor, and we perform 
the analysis with and without a predictor based on the residuals 
of a regression of sample sizes against population sizes to assess 
the potential impact of sample sizes. Figure 1 summarizes the 
marginal posterior inclusion probabilities for the different com-
parisons, while inclusion probabilities for individual flux predic-
tors are provided in Tables S3–S6.

Our analyses support GLEAM fluxes based on recurrent travel 
for H3N2, H1N1, and YAM, demonstrating (i) an improvement of 
dynamical model predictions over simple air travel for most of 
the influenza variants and (ii) the importance of accounting for 
memory in the origin of travel trajectories of individuals. For these 
three variants, seasonally aggregated fluxes also outperform an-
nual fluxes and a peak time in January outperforms earlier peak 
times (with an inclusion probability of ∼1). For H3N2 specifically, 
seasonal fluxes strongly outperforms annual fluxes with 
and without residual predictor (inclusion probability of ∼1) 
(Table S4) and a similar support was detected for H1N1 (inclusion 
probability of ∼0.95). The inclusion probability for YAM is margin-
ally lower when employing the residual predictor (0.72). When 
comparing the magnitude of best-supported predictors, the sup-
port for seasonal fluxes is approximately 20 times stronger than 
annual flux. In the case of VIC, GLEAM fluxes are only supported 
in the analysis without sample size residual. Standard phylogeo-
graphic analyses of these data sets have previously shown that 
VIC is associated with the highest degree of persistence and the 
lowest overall migration (16), so offering less information to sup-
port GLEAM-based fluxes, in particular when sample heterogen-
eity can explain a considerable degree of migration variability.

For the seasonal GLEAM fluxes based on recurrent travel and 
based on a January 15 peak time, we next summarize the support 
for the different values of Rmax, Rmin, and D (Fig. 2). For H3N2, the 
parameter combination including Rmax = 2.25, Rmin = 0.75, and D = 
2 years yields the highest flux inclusion probability (inclusion 
probability ∼1 and 0.68 with and without sample size residual, re-
spectively). The parameter values in this combination are also 
clearly the ones that are preferred across all combinations in ana-
lyses with and without residual predictor (Fig. 2). In Section 4 of 
the Supplementary Material, we investigate differences in fluxes 
generated by different parameterizations and note that the GLM 
selects fluxes that are distinct from those generated by other pa-
rameterizations. The H1N1 analysis with sample size residual 
also finds this parameter combination to be the best supported, 
but not as strongly so (0.59 inclusion probability), while the ana-
lysis without sample size residual finds marginally lower support 
(0.33 inclusion probability) compared with a parameter combin-
ation including Rmax = 1.50, Rmin = 0.75, and D = 1 years (0.52 in-
clusion probability).

The analysis of YAM without residual predictor recovers the 
same general preference for D and Rmin (2 years and 0.75, respect-
ively), but finds the strongest support for a somewhat lower Rmax 

of 2.00 (0.77 inclusion probability). The same parameterization is 
supported by the analysis with residual predictor, but with some-
what lower inclusion probability (0.56). Without residual predict-
or, the analysis of VIC supports the same parameterization as 
YAM (0.60 inclusion probability, Fig. 2).

The rapid immune waning we identify, with average duration 
of immune protection between 1 and 3 years, is in agreement 
with previous works (48–51), but some studies have estimated lon-
ger immunity duration (2, 3). Smaller transmissibility for influ-
enza B compared with A/H3N2 (as estimated for both Yamagata 
and Victoria) is also consistent with previous works (16, 49). 
Those studies typically use incidence curves at the country level, 
whereas our selection is based on influenza migration patterns 
encoded in the genetic data. The spatial coupling, thus, carries 
the signature of country seasonal waves. For the period between 
two consecutive epidemics, early analyses of genetic data in tem-
perate areas suggested that inter-seasonal circulation of influ-
enza was dominated by the importation of cases from other 
seasonal areas, with negligible local transmission following im-
portation (52–54). Recent improvements in out-of-season surveil-
lance are providing increasing evidence for the sporadic 
generation of cases during the spring–summer period (55–57), in 
agreement with spring–summer transmissibility of Rmin = 0.75 
supported by our analyses.

Predicted influenza dynamics
We compare country-level epidemics simulated by GLEAM with 
recurrent travel and epidemic profiles reconstructed from 
FluNet data to evaluate model predictions against available sur-
veillance data. The number of influenza-positive samples stored 
for each subtype and lineage in FluNet has been extensively 
used for reconstructing the timing and shape of the epidemic 
peaks (1, 8, 17, 48, 58). We compute monthly distributions of cases 
averaged over the period 2004/2005–2014/2015 as an indicator of 
the typical influenza behavior of the country (Section 5 of the 
Supplementary Material). Figure 3 compares the H3N2 epidemic 
profile with the simulated one for a set of countries in each sea-
sonal area. The timing and shape of the epidemic waves are well 
reproduced by the model in the majority of temperate countries 
(average correlation 0.83 ± 0.02 for the northern hemisphere and 
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0.66 ± 0.08 for the southern hemisphere), representing also the re-
gion with the highest availability of country records. In the tropics, 
correlations are generally lower (average correlation 0.10 ± 0.06) 
because of the rather noisy and flat average epidemic profiles 
(Table S8). Cross-correlation analysis confirms this picture as it re-
veals that optimal lag for optimizing FluNet correlation in each 
country falls within −1 to 1 month in the great majority of cases 
in the temperate areas—further supporting the consistency be-
tween simulations and FluNet profiles in the region—while less 
so for tropical countries (Section 5 of the Supplementary 
Material). For large countries, strong spatial fragmentation of 
the population and climatic heterogeneity complicate analyses 
at the national scale (59), as illustrated for China.

These results were obtained with the best parameterization for 
H3N2 as selected by the phylogeographic GLM. Other parameter 
sets performed worse, but a number of different simulated scenarios 
also showed a similarly high correlation with the data (see Fig. S5
and corresponding paragraph in the Supplementary Material for 
other influenza subtypes and lineages). This indicates that the de-
gree of information carried by incidence data is limited, likely due 

to the high level of synchronization between country waves, to-
gether with nonuniform surveillance coverage and quality.

Simulated influenza circulation shows a strong coupling be-
tween Europe and North America during the October–March peri-
od, together with the central role of Southeast Asia and China as 
influenza sources for the Asian continent and Oceania during 
April–September and October–March periods. In particular, 
Southeast Asia is one of the main sources of importation for 
Australia, Japan, and Korea, India and Europe. South America ap-
pears to be disconnected from Asian regions (see Fig. 4 and Tables 
S9 and S10), but plays a role as seeder of influenza in North 
America and Europe during April–September.

The pattern shown here is largely consistent with the results of 
previous phylogeographic reconstructions (12, 14–16). We looked 
more in depth to importation fluxes across European countries 
and found a West to East migration pattern compatible with the 
West-to-East gradient in peak timing observed in the region 
(58, 60). This highlights that human population distribution, human 
mobility and seasonal variation in transmission are important driv-
ers of influenza circulation at the global and continental levels.

Fig. 1. Marginal posterior inclusion probabilities associated with air travel data or with GLEAM-based fluxes comparing recurrent against Markovian 
travel, seasonal against annual fluxes and different peak times. For peak times, we performed an analysis comparing November 15 against December 15 
and an analysis comparing December 15 to January 15, but we only show the latter for simplicity as December 15 outperformed November 15.
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The multiscale nature of influenza dynamics generated by 
GLEAM with recurrent travel allows simultaneously recon-
structing within country spread and global virus circulation, 
shedding light on the dynamical coupling among countries 
underlying seasonal epidemic waves. In Fig. 5, we compare local 
transmission with case importations according to the region of 
origin. The contribution of importations to local epidemics is 
important during out-of-season periods as a seeding compo-
nent that can generate long transmission chains at the begin-
ning of the influenza season. Model predictions on the 
geographical origin of importations may therefore carry import-
ant epidemiological information about the approaching season. 
Fig. 5 highlights the differences in the behavior between specific 
countries. A high level of geographical mixing is observed for 
Australia where importations during summer and at the begin-
ning of the influenza season originate from Southeast Asia, 
Europe, and North America. For Japan and the United States 
on the other hand, a geographical pattern emerges in which 
the large majority of importations originate from a specific re-
gion, i.e. Southeast Asia for Japan and South America for 
United States.

Limitations
Our model captures global circulation patterns that largely ex-
plain both incidence and genetic data, with selected parameter-

izations that are generally consistent for H3N2, H1N1, and YAM. 
While phylogeographic analysis shows that migration rates are 
substantially correlated for H3N2, H1N1, and YAM, these are 

also characterized by different degrees of persistence in specific 
locations (16). Strain-specific antigenic evolution and its interplay 

with demography and age structure can affect migration patterns, 
which is not accounted for in our model. For instance, H1N1 hits 
more severely the younger population that mix more at the local 

geographical scale but travel less frequently over long-range dis-
tances compared with the adult population (16). This effect has 

been shown to impact the spatial invasion and the local persist-
ence of an infection (16, 61). Differences in strain-specific patterns 
may arise also from complex interactions between subtypes that 

are difficult to capture in a general seasonal model. Further fine- 
tuning of simulation parameters may also assist in better captur-

ing subtle differences in the strain-specific dynamics. 
Subdividing countries into three seasonal areas is a standard 

Fig. 2. Marginal posterior inclusion probabilities associated with recurrent travel distribution of GLEAM fluxes for the three parameters Rmax, Rmin, and D, 
without and with residual predictor.
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Fig. 3. Annual epidemic profiles for 30 selected countries from FluNet H3N2 samples (colored) and simulations with the best-supported scenario 
(gray). For each seasonal region, selected countries are representative of the whole set for average correlation and its dispersion. Shaded areas show the 
95% CI of the normalized incidence (Section 5 of the Supplementary Material). The * indicates countries for which no genetic data were available for 
calibration.
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approach (11, 44, 45). Yet, a uniform model of seasonality in these 
regions overlooks the environmental and human factors that act 
at both the country and sub-country levels, which are known to 
shape epidemic dynamics (6, 8, 58, 62). This could limit our ability 
to realistically describe influenza patterns, especially in the tropics 
and southern hemisphere where epidemics are less synchronized 
compared with the northern hemisphere (6, 58). Heterogeneity in 
vaccination coverage represents another country-specific aspect 
that can alter influenza dynamics. The lack of comprehensive infor-
mation on vaccine coverage by country and the fact that vaccine 

effectiveness varies from 1 year to another according to the subtype 
challenge efforts to account for this ingredient in a global, multian-
nual model of influenza circulation.

Regarding surveillance data, our model requires as input high- 
quality genetic data collected over several years. However, in 
many developing countries surveillance is still poor or has im-
proved too recently for a sufficiently long and accurate time series 
to be available—considering also that influenza migration pat-
terns were highly perturbed during the COVID-19 pandemic years. 
As many of those countries are located in the tropics or the 

Fig. 4. Dominant fluxes of cases for the two epochs. To enhance clarity, countries have been grouped into geographic areas. We have considered here the 
same region repartition as in (16). The plots show for each region the fluxes responsible for at least 60% of the importations. In the case of Europe, we show 
the top 20 countries in terms of importations, each featuring only the most significant importation flux. Fluxes between countries/areas are color-coded 
according to their country/area of origin.
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southern hemisphere, this further limits our ability to describe 
epidemics in these regions. Eventually, the global evaluation of 
the model performance against incidence data requires compar-
ing and averaging metrics computed on countries with different 
geographical extent, population size and quality of surveillance 
systems. In the absence of a well-established weighting criterion, 
we have opted for homogeneous weights to compute average cor-
relations recognizing that different countries have independent 
surveillance systems.

Conclusions
By designing a combined approach, we are able to employ genetic 
data to validate and calibrate a dynamical model for the multi-
scale spread of influenza. The model simulates within-country 
epidemics, spatial coupling mediated by human mobility, and 
thus the resulting global circulation of the virus. The information 
encoded in the genetic data allows for unambiguous identification 

of the essential epidemiological parameters, whereas incidence 
data offer lower resolution power. We were able to show that 
population distribution, local mobility, and international travel, 
as well as seasonality are fundamental ingredients to accurately 
model influenza migration patterns.

We have studied a decade of influenza dynamics before the 
COVID-19 pandemic. Following SARS-CoV-2 emergence in 2020, 
the global influenza circulation has been substantially altered with 
potential long-term consequences (17, 63), as illustrated by the prob-
able extinction of the B Yamagata variant (64). In such a situation, 
the long-term and global-scale description of influenza dynamics 
is more important than ever to identify viral evolutionary pathways 
for the prediction of vaccine composition, to inform projections on 
the approaching influenza season in a given region, and, on a 
more fundamental level, to disentangle the interplay between en-
dogenous and exogenous factors in shaping regional epidemic 
waves. Phylodynamic approaches may become an invaluable tool 
to achieve these goals. Our study provides the starting point of a 

Fig. 5. Left: Number of imported cases (bars, left axis) for two consecutive years from a single stochastic realization—for the best parameterization 
obtained for H3N2. Right: ratio of imported vs. local cases (bars, left axis). In both plots, simulated incidence is reported with solid black line (right axis) for 
reference. On both left and right bars are assigned colors based on their respective area of origin (same repartition as in Fig. 4).

8 | PNAS Nexus, 2025, Vol. 4, No. 1



new methodological approach that can be further extended with 
additional ingredients and data layers to better capture geographical 
variations in transmission, strain-specific features, and their inter-
actions in the post-COVID-19 pandemic era. This will make it pos-
sible to improve the description of the source–sink dynamics. 
Going beyond robust multiannual patterns, a more refined model 
will address year-by-year variations opening the door to probabilis-
tic forecasting and scenario analysis. This will require performance 
evaluation metrics that are more sophisticated than simple correl-
ation analyses to account for uncertainty in the predictions (65). 
Advances in global influenza surveillance (18, 62), along with the in-
creased availability of large-scale datasets (8) will undoubtedly insti-
gate further model developments. For instance, incidence data 
could be directly employed for calibration, e.g. to resolve situations 
where genetic data are unable to unambiguously select the best par-
ameterization. In addition, the flexible multistep structure of our ap-
proach makes it adaptable to a variety of epidemic models, 
infectious diseases, and epidemic scenarios.

Material and methods
GLEAM
The GLEAM mobility layer integrates the global flight network 
with the daily commuting patterns between adjacent patches 
(66) (see Section 1 of the Supplementary Material). The short- 
range commuting is accounted for by defining effective patch 
mixing, based on a time-scale separation approach (11, 28). Air 
travel mobility is modeled explicitly as a discrete-time multi-
nomial process (67). In Markovian GLEAM, the probability that 
an individual travels from patch i to patch j is pij = wijΔt/Ni, with 
Ni being the population size of i and wij being the daily flux of pas-
sengers from i to j in the air transportation data. Traveling prob-
ability does not account for the location of residence of 
individuals. In the recurrent travel GLEAM, the daily flux of trav-
elers wij is subdivided into individuals resident in i and departing 
for j, and individuals visiting i and returning to the residence loca-
tion j (41, 68–70). Leaving and returning home are modeled as dis-
tinct processes with average trip duration assumed to be 15 days 
(28) (i.e. a return rate 1/15 days−1) and departing rate derived 
from wij (Section 1.2.3 of the Supplementary Material). Influenza 
transmission dynamics is modeled within each patch through a 
compartmental model where individuals are divided in suscep-
tible, latent, symptomatic infectious (that may or may not travel 
dependent on the severity of symptoms), asymptomatic infec-
tious and recovered, i.e. immune to the virus. The average dur-
ation of the exposed and infection period are set to 1.1 and 2.5 
days, respectively (11). Given the stochastic nature of the model, 
each parameterization generates a collection of possible time evo-
lutions for the observables, such as prevalence, peak of infection, 
number of imported cases, etc., at the spatial resolution of a single 
patch and time resolution of a day, that can be aggregated at the 
desired level in time and space.

Phylogeographic analysis
We combine a GLM parameterization of discrete phylogeographic 
diffusion (12) with epoch modeling (46) in a Bayesian full 
probabilistic framework (see Section 2 of the Supplementary 
Material). Both approaches represent extensions of continuous- 
time Markov chain (CTMC) processes implemented in a 
Bayesian phylogenetic framework (71). The GLM diffusion model 
parameterizes the CTMC transition rates as a log linear function 
of a number of potential predictors and allows estimating both 

the size of the contribution and the inclusion probability of each 
predictor. Previous applications have demonstrated how this 
model averaging approach can identify the predictor or set of pre-
dictors that adequately explain the dynamics among locations 
(12, 72) or among host transitioning (73). Here, we adapt this ap-
proach to compare the fit of individual model-based fluxes as pre-
dictors of phylogeographic diffusion. In order to model 
heterogeneity in migration rates through time, and hence to allow 
for different fluxes predicting these time-variable rates, we adopt 
an epoch modeling approach (46). The epoch approach partitions 
evolutionary history into an arbitrary number of time intervals or 
epochs, separated by transition times, and allows specifying a po-
tentially different CTMC parameterization for each epoch. Here, 
we set up transition times every six months separating each 
time the period from March 21 to September 20 from the period 
from September 21 to March 20 (for brevity, the two periods are 
named throughout the text April–September and October– 
March, respectively). We apply two different alternating GLM pa-
rameterizations to this April–September and October–March 
epoch setup.

We perform inference under the GLM and epoch model using 
Markov chain Monte Carlo (MCMC) integration using BEAST (47).

We fit both time-homogeneous and epoch GLM models with 
the flux predictors to phylogenetic histories for influenza A sub-
types H3N2 and H1N1 and influenza B lineages Yamagata and 
Victoria, previously analyzed by Bedford et al. (16). The phylogen-
etic reconstructions are based on hemagglutinin (HA) gene se-
quence data sets covering a time interval from 2000 to 2012 and 
representing roughly equitable spatiotemporal distributions 
across global regions. The original data sets comprise 4,006, 
2,144, 1,455, and 1,999 HA sequences for H3N2, H1N1, YAM, and 
VIC, respectively. We fit our models to the same empirical tree dis-
tributions as used in the original work. We run sufficiently long 
MCMC chains to ensure adequate mixing as assessed by effective 
sample size estimates. We perform discrete diffusion phylogenet-
ic simulations using πBUSS (74) to explore the performance of the 
approach (see Section 3 of the Supplementary Material).

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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