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SUMMARY

The on-going COVID-19 pandemic and consequent lockdowns cast significant
impacts onglobal economy in the short run. Their impact on stability of global elec-
tric vehicles (EVs) supply chain and thus our climate ambition in the long run, how-
ever, remains hitherto largely unexplored.Weaim to address this gapbased on an
integratedmodel framework, including assessing supply risks of 17 selected core
commodities throughout the EV supply chain and further applying the supply con-
straints to project future EV sales until 2030. Our model results under three
pandemic development scenarios indicate that if the pandemic is effectively con-
tained before 2024, the global EV industry will recover without fundamentally
scathed and thus can maintain the same growth trend as in the no-pandemic sce-
nario by 2030. We suggest that fiscal stimulus in the postpandemic era should
be directed more toward upgrading the quality of battery products, rather than
expanding the production capacity.

INTRODUCTION

The COVID-19 pandemic has cumulatively caused 300 million confirmed cases worldwide, with three

million deaths reported by January 7th, 2022 (Dong et al., 2020). Most countries have imposed ‘‘lockdown’’

measures to contain the spread of coronavirus when their domestic pandemic has reached a relatively

severe level, including, e.g., mobility restriction, border closures, and plant shutdown. At the peak of

the lockdown, economic activities around the world came to a near standstill (Diffenbaugh et al., 2020).

The consequences caused by lockdown measures include not only the disruption of existing production

but also the suspension of construction of new facilities. During a pandemic, the delay of production ca-

pacity expansion can be irreversible and thus affect the supply in the long run despite a possible gradual

recovery of production and consumption to the prepandemic level with the lift of lockdown restrictions. For

example, it is estimated that China’s newly installed capacity of battery production in 2020 would be 26

GWh lower than originally planned due to the pandemic restriction measures (Wood Mackenzie, 2020).

Although vaccination is becoming widely available, there are still many uncertainties in future development

of the pandemic (Jason, 2020; World Health Organization, 2020b). Thus, it is very possible that lockdown

measures will be repeatedly imposed until the pandemic is fully contained (which already happened in

some countries), causing suspensions of production and capacity building for several times.

Another crisis faced by humankind is the climate change, which persists longer and has a more extensive

impact (Geng et al., 2018). To address the climate urgency, various countries have put forward ambitious

emission reduction targets and corresponding development plans for electric vehicle (EV) (Crabtree, 2019;

Hoekstra, 2019; Smriti, 2020; Wang et al., 2018). The necessary prerequisite for achieving these goals is a

commensurate increase in the supply of relevant components and rawmaterials (Baars et al., 2020; Fu et al.,

2020; IEA, 2021a; b; Watari et al., 2019). Facing the unclear COVID-19 pandemic development, it is vital to

explore the impact of this major public emergency on stability of EV supply chain.

A number of studies have evaluated the impacts of the pandemic on human society from the perspectives

of energy demand and associated environmental implications (Forster et al., 2020; He et al., 2020; Kikstra

et al., 2021; Le Quéré et al., 2020; Shan et al., 2020), critical material supply stability (Ata et al., 2020; Roskill,

2020; Zhu et al., 2021), energy security (Gillingham et al., 2020; Marina et al., 2020; Ou et al., 2020; Ruan

et al., 2020; Si et al., 2021), and economic losses (Guan et al., 2020). A few studies have explored the impact

of the COVID-19 pandemic on EV industry. For example, McClone et al. (2021) studied the change on EV

charging demand in the University of California, San Diego during the pandemic (McClone et al., 2021).
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Arribas-Ibar et al. (2021) studied the EV innovation ecosystem response to the pandemic (Arribas-Ibar et al.,

2021). Wen et al. (2021) summarized the impacts of pandemic on China’s EV industry from the supply chain

side and demand side for the year of 2020. They found that the COVID-19 pandemic has reduced the EV

production and sales on the short term, but it also stimulated future EV demand (Wen et al., 2021).

Previous literature provided static evaluation for the existing impacts of the pandemic on EV industry.

However, potential dynamic impact of lockdown measures on supply-demand balance of global EV in-

dustrial chain in the long run has hitherto not been fully investigated. To fill this gap, we developed an

integrated model to explore whether the supply delays caused by the COVID-19 pandemic will be a

bottleneck on the growth target of global EV market. The integrated model structure is shown in Figure 1.

We first quantified the severity of the pandemic in 185 countries and regions to evaluate the probability of

supply disruption of 17 core EV-related commodities throughout its supply chain. Based on these results,

we further developed a bottom-up projection model to estimate available lithium-ion battery (LIB) pro-

duction capacity under three pandemic development scenarios from 2020 to 2030. Such production con-

straints were then incorporated as input in the Transport Impact Model (Hao et al., 2019a, 2019b) to

assess future EV sales.

Here we show that lithium mineral is the most critical raw material that will likely form restrictions on the EV

industry due to the pandemic. If the pandemic could be gradually contained in the short term, the growth

trajectory of EV market will not be affected by lockdown measures. Current excess production capacity of

LIBs and relevant raw materials will provide a large buffer for supply disruption constraints on consumption

growth. However, if the pandemic spread is not controlled in the short term, the development of EV indus-

try could be seriously jeopardized before 2030. The results imply that the postpandemic recovery of EV in-

dustry should seek the window of opportunity created by this pandemic to upgrade the quality rather than

the quantity of production capacity.

Figure 1. Integrated model structure for evaluating the potential impact of COVID-19 pandemic on global EV

supply chain
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RESULTS

Identification of risk sources in the EV supply chain

The current EV supply chain covers thousands of relevant components and raw materials (Bhuwalka et al.,

2021). Considering the availability of data, their relative significance, and the operability of the model, we

focused on the commodities related to the core component—LIB, which is the most valuable part that de-

termines the performance of EV products (Crabtree, 2019; Olivetti et al., 2017). A total of 17 commodities

were identifiedmost relevant for the EV supply chain, from battery-related critical minerals to final products

(Sun et al., 2017, 2018b, 2019a, 2019b, 2020). The distribution of supply of different commodities and the

extent to which different countries are affected by the pandemic cause the diverse probability of supply

disruption of various commodities. Based on the infection rate and growth rate of COVID-19 confirmed

cases on the country level, we developed a Regional COVID-19 Severity Index (RCSI) to quantify the severity

each country is affected by the pandemic. Further a Commodity Criticality Index (CCI) was proposed to

reflect the potential risk embodied in the supply of each of the 17 commodities based on the correspond-

ing supply structure by country (see Tables S4–S20), RCSI, and the impact of commodities on the EV indus-

try. The detailed methodologies of calculating RCSI and CCI are presented in STAR Methods section. The

final quantization results are shown in Figure 2 (see Tables S1–S3 for detailed values).

In 2019, a total of 63 countries and regions were linked to the EV supply chain. Among these countries,

Turkey, the USA, Brazil, Argentina, and Spain were the top five countries with the highest RCSI (39, 36,

36, 34, and 32, respectively), whereas China (mainland), Taiwan, Australia, Madagascar, Burma, and Ghana

were the five regions with the lowest RCSI (1, 10, 10, 13, and 14, respectively). These variations between

countries reflect mainly the differences in their regional infection rate.

Figure 2. Severity of COVID-19 pandemic throughout the global EV supply chain

LFP: lithium iron phosphate; LCO: lithium cobalt oxide; NCM & NCA: lithium nickel cobalt manganese oxide and lithium

nickel cobalt aluminum oxide; LMO: lithiummanganese oxide; LIB: lithium-ion battery; EV: electric vehicle; RCSI: regional

COVID severity index; CCI: commodity criticality index. The pie chart corresponds to the supply structure of EV-related

commodities. Each slice corresponds to proportion of each country’s supply. The colors of the slices correspond to the

values of RCSI. The pie size is proportional to the value of CCI. The direction of the arrow is from the upstream commodity

to the downstream commodity.
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Supply of lithiummineral, EV, cobalt ore, nickel ore, and lithium carbonate were the greatest risk sources for

EV industry during the pandemic, with the highest CCI of 1622, 1436, 1297, 1171, and 1159, respectively.

The high CCI of lithium mineral was ascribed to the large production proportion of Chile and Argentina

(with an RCSI of 28 and 33, respectively), as Figure 3A shows, and its irreplaceable role in automobile power

battery industry. The USA, France, and Germany were the main sources for the high CCI of EV, with an RCSI

of 36, 29, and 27, respectively. The CCIs of LIB cathode materials were relatively low: 5 for lithium manga-

nese oxide (LMO); 23 for lithium iron phosphate (LFP); 181 for lithium cobalt oxide (LCO); and 454 for lithium

nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide (NCM & NCA). The low CCI of

these commodities benefited from the dominating positions of China, Japan, and Korea on supply (with

an RCSI of 1, 17, and 19, respectively).

As the EV industry is still at the phase of rapid growth, the supply structure of EV-related commodities

would change substantially in the future due to different investment strategies of various enterprises

and countries. Therefore, the production data for 2019 may not accurately reflect the dynamic risks of

EV supply chain in the next decade. We collected the information about production layout of relevant

suppliers for the 17 selected commodities (see Tables S22–S25 for details). A significant change is then ex-

pected in the supply structure of lithium hydroxide, nickel chemical, NCM&NCA, and LIB by 2030 (see Fig-

ures 3B and S2–S7). Although China will remain as the largest supplier of these commodities, the second or

third largest supplier will change. Taking these prospective changes in supply structure into account, the

CCI of lithiummineral will remain higher than that of other commodities (Sun et al., 2020; USGS, 2021). As a

result, lithium mineral was identified as the most critical source of supply constraint.

Quantification of supply constraints from the pandemic

The COVID-19 pandemic affects the supply-demand balance in multiple dimensions, including for

example factory shutdown, logistics disruption, business failures, and purchasing power decline. In this

study, quantification of the impacts of the pandemic on EV market begins on the supply side. As the infor-

mation about long-run supply planning of lithium minerals is not available and lithium is currently essential

for all EV battery technology routes, we mapped the probability of supply disruption of lithium minerals

into LIB supply constraints and ignored the impacts of nonbattery applications of lithium. We developed

the Battery Supply Projection Model based on the production capacity planning of LIB suppliers and

two key parameters: (1) release efficiency of existing production capacity, quantifying the influence of

Figure 3. Top three suppliers in the EV supply chain for the year of 2019 and 2030

(A) The historical data for the proportion of the top three suppliers of LIB-related commodities in 2019.

(B) The projected results of commodities of which there will be great changes in the production structure in 2030. EMD:

electrolytic manganese dioxide. The inner circle of the torus represents the data for 2019, and the outer circle represents

the data for 2030.

ll
OPEN ACCESS

4 iScience 25, 103903, March 18, 2022

iScience
Article



the production disruption caused by the lockdownmeasures on the annual output of commodities; (2) con-

struction efficiency of new production capacity, quantifying the influence of suspension of new plant con-

struction on annual growth rate of production capacity. Model details are described in the STAR Methods

section. In short, the underlying data to calculate these two parameters are the duration of each lockdown

measure and the interval between the two waves of pandemic. The average duration of a single lockdown

period is 64 days, according to a collation of information on relevant measures taken by countries in the first

half of 2020 (Table S21). Based on the data of newly confirmed cases in typical countries (Dong et al., 2020),

the average interval between two waves of COVID-19 pandemic is 79 days (Figures 4 and S1).

There is still high uncertainty about the future development of the COVID-19 pandemic. Therefore, we de-

signed three scenarios to explore the possible consequences of different pandemic development path-

ways. The main difference between the various scenarios lies around the assumptions about the duration

of the pandemic. Scenario assumptions and corresponding model parameters are shown in Table 1. The

business-as-usual (BAU) scenario is the reference scenario used to provide the future EV market size by

the year of 2030 based on the established climate targets with no impact of COVID-19 pandemic. The

short-term recovery (STR) scenario is the conventional scenario in which the pandemic will be contained

within a few years with the promotion of vaccines as World Health Organization (WHO) expected (World

Health Organization, 2020a). The long-term coexistence (LTC) scenario is the extreme scenario in which

the pandemic will not be contained within a decade.

Prospective EV market under three scenarios

The end-use applications of LIBs were divided into three sectors: EVs (including passenger vehicles, light-

duty commercial vehicles, and heavy-duty commercial vehicles), stationary energy storage systems, and

other electric devices (including communication equipment, portable computers, electric two/three

wheelers, laptops, cameras, power tools, drones, and robots). We assumed that the EV sector would be

the first to be affected by LIB supply constraints due to its large share in consumption, high technical re-

quirements, and high substitutability (e.g., internal combustion engine vehicle could fully substitute LIB

and EV’s roles in meetingmobility demand). The future consumptions of stationary energy storage systems

and other electric devices were modeled consistently under these three scenarios. Then we can get the

available LIB production capacity for EVs by subtracting the demand for other two sectors from the total

Figure 4. Time interval between the first and the second outbreak of COVID-19 in typical countries

Blue lines show the newly confirmed cases. Red dotted lines show the end time of the first outbreak (when newly

confirmed cases dropped below 10% of its first peak) and the beginning time of the second outbreak (when newly

confirmed cases reached 10% of its second peak). Typical countries refer to the countries that have certain nucleic acid

testing capabilities and have contained the first wave of pandemic but are suffering the second wave of pandemic.
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production capacity. Further we applied the available LIB production capacity for EVs into our developed

TIM as the constraint condition to calculate prospective sales of LIB-powered EVs.

Prospective production capacity and end-use consumption of LIBs are shown in Figure 5. On the supply

side, the total LIB production capacity could reach 3505 GWh by 2030, steadily rising from 200 GWh in

2017 under the BAU scenario. Under the STR scenario, the LIB production capacity will first slightly increase

to 421 GWh in 2020 from 411 GWh in 2019 and then rise steadily to 3449 GWh in 2030. Under the LTC sce-

nario, the LIB production capacity will reach 2522 GWh in 2030, after the same trend before 2019 as that in

the STR scenario.

On the demand side, LIB used in the nonvehicle applications will grow from 85 GWh in 2017 (stationary en-

ergy storage systems, 12; other electric devices, 73) to 290 GWh (stationary energy storage systems, 125;

other electric devices, 165) in 2030, which are the same in all three scenarios due to our assumption.

Table 1. Set-ups of three pandemic scenarios

Scenario Model assumptions Model parameters Notes

Business as usual (BAU) Supposing that the COVID-19

pandemic did not happen.

Establishment rate of EV production

capacity could sustainably meet the

growth of EV consumption. EV sales

successfully reached the origin

targets set by all countries.

Construction efficiency

of new facilities:

100% from 2020 to 2030.

Release efficiency of

existing facilities:

100% from 2020 to 2030.

We assume that all current

production capacity planning

could be successfully reached.

Short-term recovery (STR) Although some countries have

halted the spread of the coronavirus,

most have failed to do so. In most

countries the number of confirmed

cases rise again after relieving

lockdown measures. Outbreaks

bounce back frequently so that

lockdown measures have to be

reimposed for multiple times. The

vaccine’s progress, however, is more

optimistic. More than 20% of the

global population each year can

be immunized through successful

marketing, mass production, and

effective distribution of vaccines

in 2021. By 2024, the coronavirus

herd immunity will have been formed,

making the pandemic situation

disappeared in human society.

Production and consumption

activities have subsequently returned

to the original trajectory.

Construction efficiency of

new facilities:

82% in 2020;

87% in 2021;

91% in 2022;

96% in 2023;

100% from 2024 to 2030.

Release efficiency of

existing facilities:

86% in 2020;

89% in 2021;

93% in 2022;

96% in 2023;

100% from 2024 to 2030.

Based on the duration of each

lockdown measure and the interval

between the two waves of pandemic,

we assume that lockdown measures

will be taken two times per year.

Final calculation results of construction

efficiency and release efficiency are

82% and 86% in the initial year,

respectively.

We assume that the release

efficiency and construction

efficiency will increase linearly to

100% by 2024 because of

promotion of vaccines.

Long-term coexistence (LTC) Most countries have failed to

bring pandemic under full control

through governance measures.

Worse still, because developed

vaccines are not as safe, effective, and

productive as expected, the vaccine

fail to stop the spread of the virus

until 2030. Over the next decade,

the pandemic continues to spread.

Many countries have to take

lockdown measures for lots of times.

Construction efficiency

of new facilities:

82% from 2020 to 2030.

Release efficiency of

existing facilities:

86% from 2020 to 2030.

We assume that construction

efficiency and release efficiency

will keep the same as they are

in the initial year, respectively.
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Consumption for LIBs in the EV sector will be the same under the BAU and STR scenarios, which will grow

steadily to 2993 GWh in 2030 from 145 GWh in 2020. The penetration rate of EV will reach 42% by 2030 with

annual sales of 2.1 million plug-in hybrid electric vehicles and 65.2 million battery electric vehicles. Under

the LTC scenario, more restrictive production capacity will depress the consumption of LIBs in EV sector to

2051 GWh in 2030. The penetration rate of EVs will reach 27% by 2030 with sales of 1.4 million plug-in hybrid

electric vehicles and 41.7 million battery electric vehicles per year. Detailed results of EV sales by vehicle

type (passenger vehicles, light-duty commercial vehicles, and heavy-duty commercial vehicles) are shown

in the Figures S15 and S16.

One significant finding of ourmodel results is that the losses of LIB production capacity causedbyCOVID-19

pandemic will have little impact on the EV demand growth if the pandemic could be gradually contained

before 2024. The underlying reason for this circumstance is the existing overcapacity for production of

LIB in the past. From 2017 to 2019, the ratio of actual production to production capacity of LIBs kept

decreasing from 75% to 51%. These excess production capacities form a large buffer for the shock of the

pandemic on supply. Nevertheless, if the pandemic persists for long run, production capacity constraints

will start to cast a devastating impact on the development of the EV industry.

DISCUSSION

Uncertainty analysis

In the integrated model developed in this study, the model parameter with the highest uncertainty is the

duration of strict lockdownmeasures (hereinafter referred to as lockdown duration). This parameter directly

affects the construction efficiency of new facilities and release efficiency of existing facilities. We made a

strong assumption for lockdown duration that this parameter would be consistent with the historical

data during each wave of future outbreak, whereas factors such as the severity of future outbreaks and

the speed and willingness of governments to respond could be very different from the past. Even for

the same country, the lockdown duration is likely to change dramatically. In addition, there are great dif-

ferences in the enforcement of pandemic prevention policies by national governments. We distinguish

the impact of the lockdown duration on the opening rate at the country level based on the RCSI. But for

countries with similar indexes, enforcement and focus of lockdown measures could vary greatly. The lock-

down measures in some countries only stay at the level of controlling social distance in order to maintain

the operation of the economy. Some other countries may suspend all economic activities in an effort to

quickly contain the pandemic.

Figure 5. Projections of LIB production capacity, end-use LIB consumption, and corresponding EV sales under

three pandemic development scenarios

BEV: battery electric vehicle; PHEV: plug-in hybrid electric vehicle. (A) Lines correspond to the global LIB production

capacity under the three scenarios. Stacking areas correspond to the end-use consumption of LIBs. The colors of four

areas correspond to four end-use categories of LIBs. Cyan areas in different transparency correspond to the demand from

EVs under three scenarios. Their lower boundaries are the same and part of their areas overlap. (B) Stacking area maps in

different colors correspond to sales of EVs with different powertrain systems (left vertical axis). Red lines correspond to

annual market penetration rate of EV sales (right vertical axis). Two subgraphs correspond to different scenarios.
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Another major source of uncertainty is the weight coefficient of the two parameters, infection rate and

growth rate of COVID-19 confirmed cases, used to calculate RCSI. Due to the insufficient information sup-

porting the weight set, we assumed that the two parameters contribute equally to the regional supply risk.

The changes of weight coefficient may lead to the different relative size of the country’s RCSI value.

We consequently performed uncertainty analysis to test the impact of the uncertainty of lockdown duration

and weight coefficient on the model output. The observed model output is the cumulative global EV sales

from 2020 to 2030. The results of uncertainty analysis are shown in the Figures S16 and S17. Results indicate

that model output is strictly negatively correlated with the lockdown duration. Under the STR scenario, with

the lockdown duration parameter changing by �20%–20% of the original value, the cumulative global EV

sales changes by 0.94% to �0.94%. Under the LTC scenario, with the lockdown duration parameter chang-

ing by �20%–20%, the cumulative global EV sales changes by 6.41% to �6.22%. The model output is sen-

sitive to the input of lockdown duration, suggesting this parameter needs to be better considered in future

studies. When we change the relative value of the weight coefficient of infection rate and growth rate lin-

early from 10: 90 to 90:10, the cumulative global EV sales change by �0.7%–1.2% under the STR scenario

and by �1.6%–2.9% under the LTC scenario. Therefore, the model output is relatively not sensitive to the

weight coefficient because the relative size of different countries’ RCSI has not been fundamentally

changed with the change of weight coefficient.

Policy implications

This study investigated the potential impacts of COVID-19 pandemic on global EV industry using an inte-

gratedmodel framework that combines supply chain risk assessment, LIB supply constraint calculation, and

EV market projection. Our model results could provide insights to inform policy for improving security of

global EV supply chain.

Although the COVID-19 pandemic has caused a huge shock to the world economy, the pace of the energy

transition has not been hindered, with countries strengthening the emission reduction regulations and

adopting corresponding fiscal stimulus policies. Global total vehicle sales in 2020 reached 78.03 million

units, with a 13% decrease from 2019. Global sales of EVs, however, rose by 43% to 3.2 million units. Our

model results suggest that this development trajectory is promising to continue if the pandemic could

be effectively controlled in the short-term because the quantity of production capacity is more likely not

to be a constraint. However, it does not mean that the current overcapacity for LIB production is worth

advocating; this is particularly true considering that the automotive power battery market presents an over-

supply of low-grade batteries and inefficiency of high-grade batteries (Chen, 2018). The market perfor-

mance of leading enterprises and small-sized enterprises shows a polarization. The global production

capacity utilization rate of automotive power batteries in 2019 was only 38% (collation of the enterprise

public information, see Table S20). CATL and LG Chem, the two largest LIB suppliers, had a capacity

utilization rate of 51%. The next top eight companies had an average capacity utilization rate of 33%.

The remaining LIB companies were running at a capacity utilization rate of 22%. According to our estima-

tion, current scheduled production expansion of LIB suppliers is sufficient to meet the future demand of

LIBs before 2030. Capacity utilization will be maintained over 90% by 2030. Therefore, the future stimulus

and investment should be directed more toward upgrading the manufacturing level and product perfor-

mance, rather than expanding the production capacity.

It should be noticed that the above conclusion is drawn in reference to current EV penetration expectation.

The focus of this study is to explore the impact of different pandemic development scenarios on production

capacity and then to see if they will cause constraints on the original target. However, the impacts of the

pandemic will be cast not only to the supply side but also to the demand side. For example, many studies

suggest that stimulus funding in the postpandemic era should be spent on green industries (Forster et al.,

2020; Gillingham et al., 2020; Marina et al., 2020). In case such policy advice is followed, EV sector as a

typical example of the green industries can be further stimulated. Under such a circumstance, the LIB pro-

duction capacity might become a constraint, given more aggressive EV growth target. Further researches

are needed on the impact of different investment policies in the postpandemic era on the energy system.

Our results also suggest that the performance of countries in the pandemic should be incorporated into

considerations on capacity planning. China’s low RCSI and large production share are the major reasons

for its construction efficiency and release efficiency to remain over 80% under the LTC scenario. During
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the COVID-19 pandemic, government policies and executive forces vary significantly from country to coun-

try (Andreas and Llewelyn, 2020). It took China three months to bring the pandemic almost completely un-

der control, keeping the number of domestic new confirmed cases under 1000. In the USA, the pandemic

has been continuously going on, with daily confirmed cases fluctuating from tens of thousands to over 1

million. These gaps in industrial chain stability should be considered by relevant stakeholders in their ca-

pacity planning. For instance, for investment of lithium mining projects, priority might be given to better

performing countries such as Australia. The above suggestions are put forward from the perspective of

reducing the impact of large-scale public security incidents on the industrial chain. However, there is gener-

ally an inevitable ‘‘trade-off’’ between risk mitigation and cost control (Sun et al., 2019a). In addition,

constraints from environmental, social, and governance (ESG) regulations on business investment are

increasingly mighty (Roskill, 2020). Site selection and layout of production capacity, of course, need a multi-

dimensional comprehensive evaluation system.

Despite the current progress of the vaccination is optimistic, it is still necessary to normalize the prevention

and control of the coronavirus. Preparing for extreme scenarios such as the LTC is highly essential. The cor-

responding measures to maintain the stability of supply should be laid out in advance, such as establishing

regular material inventory and maintaining the promotion of recycling (Ali et al., 2017; Harper et al., 2019).

Our results highlight that lithium mineral is the most worth-noticing commodity for EV supply chain. These

resource strategies can be further explored based on our integrated model as well.

Limitations of the study

There are some limitations and uncertainties in our model structure and results. First, the pandemic data

used in this study are adopted from public information. Because of inadequate testing, statistical biases,

and delay in information disclosure, the actual number of infections may be different from the number re-

corded. In addition, as the pandemic was still under development when the study was finished, the final

quantitative results of the study do not fully reflect the severity of the pandemic in each country.

Second, in the prediction of future LIB production and consumption, due to the deviation of model struc-

ture, model assumptions, and basic data, the results may be different from the actual situation. Future

potential changes in energy technology and policy might remodel the EV supply chain significantly. The

enterprise capacity planning will also keep changing either because the original capacity planning fails

to reach the target or because themarket performance changes. Model output of future EVmarket balance

could be adjusted with updated information.

Third, this study only considered the risks transmitted from the LIB supply chain on EV industry. However,

the supply disruption of other upstream commodities is also possible due to the spread of coronavirus.

The supply of automotive-grade chips, for example, is already in serious trouble, and such situation is

likely to continue until 2023 (Accenture, 2021). Because vehicle manufacturers tend to prioritize the

limited supply of chips for the EV line, the impact of chip shortage has been so far largely confined to

the fabrication of internal combustion engine vehicles. Whether the impact will extend to EVs is still un-

certain. The supply chain of chips and other core components could be included in the model framework

of further studies.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Han Hao (hao@tsinghua.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All underlying data used in this paper is available in the main text or the supplementary information or its

sources have been clearly stated.

d This paper does not report original code, which is available for academic purposes from the lead contact

upon reasonable request.

d Any additional information required to reanalyze the data reported in this paper are available from the

lead contact upon request.

METHOD DETAILS

The integrated model is consisted of four sub-model: (1) Supply Chain Risk Assessment Model; (2) Battery

Supply Projection Model; (3) Non Vehicle Demand Model; (4) Transport Impact Model. The functions, spe-

cific composition and calculation logic of each sub-model are described as follows.

Supply chain risk assessment model

The Supply Chain Risk Assessment Model is used to quantify the possibility of supply disruption in the EV

supply chain due to COVID-19 pandemic. The EV supply chain is consisted of over a thousand types of com-

modities. Considering the importance of these commodities to the performance of EVs and the availability

of data (Sun et al., 2021), 17 key commodities were studied: lithium mineral, cobalt ore, nickel ore, manga-

nese ore, natural graphite, anode material, lithium carbonate, lithium hydroxide, refined cobalt, nickel

chemicals, electrolytic manganese dioxide, LFP, LCO, NCM & NCA, LMO, LIB, and EV.

We used the RCSI to quantify the severity of each country affected by the COVID-19 pandemic, as

Equation 1.

RCSIi = 50 � IRi � IRmin

IRmax � IRmin
+ 50 � GRi �GRmin

GRmax �GRmin
(Equation 1)

Where,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Database: COVID-19 Data Repository (Dong et al., 2020) https://github.com/

CSSEGISandData/COVID-19

Supply distribution

data of 17 EV-related commodities

This paper N/A

Production capacity plan of 17

EV-related commodities

This paper N/A

Other

Transport Impact Model (Hao et al., 2019a) N/A
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RCSIi is the RCSI of country i;

IRi is the infection rate of COVID-19 in country i (the ratio of the cumulative confirmed cases to the coun-

try’s total population);

IRmin is minimum infection rate among all countries;

IRmax is maximal infection rate among all countries;

GRi is the average daily growth rate of the cumulative number of confirmed cases;

GRmin is minimum average daily growth rate among all countries;

GRmax is maximal average daily growth rate among all countries.

RCSI is consisted of two sub-indexes: (1) infection rate and (2) average daily growth rate of cumulative

COVID-19 confirmed cases at the country level. The infection rate of COVID-19 confirmed cases reflects

the current status of regional pandemic diffusion. As the coronavirus is still spreading in many countries,

the average daily growth rate of cumulative COVID-19 confirmed cases is used to reflect the future regional

pandemic diffusion potential. The two sub-indexes are normalized respectively and then aggregated to

calculate the RCSI. Here we assumed that the contribution of the two parameters is equal to the final

pandemic severity and set the weight coefficients of the two parameters to the same size.

Further the CCI was calculated to quantify the possibility of supply constraints on EV market of each kind of

commodities, as Equation 2.

CCIj =
X�

POiP
POi

�RCSIi
�
� Ij (Equation 2)

Where,

CCIj is the CCI of commodity j;

POi is the production of commodity j of country i.

Ij is the impact of commodity j on EV industry.

The commodity supply structure and the RCSI are used to calculate the probability of supply disruption of

the commodity due to the pandemic. The more severe the pandemic is in the major producers of a com-

modity, the more likely the commodity’s supply will be disrupted. The impact of commodities on EV indus-

try is quantified by proportion of EV sector associated with the commodity’s total demand. For example, all

EVs are powered by LIBs, thus the impact index of LIB is 100%. 25% of LIBs use LCO as the cathodematerial,

thus the impact index of LCO is 25%. Detail explanations and results of RCSI, impact of various commod-

ities on EV industry, and CCI are shown in Tables S1–S3.

The COVID-19 data comes from the Center for Systems Science and Engineering at Johns Hopkins Univer-

sity (Dong et al., 2020). The temporal boundary runs until December 31st, 2021. The production data break-

down by country of various commodities is adopted from relevant databases and reports. The temporal

boundary is the year of 2019. The reliability of the data sources has been tested in a series of our previous

peer-review studies (Sun et al., 2017, 2018b, 2019a, 2019b, 2020). Detail data information and correspond-

ing sources are provided in the Tables S4–S20.

Battery Supply Projection Model

The Battery Supply Projection model is used to estimate the future LIB production capacity, which is the

maximum amount of LIBs that can be produced. It is modeled based on the expected growth rate of

production capacity, release efficiency of existing production capacity, and construction efficiency of

new production capacity, which is calculated as Equation 3. Time step of the model is one year.

PCt = REt �
�
PCt�1 + CEt �PCt0 � ðEGR + 1Þt�t0�1 �EGR

�
(Equation 3)

Where,
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PCt is the production capacity of LIBs in year t (kWh);

REt is the release efficiency of existing production capacity in year t;

CEt is the construction efficiency of new production capacity in year t;

t0 is initial time of model input, which is set to be 2019;

EGR is the expected growth rate of production capacity of LIBs.

Expected growth rate of production capacity is the growth rate under the BAU scenario. We assume that

the growth of production capacity is not affected by the COVID-19 pandemic in this scenario. We collected

the information about announced capacity planning of LIB suppliers (Table S22). The capacity planning is

divided into two phases: capacity to be achieved from 2020 to 2025 and that from 2025 to 2030, respec-

tively. The compound annual growth rate (CAGR) calculated by the capacity in the final year and in the initial

year of each phase is the expected growth rate as Equations 4 and s5.

EGR1 =

�P
iPPCi; 2025P
iPCi;2019

�1
6

� 1= 23:9% (Equation 4)

EGR2 =

�P
iPPCi;2030P
iPPCi;2025

�1
5

� 1= 18:7% (Equation 5)

Where,

EGR1 is the expected growth rate in phase 1 (2020–2025);

EGR2 is the expected growth rate in phase 2 (2025–2030);

PCi,2019 is production capacity of LIBs of company i in 2019 (GWh);

PPC2025 is the planned production capacity of LIBs of company i by 2025 (GWh);

PPC2030 is the planned production capacity of LIBs of company i by 2030 (GWh).

Release efficiency of existing production capacity is estimated based on the current pandemic data and

information about lockdown measures of each country. The average duration of a single lockdown period

is 64 days (Table S21). The average interval between two waves of COVID-19 pandemic is 79 days. Thus the

efficacy duration of lockdown measures is 143 days (64 + 79). The efficacy duration is more than 1/3 of one

year but less than 1/2 of one year. Thus we assume that lockdownmeasures will be taken two times per year.

Then we can get that the total duration of the lockdown measure per year is 128 days (64*2).

Due to the difference of national governance framework, the operation situation of factories in different

countries will be very discriminative during the period when the lockdown measures are taken. However,

it is difficult to obtain the specific information of each country, and there is great uncertainty about whether

the policy will remain the same after the outbreak of the pandemic again in the future. Here we use the RCSI

to estimate the operation rate of each country during the lockdown period, which is assumed to be: 100%

(RCSI: 0–10); 80% (RCSI: 10–15); 60% (RCSI: 15–20); 40% (RCSI: 20–25); 20% (RCSI: 25–30); 0% (RCSI>30). As

stated in the results section, lithiummineral is the most critical commodity for LIB supply. Based on the cur-

rent supply structure of lithium mineral (Table S4), only 59% of its production can be guaranteed, meaning

that 59% of LIB production capacity can be released when lockdown measure is taken. Finally we can get

that annual release efficiency of existing production capacity when the pandemic continues to spread is

((365–128) + 128*59%)/365 = 86%. According to the WHO’s COVID-19 Vaccine Implementation Plan, 2

billion vaccines will be provided per year starting in 2021 (World Health Organization, 2020a). Considering

the time required for distribution and injection, global herd immunity is expected to be achieved by 2024.

Thus we assume that, under the STR scenario, the release efficiency of existing production capacity will in-

crease linearly to 100% by 2024 (Table 1).

The calculation of construction efficiency of new production capacity is similar to that of release efficiency of

existing production capacity. The difference is the operation rate of each country during the lockdown

period, which is assumed to be: 100% (RCSI: 0–5); 50% (RCSI: 5–10); 0% (RCSI>10). The reason for this setting

is that construction requires far moremanpower than production activities. Based on the schedule of world-

wide LIB production capacity layout (Table S20 and Figure S2), we can get the construction efficiency of new
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production capacity when the pandemic continues to spread is ((365–128) +128*49%)/365 = 82%. Similarly,

under the STR scenario, the construction efficiency of new production capacity will increase linearly to 100%

by 2024 (Table 1).

Non-vehicle demand model

Except for EVs, the LIB applications can be divided into two categories: stationary energy storage system,

and other electric device. The LIB demand in these two sectors are modeled independently.

The estimation of future LIB demand in stationary energy storage systems is based on the report of Lux

Research (Lux Research, 2020). This report predicts that the LIBs used in stationary energy storage systems

will reach 223 GWh by the year of 2035, from 15 GWh in 2019. Based on this information, we can get a CAGR

of 18% from 2019 to 2035. Then we use this parameter to estimate the LIB demand in stationary energy stor-

age systems from 2020 to 2030 with the exponential growth model, as Equation 6.

LCSESS;t = LCSESS;2019 � 1:18t�2019 (Equation 6)

Where,

LCSESS,t is the LIB consumption in stationary energy storage systems in year t (GWh).

Other electric devices include cell phones, wireless headsets, smart watches, cameras, notebook com-

puters, tablets, robots, drones, power tools, etc. Currently the consumer electronics is the major sector

of LIBs used in other electric devices. From 2016 to now, sales of mobile phones and computers have

been nearly unchanged. Future growth of LIBs used in other electric devices will come from increased de-

mand for electricity from 5G applications and sales of other devices. We have predicted this demand in our

previous published study (Sun et al., 2018a). In that study, we estimated that the LIB demand in other elec-

tric devices would reach the maximum amount of 280 GWh in 2050. Then based on this value and historical

data from 2000 to 2016, we used the logistics model to estimate the annual consumption of LIBs in other

electric devices. In this work, this model is modified using historical data from 2017 to 2019 as Equation 7.

LCOED;t =
280

ð1+ eð�0:1173�t + 238:48ÞÞ+ 9:13 (Equation 7)

Where,

LCOED is the LIB consumption in other electric devices in year t (GWh).

Transport Impact Model

The LIB consumption in the EV sector is modeled based on the Transport Impact Model and output of the

Battery Supply Projection Model. Vehicle types considered in the model include passenger vehicle, light-

duty commercial vehicle, heavy-duty commercial vehicle. Transport Impact Model is a technology-rich,

country-level, flow-driven approach model, developed by China Automotive Energy Research Center of

Tsinghua University (Hao et al., 2019a, 2019b). The LIB consumption is the product of four factors: vehicle

sales, EV market penetration, battery capacity per EV, and battery supply constraints as Equation 8. Time

step of the model is one year.

LCLDV ;t =
X
i

SAi;t �MPt � BCi;t (Equation 8)

Where,

LCLDV,t is the LIB consumption in EVs in year t (GWh);

SAi,t is the vehicle sales in year t in country i (unit);

MPt is the EV market penetration in year t;

BCi,t is the battery capacity per EV in year t in country i (kWh/unit).

The total vehicle sales is the product of country-level economy and population development forecast (see

Figure S8). The baseline of regional EV market penetration rate is determined based on the vehicle
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electrification targets set by various countries (IEA, 2021a). In addition, the EV market penetration is the

connector between our Battery Supply Projection Model and Transport Impact Model. This variable is

adjusted to maximize the output of Transport Impact Model under the constraint of the result output of

Battery Supply Projection Model as Equation 9. Figures S9–S12 show the detail country-level EV penetra-

tion projection results.

MPt = max

8<
:MPt

������
Z t

t�2

LCLDV ;t <

Z t

t�2

ðPCt � LCHDV ;t � LCSESS;t � LCOED;tÞ
9=
; (Equation 9)

The battery capacity per EV is obtained by solving the non-linear equations, as Equations 10 and 11. On one

hand, the battery capacity determines the total energy that can be used for driving; On the other hand, the

battery capacity itself affects the battery weight, which further affects the energy consumption rate of EVs.

A larger battery capacity does not yield a proportionally larger electric range due to the increase in battery

weight.

ERt;i =
BCt;i � g
ECt;i

(Equation 10)

ECt;i = a � RFt;i � ðBCt;i � EDt;i +CWt;iÞb
PEt;i

(Equation 11)

Where,

ERt,i is the electric range of vehicle sold in year t, in country i (km);

ECt;i is the energy consumption rate of vehicle sold in year t, in country i (MJ/km), which is the function of

vehicle weight, aero and rolling resistance, and vehicle powertrain efficiency;

RFt,i is the aero and rolling resistance factor of vehicle sold in year t, in country i;

EDt,i is the battery energy density of vehicle sold in year t, in country i (kg/MJ);

CWt,i is the vehicle curb weight (excluding battery weight) of vehicle sold in year t, in country i (kg);

PEt,i is the powertrain energy efficiency of vehicle sold in year t, in country i (%);

aandbare the characteristics parameters, which reflect the rationale of vehicle energy consumption;

gis the percentage of battery energy that can be actually used out of the total battery capacity (%).

The key input data, including country-level EV sales, EV electric range, and battery technology evolvement

in four categories of powertrain systems and three categories of vehicle models, are shown in the Figures

S13–S16.
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