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Background. Pancreatic ductal adenocarcinoma (PDAC) remains one of the most fatal malignancies due to its high morbidity and
mortality. DNA methylation exerts a vital part in the development of PDAC. However, a mechanistic role of mutual interactions
between DNA methylation and mRNA as epigenetic regulators on transcriptomic alterations and its correlation with clinical
outcomes such as survival have remained largely uncovered in cancer. Therefore, elucidation of aberrant epigenetic alteration in
the development of PDAC is an urgent problem to be solved. In this work, we conduct an integrative epigenetic analysis of PDAC
to identify aberrant DNA methylation-driven cancer genes during the occurrence of cancer. Methods. DNA methylation matrix
and mRNA profile were obtained from the TCGA database. The integration of methylation and gene expression datasets was
analyzed using an R package MethylMix. The genes with hypomethylation/hypermethylation were further validated in the
Kaplan–Meier analysis. The correlation analysis of gene expression and aberrant DNA methylation was also conducted. We
performed a pathway analysis on aberrant DNG methylation genes identified by MethylMix criteria using ConsensusPathDB.
Results. 188 patients with both methylation data and mRNA data were considered eligible. A mixture model was constructed, and
differential methylation genes in normal and tumor groups using the Wilcoxon rank test was performed. With the inclusion
criteria, 95 differential methylation genes were detected. Among these genes, 74 hypermethylation and 21 hypomethylation genes
were found. The pathway analysis revealed an increase in hypermethylation of genes involved in ATP-sensitive potassium
channels, Robo4, and VEGF signaling pathways crosstalk, and generic transcription pathway. Conclusion. Integrated analysis of
the aberrant epigenetic alteration in pancreatic ductal adenocarcinoma indicated that differentially methylated genes could play a
vital role in the occurrence of PDAC by bioinformatics analysis. The present work can help clinicians to elaborate on the function
of differentially methylated expressed genes and pathways in PDAC. CDO1, GJD2, ID4, NOL4, PAX6, TRIM58, and ZNF382
might act as aberrantly DNA-methylated biomarkers for early screening and therapy of PDAC in the future.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is still one of the
primary health problems due to high mortality and incidence
worldwide. PDAC remains the primary cause of cancer-re-
lated mortality worldwide. It is reported that a 5-year survival
rate remains lower, and the average survival time is no more

than six months [1]. PDAC is the fourth primary cause of
cancer death affecting 56,670 new patients in 2017 in the USA
[2, 3]. Although the advances in surgical techniques and
chemoradiotherapy protocols had largely improved, the
overall survival of PDAC patients remains poor. Meanwhile,
due to resistant to radiotherapy and chemotherapy in patients
with PDAC, little progress has been made related to its
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therapy in the past decades [4]. Therefore, to reduce mortality
and improve the treatment of PDAC, we need to find new
early diagnostic biomarkers and therapeutic targets for early
detection and risk classification of PDAC.

DNA methylation has previously been found to be a
valuable biomarker for several cancers [5–7]. The epigenetic
variations usually suppress protein translation and gene
transcription in human carcinogenesis. Several studies have
demonstrated that DNA methylation exerted an early event,
and new efforts are focused on finding biomarkers for early
disease detection, prognostication, and treatment selection,
especially in multiple cancers [8–11]. Therefore, elaborating
the potential mechanisms during the initiation and devel-
opment of cancer would greatly improve the diagnosis,
treatment, and prognosis evaluation. Abnormal methylation
could affect the functions of crucial genes by altering their
expression. In this study, we utilized systemic analysis to
identify a group of novel gene signatures, which may be
regulated by DNA methylation. In addition, the present
study can help clinicians to elaborate on the function of
DMGs in PDAC. Our study might be the groundwork for
further elucidation of the PDAC mechanism and screening
of the diagnostic biomarkers for the early stage of PDAC.

2. Materials and Methods

2.1. Data Source and Data Processing. In the current study,
the mRNA expression and DNA methylation data of the
PDAC cohort were obtained from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/, August 28, 2018). The 4
adjacent nontumor pancreatic tissues and 187 PDAC
samples were included in the gene expression profiles, where
the mRNA microarray employed IlluminaHiSeq RNA-Seq
array, while 10 adjacent nontumor control tissues and 178
PDAC tissues were included in the gene methylation dataset,
where the methylation microarray used Illumina Human-
Methylation 450 BeadChip.

The DEGList and calcNormFacors functions in the
edgeR package were employed to normalize the RNA se-
quence data and DNA methylation data [12]. Both tumor
samples and normal samples were used in the same way.

2.2. Integrative Analysis. Through the integration of gene
expression and DNA methylation datasets, the MethylMix
package in R software was employed to recognize DNA
methylation-driven cancer genes [13]. There are three steps
to detect DNAmethylation-driven cancer genes between the
DNA methylation and gene expression datasets. First, the
correlation between gene methylation and gene expression
level was imputed, and significant correlation genes were
found. Second, a beta mixture model was constructed to
determine a methylation state across multiple patients.
Third, theWilcoxon rank sum test was employed to compare
DNA methylation states between tumor and normal sam-
ples. A cutoff of 0.05 was considered statistically significant.
The hypomethylation genes were defined as positive dif-
ferential methylation (DM), while hypermethylation genes
were regarded as negative DM.

2.3. Survival Analysis. To further explore the correlation of
DNA hypermethylation or hypomethylation genes with
overall analysis, the Kaplan–Meier survival analysis and
univariate Cox regression analysis were conducted to ana-
lyze DNA methylation genes. The log-rank test was
employed to compare the survival difference between the
PDAC and nontumor samples. A two-sided P value of <0.05
was defined as statistically significant. The R “Survival”
package was used to identify independent prognostic
variables.

2.4. Pathway Analysis. The pathway analysis was analyzed
by the ConsensusPathDB website (http://cpdb.molgen.mpg.
de/), which integrated interaction networks inHomo sapiens
including protein-protein, gene regulatory, genetic, signal-
ing, metabolic, and drug-target interactions, as well as
biochemical pathways [14]. The pathway analysis was per-
formed using the prognostic DNA methylation-driven gene
lists produced by MethylMix. The pathway analysis was
conducted on the hypermethylation genes and hypo-
methylation genes, respectively.

3. Results

3.1. Demography. After excluding those patients with a
survival of less than one month, 178 patients were included
in the study.The clinical and pathological information of the
cohort study is exhibited in Table 1. In the whole cohort,
1.12% of patients were less than 35–39 years old, 10.11%
were 40–49 years old, 20.79% were 50–59 years old, 29.78%
were 60–69 years old, 29.21% were 70–79 years old, and
8.99% were above 80 years old. The median follow-up du-
ration was 46.0 months (range, 2–119 months). There were,
respectively, 19 PDCA patients with pathologic TNM stage I,
147 patients with pathologic TNM stage II, 4 patients with
pathologic TNM stage III, 5 patients with pathologic TNM
stage IV, and 3 patients with an unknown TNM stage in our
study. By the end of the last follow-up, 94 (52.81%) patients
of the entire population had died.

3.2. Identifying Methylation-Driven Cancer Genes. A com-
bined approach was utilized to assess the epigenetic alter-
ations that may be involved in the occurrence of the PDAC.
The DNA methylation-driven cancer genes were screened
using the MethylMix package in R software. The 95 genes
were recognized as differential DNA methylation genes
when adjusted P value <0.05 and corP value <− 0.3 were set
as the threshold for differential methylation genes (DMGs).
Among these genes, 74 genes (77.89%) were hyper-
methylation genes, and the remainder of genes were
hypomethylation genes (Supplementary Table 1). The heat
map is shown in Figure 1.

3.3. Correlation Analysis between DNA Methylation Genes
and mRNA. Among 95 differential methylation genes, 74
genes exhibited higher methylation levels in tumor samples
compared with normal samples and were referred to as
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hypermethylation genes, while 21 genes were defined as
hypomethylation genes. The top five hypermethylated/hypo-
methylated genes are shown in Figure 2. All methylation-
driven cancer genes showed a negative association between
DNA methylation genes and mRNA. The top five hyper-
methylated/hypomethylated genes are also exhibited in
Figure 3.

3.4. Survival Analysis. In order to evaluate the effect of
differential genes on PDAC patient’s prognosis, we con-
ducted the Kaplan–Meier survival analysis and univariate
Cox regression analysis.The findings indicated that 25 out of
74 hypermethylation genes and 10 out of 21 hypo-
methylation were associated with the patient’s overall
analysis (Table 2). Patients with higher expression in the
hypermethylation group exhibited poorer OS than those
who have lower expression. However, patients with lower
expression in the hypomethylation group demonstrated
poorer OS than those who have lower expression.
Kaplan–Meier curves for the high-risk and low-risk groups
are observed in Figure 4.

3.5. Pathway Analysis. To explore the potential functional
implication of DNA methylation-driven cancer genes, we
performed the pathway analysis by ConsensusPathDB.
Several pathways are identified in Figure 5. For hyper-
methylated genes, pathways were mainly enriched in Robo4
and VEGF signaling pathways crosstalk, ATP-sensitive
potassium channels, and generic transcription pathway. For
hypomethylated genes, a total of 4 pathways focusing on the
biological pathways were enriched, including a6b1 and a6b4
Integrin signaling, metabolism of lipids, and phospholipid
metabolism reactome.

4. Discussion

ThePDCA is characterized by late diagnosis, poor prognosis,
low rates of overall survival, and locoregional recurrences.
The primary validated treatment selection remains surgical
resection. Local recurrence is a primary cause of failure to
treatment [15]. Despite several factors were identified bio-
markers for early detection and develop new treatments in
PDAC, the overall survival rate and prognosis remain poor
[16, 17]. Meanwhile, due to an absence of particular
symptoms at an early stage, along with resistance to ther-
apies, high metastatic ability, and lack of diagnostic

biomarkers and screening methods, early diagnosis remains
the primary treatment option in PDAC. Therefore, it was
urgent to explore the potential mechanisms and patho-
genesis during the development and progression of PDCA
and to uncover new biomarkers and therapeutic targets.

Epigenetic altercation exerts a vital part in carcino-
genesis and tumor development progression. Aberrant
methylation could affect the functions of crucial genes by
altering their expression. Several studies have demonstrated
that DNA methylation is referred to as an early phenom-
enon, and new efforts are focused on recognizing biomarkers
of early disease detection, prognostication, and treatment
option selection, especially in PDCA [5–7, 18, 19]. DNA
hypomethylation has also been documented to be involved
in the occurrence of tumors and alters genome rearrange-
ment and chromosomal instability [20, 21]. Therefore,
elaborating on the potential mechanisms of development of
PDCA would largely elevate the diagnosis and improve the
treatment and prognosis evaluation.

In current works, we integrated DNA methylation data
andmRNA data and screen DNAmethylation-driven cancer
genes, and Kaplan–Meier survival analysis was further
validated these prognostic results. Compared to normal
groups, 95 differential methylation genes (74 hyper-
methylation genes and 21 hypomethylation gens) were
found in the tumor group. We also found that patients with
hypermethylation yielded poor-prognosis modifications,
demonstrating that many combinations of hyper-
methylationmodifications contribute to poor prognosis.The
pathway analysis was also performed, and the results in-
dicated that Robo4 and VEGF signaling pathways crosstalk
and ATP-sensitive potassium channels may be related to the
development and progression of PDAC. One important
result from the pathway analysis was involved in the vascular
endothelial growth factor (VEGF) pathway among hyper-
methylated genes. It is widely accepted that VEGF is a vital
driver of the angiogenic modification in physiological and
pathological processes in both embryo and adult. VEGF is
often found overexpressed in tumors [22]. VEGF exerts a
crucial role in vascular homeostasis and the maintenance of
vascular integrity. The VEGF signal transduction pathway
has identified as an important therapeutic target for patients
with many cancers [23, 24]. The two hypermethylated genes
(SLIT2 and KDR) were enriched in the pathway. The
methylation of SLIT2 was associated with the development
and progression of hepatocellular carcinoma [25], dysplasia
of pancreatic cystic neoplasms [26], breast cancer [27], and
nasopharyngeal carcinoma [28]. The methylation of KDR
was also correlated with the development and progression of
oral squamous cell carcinoma [29].

Several prognostic hypermethylated genes had been
shown to be correlated with a variety of cancers in prior
studies (Table 3). A growing body of evidence indicated that
CDO1 promoter methylation was correlated with many
cancers. Kojima et al. suggested that the hypermethylated
gene of CDO1 served as biomarkers and contributed to
colorectal cancer [30]. Brait et al. reported that CDO1 serves
as a tumor suppressor and is deactivated by promoter
methylation in several tumors [31]. Jeschke et al.

Table 1: Clinical characteristics.

Clinical variables Clinical values (N� 185)
Sex (male/female) 98/80
Age (mean± std) 64.70± 11.13
Race (Asian/black/white/NA) 11/7/155/14
Pathologica stage (I/II/III/IV/V/NA) 19/21/147/4/5/3
Pathologic_T stage (T1/T2/T3/T4/NA) 7/21/144/4/2
Pathologic_N stage (N0/N1/NA) 48/125/5
Pathologic_N stage (M0/M1/NA) 83/5/90
Grade (G1/G2/G3/G4/Gx/NA) 29/94/50/2/3
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demonstrated that the silence of CDO1 may account for the
survival of breast cancer cells and resistance to anthracy-
clines [32]. Yang et al. reported the methylation status of the

CDO1 promoter to become a diagnostic biomarker for
hepatitis B virus-related HCC [33]. CDO1 promoter
methylation was also associated with the risk of gastric
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Figure 1: Representative heat map of the 74 differential methylation genes. Red represents upregulation; blue represents downregulation.
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Figure 2: Summary of (a) top three hypermethylated and (b) top three hypomethylated genes.The abscissa is the degree of methylation, the
ordinate is the number of methylated samples, the histogram represents the methylation distribution of the tumor samples, and the curve
demonstrates the simulated trend curve of the methylation distribution in the tumor samples. The black horizontal line above the graph is
the methylation level distribution of the normal samples. The red line represents the distribution of methylation in tumor samples.
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Figure 3: Continued.
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cancer [34], breast cancer [35], hepatocellular carcinoma
[36], and prostate cancer [37]. Sirnes et al. reported that
GJC1 promoter methylation played a crucial role in co-
lorectal cancer [38] and follicular lymphoma [39]. ID4 serves
as hypermethylation gene and tumor suppressor gene in

breast cancer [40, 41] and acute leukemia [42, 43]. ID4
promoter methylation was also correlated with the risk of
prostate cancer [44, 45]. Meanwhile, NOL4, PAX6, TRIM58,
and ZNF382 promoter methylation was also associated with
the occurrence of many cancers [46–55].
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Figure 3: Correlation analysis between gene expression and hypermethylated/hypomethylated genes.

Table 2: Prognostic hypermethylation/hypomethylation genes for PDAC in Kaplan–Meier survival analysis and univariate Cox regression
analysis.

Gene P value (KM) HR Low 95% High 95% P value (Cox)
ID4 0.042672 3.630678 0.520149 25.34241 0.193383
CBLN4 0.023498 8.850718 1.048889 74.68398 0.045088
NOL4 0.004024 4.335809 0.684543 27.46246 0.119342
ZSCAN23 0.025771 2.565136 0.291866 22.54433 0.395617
ZNF208 0.027825 4.378881 0.610815 31.39183 0.14171
TPTEP1 0.031211 9.031061 0.565839 144.1401 0.119457
CTD-2554C21.2 0.02653 3.226591 0.659874 15.77709 0.148008
HMGCLL1 0.032094 5.418468 0.99398 29.53761 0.050821
TBX18 0.013916 1.719498 0.399601 7.399053 0.466623
CDO1 0.002445 9.153049 1.051298 79.69033 0.044934
GJD2 0.03223 2.621186 0.475785 14.44059 0.268377
KCNJ8 0.047027 2.946227 0.607266 14.29399 0.179935
ZNF382 0.025139 2.887076 0.625426 13.32725 0.174279
RP11-748H22.1 0.021448 2.767153 0.603237 12.69342 0.190326
AC005498.3 0.037114 3.33757 0.887535 12.55091 0.074517
KCNA3 0.017149 1.742724 0.2681 11.3282 0.560838
TLL1 0.010797 5.624124 0.745679 42.41878 0.093876
ZNF454 0.047434 2.430637 0.414374 14.25765 0.325139
GRIA2 0.007244 4.082081 0.778325 21.40929 0.096198
SNAP91 0.000726 4.182435 0.957687 18.26563 0.057108
PHYHIPL 6.50E-05 4.99462 0.648914 38.44306 0.122433
PAX6 0.045649 3.477117 0.489556 24.69657 0.212806
TRIM58 0.014099 2.686691 0.452754 15.9431 0.276686
RP11-760D2.5 0.010799 3.659025 0.898893 14.89439 0.070119
PABPC5 0.029366 2.600122 0.768849 8.79319 0.124263
PSMG3 0.024383 0.070082 0.005646 0.869985 0.038608
BX470102.3 0.00414 0.056038 0.003752 0.836902 0.036704
CTD-2330K9.2 0.014257 0.234518 0.064259 0.855889 0.028124
RP11-734K21.5 0.030528 0.143102 0.033485 0.611557 0.008702
GDPD3 0.007174 0.056417 0.005122 0.621427 0.018844
C19orf33 0.042501 0.239202 0.03509 1.630583 0.144101
MOGAT2 0.006182 0.040403 0.00416 0.392444 0.005669
RP5-1142J19.1 0.025301 0.111422 0.015353 0.808636 0.030006
C11orf53 0.013738 0.265261 0.031938 2.20313 0.219203
LIPH 0.008497 0.087046 0.010817 0.700467 0.021758
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Figure 4: Continued.
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Figure 4: Kaplan–Meier survival curves for overall survival outcomes according to the risk cutoff point for prognostic hypermethylated/
hypomethylated genes. The P value of the log-rank test is less than 0.01.
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Figure 5: The pathways enriched for hypermethylated and hypomethylated genes in the TCGA PDAC cohort.

Table 3: Literature search of key hypermethylation genes screened by MethylMix criteria.

Gene
symbol Gene name Chromosome

Tumor
suppressor gene

in cancer

Hypermethylated
gene in cancer Altered pathways Cancer type

CDO1 Cysteine
dioxygenase type 1 5q22.3 Hypermethylation Viral mRNA translation;

metabolism

Colorectal cancer;
hepatocellular

carcinoma; gastric
cancer; prostate cancer;
esophageal squamous

cell carcinoma

GJD2 Gap junction
protein delta 2 15q14 Hypermethylation Gap junction;

G-beta gamma signaling Colorectal cancer

ID4
Inhibitor of DNA
binding 4, HLH

protein
6p22.3 Tumor

suppressor gene Hypermethylation

TGF-beta signaling
pathway (KEGG);
signaling pathways

regulating pluripotency
of stem cells

Breast cancer; acute
leukemia

NOL4 Nucleolar protein 4 18q12.1 Tumor
suppressor gene

Head and neck cancer;
cervical cancer

PAX6 Paired box 6 11p13 Hypermethylation Gastric cancer; breast
cancer

TRIM58 Tripartite motif
containing 58 1q44 Hypermethylation

Colorectal cancer; lung
squamous cell
carcinoma;

hepatocellular
carcinoma

ZNF382 Zinc finger protein
382 19q13.12 Tumor

suppressor gene Hypermethylation Generic transcription
pathway

Gastric cancer; pediatric
acute myeloid leukemia
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Integrated analysis of the aberrant epigenetic alteration
in PDAC indicated that differentially methylated genes may
be involved in the occurrence of PDAC. Moreover, the
present study can help clinicians to elaborate on the function
of differentially methylated expressed genes in PDAC. Our
study might be the groundwork for further mechanisms
elucidation of PDAC and identification of the diagnostic
biomarkers for an early stage of PDAC.
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